1
|
Hu M, Chen H, Wang H, Burov S, Barkai E, Wang D. Triggering Gaussian-to-Exponential Transition of Displacement Distribution in Polymer Nanocomposites via Adsorption-Induced Trapping. ACS NANO 2023; 17:21708-21718. [PMID: 37879044 DOI: 10.1021/acsnano.3c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
In many disordered systems, the diffusion of classical particles is described by a displacement distribution P(x, t) that displays exponential tails instead of Gaussian statistics expected for Brownian motion. However, the experimental demonstration of control of this behavior by increasing the disorder strength has remained challenging. In this work, we explore the Gaussian-to-exponential transition by using diffusion of poly(ethylene glycol) (PEG) in attractive nanoparticle-polymer mixtures and controlling the volume fraction of the nanoparticles. In this work, we find "knobs", namely nanoparticle concentration and interaction, which enable the change in the shape of P(x,t) in a well-defined way. The Gaussian-to-exponential transition is consistent with a modified large deviation approach for a continuous time random walk and also with Monte Carlo simulations involving a microscopic model of polymer trapping via reversible adsorption to the nanoparticle surface. Our work bears significance in unraveling the fundamental physics behind the exponential decay of the displacement distribution at the tails, which is commonly observed in soft materials and nanomaterials.
Collapse
Affiliation(s)
- Ming Hu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongbo Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Hongru Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Stanislav Burov
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
2
|
Alexandre A, Mangeat M, Guérin T, Dean DS. How Stickiness Can Speed Up Diffusion in Confined Systems. PHYSICAL REVIEW LETTERS 2022; 128:210601. [PMID: 35687439 DOI: 10.1103/physrevlett.128.210601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
The paradigmatic model for heterogeneous media used in diffusion studies is built from reflecting obstacles and surfaces. It is well known that the crowding effect produced by these reflecting surfaces slows the dispersion of Brownian tracers. Here, using a general adsorption desorption model with surface diffusion, we show analytically that making surfaces or obstacles attractive can accelerate dispersion. In particular, we show that this enhancement of diffusion can exist even when the surface diffusion constant is smaller than that in the bulk. Even more remarkably, this enhancement effect occurs when the effective diffusion constant, when restricted to surfaces only, is lower than the effective diffusivity with purely reflecting boundaries. We give analytical formulas for this intriguing effect in periodic arrays of spheres as well as undulating microchannels. Our results are confirmed by numerical calculations and Monte Carlo simulations.
Collapse
Affiliation(s)
- A Alexandre
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - M Mangeat
- Center for Biophysics and Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - T Guérin
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
| | - D S Dean
- Laboratoire Ondes et matière d'Aquitaine, CNRS/University of Bordeaux, F-33400 Talence, France
- Team MONC, INRIA Bordeaux Sud Ouest, CNRS UMR 5251, Bordeaux INP, University Bordeaux, F-33400 Talence, France
| |
Collapse
|
3
|
Thompson CJ, Kienle DF, Schwartz DK. Enhanced Facilitated Diffusion of Membrane-Associating Proteins under Symmetric Confinement. J Phys Chem Lett 2022; 13:2901-2907. [PMID: 35333540 DOI: 10.1021/acs.jpclett.2c00227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The facilitated surface diffusion of transiently adsorbing molecules in a planar confined microenvironment (i.e., slit-like confinement) is highly relevant to biological phenomena, such as extracellular signaling, as well as numerous biotechnology systems. Here, we studied the surface diffusion of individual proteins confined between two symmetric lipid bilayer membranes, under a continuum of confinement heights, using single-molecule tracking and convex lens-induced confinement as well as hybrid, kinetic Monte Carlo simulations of a generalized continuous time random walk process. Surface diffusion was observed to vary non-monotonically with confinement height, exhibiting a maximum at a height of ∼750 nm, where diffusion was nearly 40% greater than that for a semi-infinite system. This demonstrated that planar confinement can, in fact, increase surface diffusion, qualitatively validating previous theoretical predictions. Simulations reproduced the experimental results and suggested that confinement enhancement of surface diffusion for symmetric systems is limited to cases where the adsorbate exhibits weak surface sticking.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel F Kienle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Balcerek M, Burnecki K. Testing of Multifractional Brownian Motion. ENTROPY 2020; 22:e22121403. [PMID: 33322676 PMCID: PMC7764075 DOI: 10.3390/e22121403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
Fractional Brownian motion (FBM) is a generalization of the classical Brownian motion. Most of its statistical properties are characterized by the self-similarity (Hurst) index 0<H<1. In nature one often observes changes in the dynamics of a system over time. For example, this is true in single-particle tracking experiments where a transient behavior is revealed. The stationarity of increments of FBM restricts substantially its applicability to model such phenomena. Several generalizations of FBM have been proposed in the literature. One of these is called multifractional Brownian motion (MFBM) where the Hurst index becomes a function of time. In this paper, we introduce a rigorous statistical test on MFBM based on its covariance function. We consider three examples of the functions of the Hurst parameter: linear, logistic, and periodic. We study the power of the test for alternatives being MFBMs with different linear, logistic, and periodic Hurst exponent functions by utilizing Monte Carlo simulations. We also analyze mean-squared displacement (MSD) for the three cases of MFBM by comparing the ensemble average MSD and ensemble average time average MSD, which is related to the notion of ergodicity breaking. We believe that the presented results will be helpful in the analysis of various anomalous diffusion phenomena.
Collapse
|
5
|
Thompson CJ, Su Z, Vu VH, Wu Y, Leckband DE, Schwartz DK. Cadherin clusters stabilized by a combination of specific and nonspecific cis-interactions. eLife 2020; 9:e59035. [PMID: 32876051 PMCID: PMC7505656 DOI: 10.7554/elife.59035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
We demonstrate a combined experimental and computational approach for the quantitative characterization of lateral interactions between membrane-associated proteins. In particular, weak, lateral (cis) interactions between E-cadherin extracellular domains tethered to supported lipid bilayers, were studied using a combination of dynamic single-molecule Förster Resonance Energy Transfer (FRET) and kinetic Monte Carlo (kMC) simulations. Cadherins are intercellular adhesion proteins that assemble into clusters at cell-cell contacts through cis- and trans- (adhesive) interactions. A detailed and quantitative understanding of cis-clustering has been hindered by a lack of experimental approaches capable of detecting and quantifying lateral interactions between proteins on membranes. Here single-molecule intermolecular FRET measurements of wild-type E-cadherin and cis-interaction mutants combined with simulations demonstrate that both nonspecific and specific cis-interactions contribute to lateral clustering on lipid bilayers. Moreover, the intermolecular binding and dissociation rate constants are quantitatively and independently determined, demonstrating an approach that is generalizable for other interacting proteins.
Collapse
Affiliation(s)
- Connor J Thompson
- Department of Chemical and Biological Engineering, University of Colorado BoulderBoulderUnited States
| | - Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| | - Vinh H Vu
- Department of Biochemistry and University of Illinois, Urbana-ChampaignUrbanaUnited States
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of MedicineBronxUnited States
| | - Deborah E Leckband
- Department of Biochemistry and University of Illinois, Urbana-ChampaignUrbanaUnited States
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana-ChampaignUrbanaUnited States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
6
|
Morrin GT, Kienle DF, Weltz JS, Traeger JC, Schwartz DK. Polyelectrolyte Surface Diffusion in a Nanoslit Geometry. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gregory T. Morrin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel F. Kienle
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - James S. Weltz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeremiah C. Traeger
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Daniel K. Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Niu Q, Wang D. Probing the polymer anomalous dynamics at solid/liquid interfaces at the single-molecule level. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.01.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Affiliation(s)
- Jaeoh Shin
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Anatoly B. Kolomeisky
- Department
of Chemistry, Rice University, Houston, Texas 77005, United States
- Center
for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Abstract
Lévy walks are a mathematical construction useful for describing random patterns of movement with bizarre fractal properties that seem to have no place in biology. Nonetheless, movement patterns resembling Lévy walks have been observed at scales ranging from the microscopic to the ecological. They have been seen in the molecular machinery operating within cells during intracellular trafficking, in the movement patterns of T cells within the brain, in DNA, in some molluscs, insects, fish, birds and mammals, in the airborne flights of spores and seeds, and in the collective movements of some animal groups. Lévy walks are also evident in trace fossils (ichnofossils) – the preserved form of tracks made by organisms that occupied ancient sea beds about 252-66 million years ago. And they are utilised by algae that originated around two billion years ago, and still exist today. In September of 2017, leading researchers from across the life sciences, along with mathematicians and physicists, got together at a Company of Biologists' Workshop to discuss the origins and biological significance of these movement patterns. In this Review the essence of the technical and sometimes heated discussions is distilled and made accessible for all. In just a few pages, the reader is taken from a gentle introduction to the frontiers of a very active field of scientific enquiry. What emerges is a fascinating story of a truly inter-disciplinary scientific endeavour that is seeking to better understand movement patterns occurring across all biological scales. Summary: Movement patterns resembling Lévy walks are found in a wide variety of organisms, from cells to humans. In this Review the latest research into their origins and biological significance is discussed.
Collapse
|
10
|
Wang D, Wu H, Schwartz DK. Three-Dimensional Tracking of Interfacial Hopping Diffusion. PHYSICAL REVIEW LETTERS 2017; 119:268001. [PMID: 29328686 DOI: 10.1103/physrevlett.119.268001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 05/04/2023]
Abstract
Theoretical predictions have suggested that molecular motion at interfaces-which influences processes including heterogeneous catalysis, (bio)chemical sensing, lubrication and adhesion, and nanomaterial self-assembly-may be dominated by hypothetical "hops" through the adjacent liquid phase, where a diffusing molecule readsorbs after a given hop according to a probabilistic "sticking coefficient." Here, we use three-dimensional (3D) single-molecule tracking to explicitly visualize this process for human serum albumin at solid-liquid interfaces that exert varying electrostatic interactions on the biomacromolecule. Following desorption from the interface, a molecule experiences multiple unproductive surface encounters before readsorption. An average of approximately seven surface collisions is required for the repulsive surfaces, decreasing to approximately two and a half for surfaces that are more attractive. The hops themselves are also influenced by long-range interactions, with increased electrostatic repulsion causing hops of longer duration and distance. These findings explicitly demonstrate that interfacial diffusion is dominated by biased 3D Brownian motion involving bulk-surface coupling and that it can be controlled by influencing short- and long-range adsorbate-surface interactions.
Collapse
Affiliation(s)
- Dapeng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Haichao Wu
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
11
|
Traeger JC, Schwartz DK. Surface-Mediated DNA Hybridization: Effects of DNA Conformation, Surface Chemistry, and Electrostatics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12651-12659. [PMID: 29023127 DOI: 10.1021/acs.langmuir.7b02675] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Single-molecule Förster Resonance Energy Transfer (FRET) was used to study the dynamic association of mobile donor-labeled ssDNA oligonucleotides ("target") with covalently immobilized complementary acceptor-labeled ssDNA oligonucleotides ("probe"). While probe-target association events were resolved for all experiments, such FRET events were far more likely to occur in systems with complementarity and on hydrophobic, as compared to hydrophilic, surfaces. The distribution of donor-acceptor association-time intervals did not exhibit simple first-order kinetics, and when decomposed into a superposition of first-order processes, only a small fraction of events corresponded to a long-lived state that was presumed to represent true DNA hybridization, while the majority of association events were transient, representing nonspecific associations or partial hybridization. The structure of the DNA target and probe affected both the stability of the hybridized state, as well as the likelihood that an association between the two led to hybridization. In particular, the likelihood of hybridization decreased for longer target strands and for targets with stem-loop secondary structure. The presence of oligonucleotide secondary structure reduced the stability of hybridization, while greater complementarity increased stability of the hybridized state. Interestingly, increased ionic strength (i.e., greater electrostatic screening) increased the probability of hybridization but did not influence the lifetime of the hybridized state. Combined, these observations provide a nuanced view of surface-mediated DNA hybridization, where various factors independently influence the probability and stability of hybridization.
Collapse
Affiliation(s)
- Jeremiah C Traeger
- Department of Chemical and Biological Engineering University of Colorado Boulder , Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering University of Colorado Boulder , Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
The evolutionary origins of Lévy walk foraging. PLoS Comput Biol 2017; 13:e1005774. [PMID: 28972973 PMCID: PMC5640246 DOI: 10.1371/journal.pcbi.1005774] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 10/13/2017] [Accepted: 09/14/2017] [Indexed: 11/19/2022] Open
Abstract
We study through a reaction-diffusion algorithm the influence of landscape diversity on the efficiency of search dynamics. Remarkably, the identical optimal search strategy arises in a wide variety of environments, provided the target density is sparse and the searcher’s information is restricted to its close vicinity. Our results strongly impact the current debate on the emergentist vs. evolutionary origins of animal foraging. The inherent character of the optimal solution (i.e., independent on the landscape for the broad scenarios assumed here) suggests an interpretation favoring the evolutionary view, as originally implied by the Lévy flight foraging hypothesis. The latter states that, under conditions of scarcity of information and sparse resources, some organisms must have evolved to exploit optimal strategies characterized by heavy-tailed truncated power-law distributions of move lengths. These results strongly suggest that Lévy strategies—and hence the selection pressure for the relevant adaptations—are robust with respect to large changes in habitat. In contrast, the usual emergentist explanation seems not able to explain how very similar Lévy walks can emerge from all the distinct non-Lévy foraging strategies that are needed for the observed large variety of specific environments. We also report that deviations from Lévy can take place in plentiful ecosystems, where locomotion truncation is very frequent due to high encounter rates. So, in this case normal diffusion strategies—performing as effectively as the optimal one—can naturally emerge from Lévy. Our results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks. How organisms improve the search for food, mates, etc., is a key factor to their survival. Mathematically, the best strategy to look for randomly distributed re-visitable resources—under scarce information and sparse conditions—results from Lévy distributions of move lengths (the probability of taking a step ℓ is proportional to 1/ℓ2). Today it is well established that many animal species in different habitats do perform Lévy foraging. This fact has raised a heated debate, viz., the emergent versus evolutionary hypotheses. For the former, a Lévy foraging is an emergent property, a consequence of searcher-environment interactions: certain landscapes induce Lévy patterns, but others not. In this view, the optimal strategy depends on the particular habitat. The evolutionary explanation, in contrast, is that Lévy foraging strategies are adaptations that evolved via natural selection. In this article, through simulations we exhaustively analyze the influence of distinct environments on the foraging efficiency. We find that the optimal procedure is the same in all situations, provided density is low and landscape information is scarce. So, the best search strategy is remarkably independent of details. These results constitute the strongest theoretical evidence to date supporting the evolutionary origins of experimentally observed Lévy walks.
Collapse
|
13
|
Kimmich R, Fatkullin N. Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2017; 101:18-50. [PMID: 28844220 DOI: 10.1016/j.pnmrs.2017.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/02/2017] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Field-cycling NMR relaxometry is a well-established technique for probing molecular dynamics in a frequency range from typically a few kHz up to several tens of MHz. For the interpretation of relaxometry data, it is quite often assumed that the spin-lattice relaxation process is of an intra-molecular nature so that rotational fluctuations dominate. However, dipolar interactions as the main type of couplings between protons and other dipolar species without quadrupole moments can imply appreciable inter-molecular contributions. These fluctuate due to translational displacements and to a lesser degree also by rotational reorientations in the short-range limit. The analysis of the inter-molecular proton spin-lattice relaxation rate thus permits one to evaluate self-diffusion variables such as the diffusion coefficient or the mean square displacement on a time scale from nanoseconds to several hundreds of microseconds. Numerous applications to solvents, plastic crystals and polymers will be reviewed. The technique is of particular interest for polymer dynamics since inter-molecular spin-lattice relaxation diffusometry bridges the time scales of quasi-elastic neutron scattering and field-gradient NMR diffusometry. This is just the range where model-specific intra-coil mechanisms are assumed to occur. They are expected to reveal themselves by characteristic power laws for the time-dependence of the mean-square segment displacement. These can be favorably tested on this basis. Results reported in the literature will be compared with theoretical predictions. On the other hand, there is a second way for translational diffusion phenomena to affect the spin-lattice relaxation dispersion. If rotational diffusion of molecules is restricted, translational diffusion properties can be deduced even from molecular reorientation dynamics detected by intra-molecular spin-lattice relaxation. This sort of scenario will be relevant for adsorbates on surfaces or polymer segments under entanglement and chain connectivity constraints. Under such conditions, reorientations will be correlated with translational displacements leading to the so-called RMTD relaxation process (reorientation mediated by translational displacements). Applications to porous glasses, protein solutions, lipid bilayers, and clays will be discussed. Finally, we will address the intriguing fact that the various time limits of the segment mean-square displacement of polymers in some cases perfectly reproduce predictions of the tube/reptation model whereas the reorientation dynamics suggests strongly deviating power laws.
Collapse
Affiliation(s)
| | - Nail Fatkullin
- Institute of Physics, Kazan Federal University, Kazan 420008 Tatarstan, Russia
| |
Collapse
|
14
|
Abstract
Anomalous diffusion is being discovered in a fast growing number of systems. The exact nature of this anomalous diffusion provides important information on the physical laws governing the studied system. One of the central properties analysed for finite particle motion time series is the intrinsic variability of the apparent diffusivity, typically quantified by the ergodicity breaking parameter EB. Here we demonstrate that frequently EB is insufficient to provide a meaningful measure for the observed variability of the data. Instead, important additional information is provided by the higher order moments entering by the skewness and kurtosis. We analyse these quantities for three popular anomalous diffusion models. In particular, we find that even for the Gaussian fractional Brownian motion a significant skewness in the results of physical measurements occurs and needs to be taken into account. Interestingly, the kurtosis and skewness may also provide sensitive estimates of the anomalous diffusion exponent underlying the data. We also derive a new result for the EB parameter of fractional Brownian motion valid for the whole range of the anomalous diffusion parameter. Our results are important for the analysis of anomalous diffusion but also provide new insights into the theory of anomalous stochastic processes.
Collapse
|
15
|
Hu M, Zhang JM, Bao JD. Anomalous barrier escape: The roles of noise distribution and correlation. J Chem Phys 2017; 146:204103. [PMID: 28571326 PMCID: PMC5440235 DOI: 10.1063/1.4983651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 12/30/2022] Open
Abstract
We study numerically and analytically the barrier escape dynamics of a particle driven by an underlying correlated Lévy noise for a smooth metastable potential. A "quasi-monochrome-color" Lévy noise, i.e., the first-order derivative variable of a linear second-order differential equation subjected to a symmetric α-stable white Lévy noise, also called the harmonic velocity Lévy noise, is proposed. Note that the time-integral of the noise Green function of this kind is equal to zero. This leads to the existence of underlying negative time correlation and implies that a step in one direction is likely followed by a step in the other direction. By using the noise of this kind as a driving source, we discuss the competition between long flights and underlying negative correlations in the metastable dynamics. The quite rich behaviors in the parameter space including an optimum α for the stationary escape rate have been found. Remarkably, slow diffusion does not decrease the stationary rate while a negative correlation increases net escape. An approximate expression for the Lévy-Kramers rate is obtained to support the numerically observed dependencies.
Collapse
Affiliation(s)
- Meng Hu
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jia-Ming Zhang
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
16
|
Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N, Shuang B, Landes CF. Single Particle Tracking: From Theory to Biophysical Applications. Chem Rev 2017; 117:7331-7376. [PMID: 28520419 DOI: 10.1021/acs.chemrev.6b00815] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
After three decades of developments, single particle tracking (SPT) has become a powerful tool to interrogate dynamics in a range of materials including live cells and novel catalytic supports because of its ability to reveal dynamics in the structure-function relationships underlying the heterogeneous nature of such systems. In this review, we summarize the algorithms behind, and practical applications of, SPT. We first cover the theoretical background including particle identification, localization, and trajectory reconstruction. General instrumentation and recent developments to achieve two- and three-dimensional subdiffraction localization and SPT are discussed. We then highlight some applications of SPT to study various biological and synthetic materials systems. Finally, we provide our perspective regarding several directions for future advancements in the theory and application of SPT.
Collapse
Affiliation(s)
- Hao Shen
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Lawrence J Tauzin
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Rashad Baiyasi
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Wenxiao Wang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Nicholas Moringo
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Bo Shuang
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, §Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
17
|
Wang W, Shen H, Shuang B, Hoener BS, Tauzin LJ, Moringo NA, Kelly KF, Landes CF. Super Temporal-Resolved Microscopy (STReM). J Phys Chem Lett 2016; 7:4524-4529. [PMID: 27797527 DOI: 10.1021/acs.jpclett.6b02098] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Super-resolution microscopy typically achieves high spatial resolution, but the temporal resolution remains low. We report super temporal-resolved microscopy (STReM) to improve the temporal resolution of 2D super-resolution microscopy by a factor of 20 compared to that of the traditional camera-limited frame rate. This is achieved by rotating a phase mask in the Fourier plane during data acquisition and then recovering the temporal information by fitting the point spread function (PSF) orientations. The feasibility of this technique is verified with both simulated and experimental 2D adsorption/desorption and 2D emitter transport. When STReM is applied to measure protein adsorption at a glass surface, previously unseen dynamics are revealed.
Collapse
Affiliation(s)
- Wenxiao Wang
- Department of Electrical and Computer Engineering, Rice University , MS 366, Houston, Texas 77251-1892, United States
| | - Hao Shen
- Department of Chemistry, Rice University , MS 60, Houston, Texas 77251-1892, United States
| | - Bo Shuang
- Department of Chemistry, Rice University , MS 60, Houston, Texas 77251-1892, United States
| | - Benjamin S Hoener
- Department of Chemistry, Rice University , MS 60, Houston, Texas 77251-1892, United States
| | - Lawrence J Tauzin
- Department of Chemistry, Rice University , MS 60, Houston, Texas 77251-1892, United States
| | - Nicholas A Moringo
- Department of Chemistry, Rice University , MS 60, Houston, Texas 77251-1892, United States
| | - Kevin F Kelly
- Department of Electrical and Computer Engineering, Rice University , MS 366, Houston, Texas 77251-1892, United States
| | - Christy F Landes
- Department of Electrical and Computer Engineering, Rice University , MS 366, Houston, Texas 77251-1892, United States
- Department of Chemistry, Rice University , MS 60, Houston, Texas 77251-1892, United States
- Smalley-Curl Institute, Rice University , Houston, Texas 77251, United States
| |
Collapse
|
18
|
|