1
|
Liu YH, Hesse M, Genestreti K, Nakamura R, Burch JL, Cassak PA, Bessho N, Eastwood JP, Phan T, Swisdak M, Toledo-Redondo S, Hoshino M, Norgren C, Ji H, Nakamura TKM. Ohm's Law, the Reconnection Rate, and Energy Conversion in Collisionless Magnetic Reconnection. SPACE SCIENCE REVIEWS 2025; 221:16. [PMID: 39944272 PMCID: PMC11811489 DOI: 10.1007/s11214-025-01142-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Magnetic reconnection is a ubiquitous plasma process that transforms magnetic energy into particle energy during eruptive events throughout the universe. Reconnection not only converts energy during solar flares and geomagnetic substorms that drive space weather near Earth, but it may also play critical roles in the high energy emissions from the magnetospheres of neutron stars and black holes. In this review article, we focus on collisionless plasmas that are most relevant to reconnection in many space and astrophysical plasmas. Guided by first-principles kinetic simulations and spaceborne in-situ observations, we highlight the most recent progress in understanding this fundamental plasma process. We start by discussing the non-ideal electric field in the generalized Ohm's law that breaks the frozen-in flux condition in ideal magnetohydrodynamics and allows magnetic reconnection to occur. We point out that this same reconnection electric field also plays an important role in sustaining the current and pressure in the current sheet and then discuss the determination of its magnitude (i.e., the reconnection rate), based on force balance and energy conservation. This approach to determining the reconnection rate is applied to kinetic current sheets with a wide variety of magnetic geometries, parameters, and background conditions. We also briefly review the key diagnostics and modeling of energy conversion around the reconnection diffusion region, seeking insights from recently developed theories. Finally, future prospects and open questions are discussed.
Collapse
Affiliation(s)
- Yi-Hsin Liu
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03750 USA
| | - Michael Hesse
- Ames Research Center, NASA, Moffett Field, CA 94035 USA
| | | | - Rumi Nakamura
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
- International Space Science Institute, Bern, Switzerland
| | | | - Paul A. Cassak
- Department of Physics and Astronomy and Center for KINETIC Plasma Physics, West Virginia University, Morgantown, WV 26506 USA
| | - Naoki Bessho
- NASA, Goddard Space Flight Center, Greenbelt, MD 20771 USA
- Department of Astronomy, University of Maryland, College Park, MD 20742 USA
| | | | - Tai Phan
- Space Science Laboratory, UC Berkeley, Berkeley, CA 94720 USA
| | - Marc Swisdak
- IREAP, University of Maryland, College Park, MD 20742 USA
| | | | - Masahiro Hoshino
- Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Cecilia Norgren
- Swedish Institute of Space Physics, Uppsala, Sweden
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Hantao Ji
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 USA
| | - Takuma K. M. Nakamura
- Space Research Institute, Austrian Academy of Sciences, Schmiedlstraße 6, 8042 Graz, Austria
- Krimgen LLC, Hiroshima, 7320828, Japan
| |
Collapse
|
2
|
Stawarz JE, Muñoz PA, Bessho N, Bandyopadhyay R, Nakamura TKM, Eriksson S, Graham DB, Büchner J, Chasapis A, Drake JF, Shay MA, Ergun RE, Hasegawa H, Khotyaintsev YV, Swisdak M, Wilder FD. The Interplay Between Collisionless Magnetic Reconnection and Turbulence. SPACE SCIENCE REVIEWS 2024; 220:90. [PMID: 39605945 PMCID: PMC11589065 DOI: 10.1007/s11214-024-01124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Alongside magnetic reconnection, turbulence is another fundamental nonlinear plasma phenomenon that plays a key role in energy transport and conversion in space and astrophysical plasmas. From a numerical, theoretical, and observational point of view there is a long history of exploring the interplay between these two phenomena in space plasma environments; however, recent high-resolution, multi-spacecraft observations have ushered in a new era of understanding this complex topic. The interplay between reconnection and turbulence is both complex and multifaceted, and can be viewed through a number of different interrelated lenses - including turbulence acting to generate current sheets that undergo magnetic reconnection (turbulence-driven reconnection), magnetic reconnection driving turbulent dynamics in an environment (reconnection-driven turbulence) or acting as an intermediate step in the excitation of turbulence, and the random diffusive/dispersive nature of the magnetic field lines embedded in turbulent fluctuations enabling so-called stochastic reconnection. In this paper, we review the current state of knowledge on these different facets of the interplay between turbulence and reconnection in the context of collisionless plasmas, such as those found in many near-Earth astrophysical environments, from a theoretical, numerical, and observational perspective. Particular focus is given to several key regions in Earth's magnetosphere - namely, Earth's magnetosheath, magnetotail, and Kelvin-Helmholtz vortices on the magnetopause flanks - where NASA's Magnetospheric Multiscale mission has been providing new insights into the topic.
Collapse
Affiliation(s)
- J. E. Stawarz
- Department of Mathematics, Physics, and Electrical Engineering, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST UK
| | - P. A. Muñoz
- Center for Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany
- Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
| | - N. Bessho
- Department of Astronomy, University of Maryland, College Park, MD 20742 USA
- NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - R. Bandyopadhyay
- Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 USA
| | - T. K. M. Nakamura
- Space Research Institute, Austrian Academy of Sciences, 8042 Graz, Austria
- Krimgen LLC, Hiroshima, 7320828, Japan
| | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - D. B. Graham
- Swedish Institute of Space Physics, Uppsala, Sweden
| | - J. Büchner
- Center for Astronomy and Astrophysics, Technical University Berlin, 10623 Berlin, Germany
- Max Planck Institute for Solar System Research, 37077 Göttingen, Germany
| | - A. Chasapis
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
| | - J. F. Drake
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 USA
- Department of Physics, Institute for Physical Science and Technology and the Joint Space Science Institute, University of Maryland, College Park, MD 20740 USA
| | - M. A. Shay
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 USA
| | - R. E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado Boulder, Boulder, CO USA
| | - H. Hasegawa
- Institute of Space and Astronautical Science, JAXA, Sagamihara, Japan
| | | | - M. Swisdak
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20740 USA
| | - F. D. Wilder
- University of Texas at Arlington, Arlington, TX USA
| |
Collapse
|
3
|
Bose S, Fox W, Ji H, Yoo J, Goodman A, Alt A, Yamada M. Conversion of Magnetic Energy to Plasma Kinetic Energy During Guide Field Magnetic Reconnection in the Laboratory. PHYSICAL REVIEW LETTERS 2024; 132:205102. [PMID: 38829091 DOI: 10.1103/physrevlett.132.205102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 08/07/2023] [Accepted: 03/01/2024] [Indexed: 06/05/2024]
Abstract
We present laboratory measurements showing the two-dimensional (2D) structure of energy conversion during magnetic reconnection with a guide field over the electron and ion diffusion regions, resolving the separate energy deposition on electrons and ions. We find that the electrons are energized by the parallel electric field at two locations, at the X line and around the separatrices. On the other hand, the ions are energized ballistically by the perpendicular electric field in the vicinity of the high-density separatrices. An energy balance calculation by evaluating the terms of the Poynting theorem shows that 40% of the magnetic energy is converted to particle energy, 2/3 of which is transferred to ions and 1/3 to electrons. Further analysis suggests that the energy deposited on particles manifests mostly in the form of thermal kinetic energy in the diffusion regions.
Collapse
Affiliation(s)
- Sayak Bose
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - William Fox
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
- Department of Astrophysical Sciences, Princeton University, New Jersey 08540, USA
| | - Hantao Ji
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
- Department of Astrophysical Sciences, Princeton University, New Jersey 08540, USA
| | - Jongsoo Yoo
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| | - Aaron Goodman
- Department of Mechanical and Aerospace Engineering, Princeton University, New Jersey 08540, USA
| | - Andrew Alt
- Department of Astrophysical Sciences, Princeton University, New Jersey 08540, USA
| | - Masaaki Yamada
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA
| |
Collapse
|
4
|
Ji H, Yoo J, Fox W, Yamada M, Argall M, Egedal J, Liu YH, Wilder R, Eriksson S, Daughton W, Bergstedt K, Bose S, Burch J, Torbert R, Ng J, Chen LJ. Laboratory Study of Collisionless Magnetic Reconnection. SPACE SCIENCE REVIEWS 2023; 219:76. [PMID: 38023292 PMCID: PMC10651714 DOI: 10.1007/s11214-023-01024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
A concise review is given on the past two decades' results from laboratory experiments on collisionless magnetic reconnection in direct relation with space measurements, especially by the Magnetospheric Multiscale (MMS) mission. Highlights include spatial structures of electromagnetic fields in ion and electron diffusion regions as a function of upstream symmetry and guide field strength, energy conversion and partitioning from magnetic field to ions and electrons including particle acceleration, electrostatic and electromagnetic kinetic plasma waves with various wavelengths, and plasmoid-mediated multiscale reconnection. Combined with the progress in theoretical, numerical, and observational studies, the physics foundation of fast reconnection in collisionless plasmas has been largely established, at least within the parameter ranges and spatial scales that were studied. Immediate and long-term future opportunities based on multiscale experiments and space missions supported by exascale computation are discussed, including dissipation by kinetic plasma waves, particle heating and acceleration, and multiscale physics across fluid and kinetic scales.
Collapse
Affiliation(s)
- H. Ji
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544 New Jersey USA
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - J. Yoo
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - W. Fox
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - M. Yamada
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - M. Argall
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, 03824 New Hampshire USA
| | - J. Egedal
- Department of Physics, University of Wisconsin - Madison, 1150 University Avenue, Madison, 53706 Wisconsin USA
| | - Y.-H. Liu
- Department of Physics and Astronomy, Dartmouth College, 17 Fayerweather Hill Road, Hanover, 03755 New Hampshire USA
| | - R. Wilder
- Department of Physics, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, 76019 Texas USA
| | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, 80303 Colorado USA
| | - W. Daughton
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, 87545 New Mexico USA
| | - K. Bergstedt
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544 New Jersey USA
| | - S. Bose
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - J. Burch
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 Texas USA
| | - R. Torbert
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, 03824 New Hampshire USA
| | - J. Ng
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
- Department of Astronomy, University of Maryland, 4296 Stadium Drive, College Park, 20742 Maryland USA
- Goddard Space Flight Center, Mail Code 130, Greenbelt, 20771 Maryland USA
| | - L.-J. Chen
- Goddard Space Flight Center, Mail Code 130, Greenbelt, 20771 Maryland USA
| |
Collapse
|
5
|
Yoon YD, Wendel DE, Yun GS. Equilibrium selection via current sheet relaxation and guide field amplification. Nat Commun 2023; 14:139. [PMID: 36627282 PMCID: PMC9832116 DOI: 10.1038/s41467-023-35821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Although there is a continuous spectrum of current sheet equilibria, how a particular equilibrium is selected by a given system remains a mystery. Yet, only a limited number of equilibrium solutions are used for analyses of magnetized plasma phenomena. Here we present the exact process of equilibrium selection, by analyzing the relaxation process of a disequilibrated current sheet under a finite guide field. It is shown via phase-space analyses and particle-in-cell simulations that the current sheet relaxes in such a way that the guide field is locally amplified, yielding a mixed equilibrium from the spectrum. Comparisons to spacecraft observations and solar wind current sheet statistics demonstrate that such mixed equilibria are ubiquitous and exist as underlying local structures in various physical environments.
Collapse
Affiliation(s)
- Young Dae Yoon
- grid.482264.e0000 0000 8644 9730Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673 Republic of Korea ,grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Deirdre E. Wendel
- grid.133275.10000 0004 0637 6666NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Gunsu S. Yun
- grid.49100.3c0000 0001 0742 4007Department of Physics and Division of Advanced Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 37673 Republic of Korea ,grid.495999.1Center for Attosecond Science, Max Planck POSTECH/Korea Research Initiative, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
6
|
Bolaños S, Sladkov A, Smets R, Chen SN, Grisollet A, Filippov E, Henares JL, Nastasa V, Pikuz S, Riquier R, Safronova M, Severin A, Starodubtsev M, Fuchs J. Laboratory evidence of magnetic reconnection hampered in obliquely interacting flux tubes. Nat Commun 2022; 13:6426. [PMID: 36307404 PMCID: PMC9616926 DOI: 10.1038/s41467-022-33813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/30/2022] [Indexed: 11/14/2022] Open
Abstract
Magnetic reconnection can occur when two plasmas, having anti-parallel components of the magnetic field, encounter each other. In the reconnection plane, the anti-parallel component of the field is annihilated and its energy released in the plasma. Here, we investigate through laboratory experiments the reconnection between two flux tubes that are not strictly anti-parallel. Compression of the anti-parallel component of the magnetic field is observed, as well as a decrease of the reconnection efficiency. Concomitantly, we observe delayed plasma heating and enhanced particle acceleration. Three-dimensional hybrid simulations support these observations and highlight the plasma heating inhibition and reconnection efficiency reduction for these obliquely oriented flux tubes.
Collapse
Affiliation(s)
- Simon Bolaños
- LULI - CNRS, CEA, UPMC Univ Paris 06 : Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128, Paris, Palaiseau cedex, France
- LPP, Sorbonne Université, CNRS, Ecole Polytechnique, F-91128, Palaiseau, France
| | - Andrey Sladkov
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| | - Roch Smets
- LPP, Sorbonne Université, CNRS, Ecole Polytechnique, F-91128, Palaiseau, France
| | - Sophia N Chen
- ELI-NP, Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Magurele, Romania
| | | | - Evgeny Filippov
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
- Joint Institute for High Temperatures, RAS, 125412, Moscow, Russia
| | - Jose-Luis Henares
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS-IN2P3, Route du Solarium, F-33175, Gradignan, France
| | - Viorel Nastasa
- ELI-NP, Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Magurele, Romania
- National Institute for Laser, Plasma and Radiation Physics, Magurele, Ilfov, Romania
| | - Sergey Pikuz
- National Research Nuclear University MEPhI, 115409, Moscow, Russia
- Joint Institute for High Temperatures, RAS, 125412, Moscow, Russia
| | | | - Maria Safronova
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| | - Alexandre Severin
- LULI - CNRS, CEA, UPMC Univ Paris 06 : Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128, Paris, Palaiseau cedex, France
| | - Mikhail Starodubtsev
- Institute of Applied Physics, 46 Ulyanov Street, 603950, Nizhny Novgorod, Russia
| | - Julien Fuchs
- LULI - CNRS, CEA, UPMC Univ Paris 06 : Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128, Paris, Palaiseau cedex, France.
| |
Collapse
|
7
|
Pyakurel PS, Shay MA, Drake JF, Phan TD, Cassak PA, Verniero JL. Faster Form of Electron Magnetic Reconnection with a Finite Length X-Line. PHYSICAL REVIEW LETTERS 2021; 127:155101. [PMID: 34677989 DOI: 10.1103/physrevlett.127.155101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Observations in Earth's turbulent magnetosheath downstream of a quasiparallel bow shock reveal a prevalence of electron-scale current sheets favorable for electron-only reconnection where ions are not coupled to the reconnecting magnetic fields. In small-scale turbulence, magnetic structures associated with intense current sheets are limited in all dimensions. And since the coupling of ions are constrained by a minimum length scale, the dynamics of electron reconnection is likely to be 3D. Here, both 2D and 3D kinetic particle-in-cell simulations are used to investigate electron-only reconnection, focusing on the reconnection rate and associated electron flows. A new form of 3D electron-only reconnection spontaneously develops where the magnetic X-line is localized in the out-of-plane (z) direction. The consequence is an enhancement of the reconnection rate compared with two dimensions, which results from differential mass flux out of the diffusion region along z, enabling a faster inflow velocity and thus a larger reconnection rate. This outflow along z is due to the magnetic tension force in z just as the conventional exhaust tension force, allowing particles to leave the diffusion region efficiently along z unlike the 2D configuration.
Collapse
Affiliation(s)
- P S Pyakurel
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - M A Shay
- University of Delaware, Newark, Delaware 19716, USA
| | - J F Drake
- Department of Physics and the Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - T D Phan
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - P A Cassak
- Department of Physics and Astronomy and Center for KINETIC Plasma Physics, West Virginia University, Morgantown, West Virginia 26506, USA
| | - J L Verniero
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| |
Collapse
|
8
|
Hwang K, Dokgo K, Choi E, Burch JL, Sibeck DG, Giles BL, Hasegawa H, Fu HS, Liu Y, Wang Z, Nakamura TKM, Ma X, Fear RC, Khotyaintsev Y, Graham DB, Shi QQ, Escoubet CP, Gershman DJ, Paterson WR, Pollock CJ, Ergun RE, Torbert RB, Dorelli JC, Avanov L, Russell CT, Strangeway RJ. Magnetic Reconnection Inside a Flux Rope Induced by Kelvin-Helmholtz Vortices. JOURNAL OF GEOPHYSICAL RESEARCH. SPACE PHYSICS 2020; 125:e2019JA027665. [PMID: 32714734 PMCID: PMC7375157 DOI: 10.1029/2019ja027665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
On 5 May 2017, MMS observed a crater-type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary-normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin-Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3-D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex-induced reconnection. The center of the flux rope also displayed signatures of guide-field reconnection (out-of-plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M-shaped crater flux rope, as supported by reconstruction.
Collapse
Affiliation(s)
- K.‐J. Hwang
- Southwest Research InstituteSan AntonioTXUSA
| | - K. Dokgo
- Southwest Research InstituteSan AntonioTXUSA
| | - E. Choi
- Southwest Research InstituteSan AntonioTXUSA
| | - J. L. Burch
- Southwest Research InstituteSan AntonioTXUSA
| | | | - B. L. Giles
- NASA Goddard Space Flight CenterGreenbeltMDUSA
| | - H. Hasegawa
- Institute of Space and Astronautical ScienceJapan Aerospace Exploration AgencySagamiharaJapan
| | - H. S. Fu
- School of Science and EnvironmentBeihang UniversityBeijingChina
| | - Y. Liu
- School of Science and EnvironmentBeihang UniversityBeijingChina
| | - Z. Wang
- School of Science and EnvironmentBeihang UniversityBeijingChina
| | | | - X. Ma
- Physical Sciences DepartmentEmbry‐Riddle Aeronautical UniversityDaytona BeachFLUSA
| | - R. C. Fear
- School of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
| | | | | | - Q. Q. Shi
- School of Earth and Space SciencesPeking UniversityPekingChina
| | - C. P. Escoubet
- European Space Research and Technology CentreNoordwijkthe Netherlands
| | | | | | | | - R. E. Ergun
- Laboratory for Atmospheric and Space PhysicsUniversity of Colorado at BoulderBoulderCOUSA
| | - R. B. Torbert
- Space Science CenterUniversity of New HampshireDurhamNHUSA
| | | | - L. Avanov
- NASA Goddard Space Flight CenterGreenbeltMDUSA
- The Goddard Planetary Heliophysics InstituteUniversity of Maryland, Baltimore CountyBaltimoreMDUSA
| | - C. T. Russell
- Institute of Geophysics and Planetary PhysicsUniversity of California, Los AngelesLos AngelesCAUSA
| | - R. J. Strangeway
- Institute of Geophysics and Planetary PhysicsUniversity of California, Los AngelesLos AngelesCAUSA
| |
Collapse
|
9
|
Sitnov M, Birn J, Ferdousi B, Gordeev E, Khotyaintsev Y, Merkin V, Motoba T, Otto A, Panov E, Pritchett P, Pucci F, Raeder J, Runov A, Sergeev V, Velli M, Zhou X. Explosive Magnetotail Activity. SPACE SCIENCE REVIEWS 2019; 215:31. [PMID: 31178609 PMCID: PMC6528807 DOI: 10.1007/s11214-019-0599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/27/2019] [Indexed: 06/01/2023]
Abstract
Modes and manifestations of the explosive activity in the Earth's magnetotail, as well as its onset mechanisms and key pre-onset conditions are reviewed. Two mechanisms for the generation of the pre-onset current sheet are discussed, namely magnetic flux addition to the tail lobes, or other high-latitude perturbations, and magnetic flux evacuation from the near-Earth tail associated with dayside reconnection. Reconnection onset may require stretching and thinning of the sheet down to electron scales. It may also start in thicker sheets in regions with a tailward gradient of the equatorial magnetic field B z ; in this case it begins as an ideal-MHD instability followed by the generation of bursty bulk flows and dipolarization fronts. Indeed, remote sensing and global MHD modeling show the formation of tail regions with increased B z , prone to magnetic reconnection, ballooning/interchange and flapping instabilities. While interchange instability may also develop in such thicker sheets, it may grow more slowly compared to tearing and cause secondary reconnection locally in the dawn-dusk direction. Post-onset transients include bursty flows and dipolarization fronts, micro-instabilities of lower-hybrid-drift and whistler waves, as well as damped global flux tube oscillations in the near-Earth region. They convert the stretched tail magnetic field energy into bulk plasma acceleration and collisionless heating, excitation of a broad spectrum of plasma waves, and collisional dissipation in the ionosphere. Collisionless heating involves ion reflection from fronts, Fermi, betatron as well as other, non-adiabatic, mechanisms. Ionospheric manifestations of some of these magnetotail phenomena are discussed. Explosive plasma phenomena observed in the laboratory, the solar corona and solar wind are also discussed.
Collapse
Affiliation(s)
- Mikhail Sitnov
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | | | - Evgeny Gordeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Viacheslav Merkin
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Tetsuo Motoba
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - Evgeny Panov
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Philip Pritchett
- Department of Physics and Astronomy, University of California, Los Angeles, CA USA
| | - Fulvia Pucci
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, 509-5292 Japan
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ USA
| | - Joachim Raeder
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH USA
| | - Andrei Runov
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA USA
| | - Victor Sergeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | - Marco Velli
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Xuzhi Zhou
- School of Earth and Space Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
10
|
Nakamura TKM, Hasegawa H, Daughton W, Eriksson S, Li WY, Nakamura R. Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas. Nat Commun 2017; 8:1582. [PMID: 29150662 PMCID: PMC5693928 DOI: 10.1038/s41467-017-01579-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 10/01/2017] [Indexed: 11/09/2022] Open
Abstract
Magnetic reconnection is believed to be the main driver to transport solar wind into the Earth's magnetosphere when the magnetopause features a large magnetic shear. However, even when the magnetic shear is too small for spontaneous reconnection, the Kelvin-Helmholtz instability driven by a super-Alfvénic velocity shear is expected to facilitate the transport. Although previous kinetic simulations have demonstrated that the non-linear vortex flows from the Kelvin-Helmholtz instability gives rise to vortex-induced reconnection and resulting plasma transport, the system sizes of these simulations were too small to allow the reconnection to evolve much beyond the electron scale as recently observed by the Magnetospheric Multiscale (MMS) spacecraft. Here, based on a large-scale kinetic simulation and its comparison with MMS observations, we show for the first time that ion-scale jets from vortex-induced reconnection rapidly decay through self-generated turbulence, leading to a mass transfer rate nearly one order higher than previous expectations for the Kelvin-Helmholtz instability.
Collapse
Affiliation(s)
- T K M Nakamura
- Space Research Institute, Austrian Academy of Sciences, 8010, Graz, Austria.
| | - H Hasegawa
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, 252-5210, Japan
| | - W Daughton
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - S Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - W Y Li
- Swedish Institute of Space Physics, SE751-21, Uppsala, Sweden.,State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing, 100190, China
| | - R Nakamura
- Space Research Institute, Austrian Academy of Sciences, 8010, Graz, Austria
| |
Collapse
|
11
|
Zhou M, Berchem J, Walker RJ, El-Alaoui M, Deng X, Cazzola E, Lapenta G, Goldstein ML, Paterson WR, Pang Y, Ergun RE, Lavraud B, Liang H, Russell CT, Strangeway RJ, Zhao C, Giles BL, Pollock CJ, Lindqvist PA, Marklund G, Wilder FD, Khotyaintsev YV, Torbert RB, Burch JL. Coalescence of Macroscopic Flux Ropes at the Subsolar Magnetopause: Magnetospheric Multiscale Observations. PHYSICAL REVIEW LETTERS 2017; 119:055101. [PMID: 28949734 DOI: 10.1103/physrevlett.119.055101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 06/07/2023]
Abstract
We report unambiguous in situ observation of the coalescence of macroscopic flux ropes by the magnetospheric multiscale (MMS) mission. Two coalescing flux ropes with sizes of ∼1 R_{E} were identified at the subsolar magnetopause by the occurrence of an asymmetric quadrupolar signature in the normal component of the magnetic field measured by the MMS spacecraft. An electron diffusion region (EDR) with a width of four local electron inertial lengths was embedded within the merging current sheet. The EDR was characterized by an intense parallel electric field, significant energy dissipation, and suprathermal electrons. Although the electrons were organized by a large guide field, the small observed electron pressure nongyrotropy may be sufficient to support a significant fraction of the parallel electric field within the EDR. Since the flux ropes are observed in the exhaust region, we suggest that secondary EDRs are formed further downstream of the primary reconnection line between the magnetosheath and magnetospheric fields.
Collapse
Affiliation(s)
- M Zhou
- Department of Physics and Astronomy, UCLA, Los Angeles 90095, California, USA
| | - J Berchem
- Department of Physics and Astronomy, UCLA, Los Angeles 90095, California, USA
| | - R J Walker
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles 90095, California, USA
| | - M El-Alaoui
- Department of Physics and Astronomy, UCLA, Los Angeles 90095, California, USA
| | - X Deng
- Nanchang University, Nanchang 330031, People's Republic of China
| | - E Cazzola
- Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit, Leuven 3001, Belgium
| | - G Lapenta
- Centre for Plasma Astrophysics, Department of Mathematics, Katholieke Universiteit, Leuven 3001, Belgium
| | - M L Goldstein
- NASA, Goddard Space Flight Center, Greenbelt 20771, Maryland, USA
- Space Science Institute, Boulder 80301, Colorado, USA
| | - W R Paterson
- NASA, Goddard Space Flight Center, Greenbelt 20771, Maryland, USA
| | - Y Pang
- Nanchang University, Nanchang 330031, People's Republic of China
| | - R E Ergun
- University of Colorado LASP, Boulder 80303, Colorado, USA
| | - B Lavraud
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, UPS, CNES, Toulouse 31028, France
| | - H Liang
- Department of Physics and Astronomy, UCLA, Los Angeles 90095, California, USA
| | - C T Russell
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles 90095, California, USA
| | - R J Strangeway
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles 90095, California, USA
| | - C Zhao
- Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles 90095, California, USA
| | - B L Giles
- NASA, Goddard Space Flight Center, Greenbelt 20771, Maryland, USA
| | - C J Pollock
- NASA, Goddard Space Flight Center, Greenbelt 20771, Maryland, USA
| | - P-A Lindqvist
- Royal Institute of Technology, Stockholm SE-11428, Sweden
| | - G Marklund
- Royal Institute of Technology, Stockholm SE-11428, Sweden
| | - F D Wilder
- University of Colorado LASP, Boulder 80303, Colorado, USA
| | | | - R B Torbert
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - J L Burch
- Southwest Research Institute, San Antonio Texas 78238, USA
| |
Collapse
|
12
|
Wilder FD, Ergun RE, Eriksson S, Phan TD, Burch JL, Ahmadi N, Goodrich KA, Newman DL, Trattner KJ, Torbert RB, Giles BL, Strangeway RJ, Magnes W, Lindqvist PA, Khotyaintsev YV. Multipoint Measurements of the Electron Jet of Symmetric Magnetic Reconnection with a Moderate Guide Field. PHYSICAL REVIEW LETTERS 2017; 118:265101. [PMID: 28707935 DOI: 10.1103/physrevlett.118.265101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Indexed: 06/07/2023]
Abstract
We report observations from the Magnetospheric Multiscale (MMS) satellites of the electron jet in a symmetric magnetic reconnection event with moderate guide field. All four spacecraft sampled the ion diffusion region and observed the electron exhaust. The observations suggest that the presence of the guide field leads to an asymmetric Hall field, which results in an electron jet skewed towards the separatrix with a nonzero component along the magnetic field. The jet appears in conjunction with a spatially and temporally persistent parallel electric field ranging from -3 to -5 mV/m, which led to dissipation on the order of 8 nW/m^{3}. The parallel electric field heats electrons that drift through it, and is associated with a streaming instability and electron phase space holes.
Collapse
Affiliation(s)
- F D Wilder
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - R E Ergun
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - S Eriksson
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - T D Phan
- Space Sciences Laboratory, University of California, Berkeley, California 94720, USA
| | - J L Burch
- Southwest Research Institute, San Antonio, Texas 78238, USA
| | - N Ahmadi
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - K A Goodrich
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - D L Newman
- Department of Physics, University of Colorado, Boulder, Colorado 80303, USA
| | - K J Trattner
- Laboratory of Atmospheric and Space Sciences, University of Colorado, Boulder, Colorado 80303, USA
| | - R B Torbert
- Department of Physics, University of New Hampshire, Durham, New Hampshire 03824, USA
| | - B L Giles
- NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - R J Strangeway
- Department of Earth and Space Sciences, University of California Los Angeles, Los Angeles, California 90095, USA
| | - W Magnes
- Space Research Institute, Austrian Academy of Sciences, Graz 8042, Austria
| | - P-A Lindqvist
- Royal Institute of Technology, Stockholm SE-11428, Sweden
| | | |
Collapse
|
13
|
Hesse M, Chen LJ, Liu YH, Bessho N, Burch JL. Population Mixing in Asymmetric Magnetic Reconnection with a Guide Field. PHYSICAL REVIEW LETTERS 2017; 118:145101. [PMID: 28430487 DOI: 10.1103/physrevlett.118.145101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Indexed: 06/07/2023]
Abstract
We investigate how population mixing leads to structured electron distribution functions in asymmetric guide-field magnetic reconnection based on particle-in-cell simulations. The change of magnetic connectivity patches populations from different inflow regions to form multicomponent distributions in the exhaust, illustrating the direct consequence of the breaking and rejoining of magnetic flux tubes. Finite Larmor radius (FLR) effects of electrons accelerated by the perpendicular electric fields result in crescent-type nongyrotropic distributions. A new type of nongyrotropy is found to be caused by the combined effects of the FLR and velocity dispersion of electrons accelerated by the parallel electric field. The patching together of populations and the effects of acceleration and the FLR form the first steps of mixing in the exhaust and separatrix regions.
Collapse
Affiliation(s)
- M Hesse
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - L J Chen
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Y-H Liu
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - N Bessho
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - J L Burch
- Southwest Research Institute, San Antonio, Texas 78238, USA
| |
Collapse
|
14
|
Fox W, Sciortino F, V Stechow A, Jara-Almonte J, Yoo J, Ji H, Yamada M. Experimental Verification of the Role of Electron Pressure in Fast Magnetic Reconnection with a Guide Field. PHYSICAL REVIEW LETTERS 2017; 118:125002. [PMID: 28388178 DOI: 10.1103/physrevlett.118.125002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 06/07/2023]
Abstract
We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. These results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models of the importance of electron pressure gradients for obtaining fast magnetic reconnection.
Collapse
Affiliation(s)
- W Fox
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - F Sciortino
- Blackett Laboratory, Imperial College, London SW7 2BW, United Kingdom
| | - A V Stechow
- Max-Planck-Institut für Plasmaphysik, 17491 Greifswald, Germany
| | - J Jara-Almonte
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - J Yoo
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - H Ji
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| | - M Yamada
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543, USA
| |
Collapse
|