1
|
Yuan Y, Liu L, Zhu J, Dong J, Chu Y, Wu F, Du L, Watanabe K, Taniguchi T, Shi D, Zhang G, Yang W. Interplay of Landau Quantization and Interminivalley Scatterings in a Weakly Coupled Moiré Superlattice. NANO LETTERS 2024; 24:6722-6729. [PMID: 38717299 PMCID: PMC11157648 DOI: 10.1021/acs.nanolett.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Double-layer quantum systems are promising platforms for realizing novel quantum phases. Here, we report a study of quantum oscillations (QOs) in a weakly coupled double-layer system composed of a large-angle twisted-double-bilayer graphene (TDBG). We quantify the interlayer coupling strength by measuring the interlayer capacitance from the QOs pattern at low temperatures, revealing electron-hole asymmetry. At high temperatures when SdHOs are thermally smeared, we observe resistance peaks when Landau levels (LLs) from two moiré minivalleys are aligned, regardless of carrier density; eventually, it results in a 2-fold increase of oscillating frequency in D, serving as compelling evidence of the magneto-intersub-band oscillations (MISOs) in double-layer systems. The temperature dependence of MISOs suggests that electron-electron interactions play a crucial role and the scattering times obtained from MISO thermal damping are correlated with the interlayer coupling strength. Our study reveals intriguing interplays among Landau quantization, moiré band structure, and scatterings.
Collapse
Affiliation(s)
- Yalong Yuan
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Le Liu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Jundong Zhu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Jingwei Dong
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Yanbang Chu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Fanfan Wu
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Luojun Du
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Dongxia Shi
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
- Songshan
Lake Materials Laboratory, Dongguan 523808, People’s
Republic of China
| | - Guangyu Zhang
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
- Songshan
Lake Materials Laboratory, Dongguan 523808, People’s
Republic of China
| | - Wei Yang
- Beijing
National Laboratory for Condensed Matter Physics and Institute of
Physics, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- School
of Physical Sciences, University of Chinese
Academy of Sciences, Beijing 100190, People’s
Republic of China
- Songshan
Lake Materials Laboratory, Dongguan 523808, People’s
Republic of China
| |
Collapse
|
2
|
Wang F, Greenaway MT, Balanov AG, Fromhold TM. Non-KAM classical chaos topology for electrons in superlattice minibands determines the inter-well quantum transition rates. Sci Rep 2024; 14:5269. [PMID: 38438388 PMCID: PMC10912705 DOI: 10.1038/s41598-024-52351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/17/2024] [Indexed: 03/06/2024] Open
Abstract
We investigate the quantum-classical correspondence for a particle tunnelling through a periodic superlattice structure with an applied bias voltage and an additional tilted harmonic oscillator potential. We show that the quantum mechanical tunnelling rate between neighbouring quantum wells of the superlattice is determined by the topology of the phase trajectories of the analogous classical system. This result also enables us to estimate, with high accuracy, the tunnelling rate between two spatially displaced simple harmonic oscillator states using a classical model, and thus gain new insight into this generic quantum phenomenon. This finding opens new directions for exploring and understanding the quantum-classical correspondence principle and quantum jumps between displaced harmonic oscillators, which are important in many branches of natural science.
Collapse
Affiliation(s)
- F Wang
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - M T Greenaway
- Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK
| | - A G Balanov
- Department of Physics, Loughborough University, Loughborough, LE11 3TU, UK
| | - T M Fromhold
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
Wu Y, Zhai D, Pan C, Cheng B, Taniguchi T, Watanabe K, Sandler N, Bockrath M. Quantum Wires and Waveguides Formed in Graphene by Strain. NANO LETTERS 2018; 18:64-69. [PMID: 29207241 DOI: 10.1021/acs.nanolett.7b03167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Confinement of electrons in graphene to make devices has proven to be a challenging task. Electrostatic methods fail because of Klein tunneling, while etching into nanoribbons requires extreme control of edge terminations, and bottom-up approaches are limited in size to a few nanometers. Fortunately, its mechanical flexibility raises the possibility of using strain to alter graphene's properties and create novel straintronic devices. Here, we report transport studies of nanowires created by linearly-shaped strained regions resulting from individual folds formed by layer transfer onto hexagonal boron nitride. Conductance measurements across the folds reveal Coulomb blockade signatures, indicating confined charges within these structures, which act as quantum dots. Along folds, we observe sharp features in traverse resistivity measurements, attributed to an amplification of the dot conductance modulations by a resistance bridge incorporating the device. Our data indicates ballistic transport up to ∼1 μm along the folds. Calculations using the Dirac model including strain are consistent with measured bound state energies and predict the existence of valley-polarized currents. Our results show that graphene folds can act as straintronic quantum wires.
Collapse
Affiliation(s)
- Y Wu
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - D Zhai
- Department of Physics and Astronomy, Ohio University , Athens, Ohio 45701-2979, United States
| | - C Pan
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - B Cheng
- Department of Physics and Astronomy, University of California , Riverside, California 92521, United States
| | - T Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science , Tsukuba, Ibaraki 305-0044, Japan
| | - K Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science , Tsukuba, Ibaraki 305-0044, Japan
| | - N Sandler
- Department of Physics and Astronomy, Ohio University , Athens, Ohio 45701-2979, United States
| | - M Bockrath
- Department of Physics, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|