1
|
Impertro A, Karch S, Wienand JF, Huh S, Schweizer C, Bloch I, Aidelsburger M. Local Readout and Control of Current and Kinetic Energy Operators in Optical Lattices. PHYSICAL REVIEW LETTERS 2024; 133:063401. [PMID: 39178442 DOI: 10.1103/physrevlett.133.063401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 08/25/2024]
Abstract
Quantum gas microscopes have revolutionized quantum simulations with ultracold atoms, allowing one to measure local observables and snapshots of quantum states. However, measurements so far were mostly carried out in the occupation basis. Here, we demonstrate how all kinetic operators, such as kinetic energy or current operators, can be measured and manipulated with single-bond resolution. Beyond simple expectation values of these observables, the single-shot measurements allow one to access full counting statistics and complex correlation functions. Our work paves the way for the implementation of efficient quantum state tomography and hybrid quantum computing protocols for itinerant particles on a lattice. In addition, we demonstrate how site-resolved programmable potentials enable a spatially selective, parallel readout in different bases as well as the engineering of arbitrary initial states.
Collapse
|
2
|
Walter AS, Zhu Z, Gächter M, Minguzzi J, Roschinski S, Sandholzer K, Viebahn K, Esslinger T. Quantization and its breakdown in a Hubbard-Thouless pump. NATURE PHYSICS 2023; 19:1471-1475. [PMID: 37841998 PMCID: PMC10567560 DOI: 10.1038/s41567-023-02145-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/23/2023] [Indexed: 10/17/2023]
Abstract
Geometric properties of wave functions can explain the appearance of topological invariants in many condensed-matter and quantum systems1. For example, topological invariants describe the plateaux observed in the quantized Hall effect and the pumped charge in its dynamic analogue-the Thouless pump2-4. However, the presence of interparticle interactions can affect the topology of a material, invalidating the idealized formulation in terms of Bloch waves. Despite pioneering experiments in different platforms5-9, the study of topological matter under variations in interparticle interactions has proven challenging10. Here we experimentally realize a topological Thouless pump with fully tuneable Hubbard interactions in an optical lattice and observe regimes with robust pumping, as well as an interaction-induced breakdown. We confirm the pump's robustness against interactions that are smaller than the protecting gap for both repulsive and attractive interactions. Furthermore, we identify that bound pairs of fermions are responsible for quantized transport at strongly attractive interactions. However, for strong repulsive interactions, topological pumping breaks down, but we show how to reinstate it by modifying the pump trajectory. Our results will prove useful for further investigations of interacting topological matter10, including edge effects11 and interaction-induced topological phases12-15.
Collapse
Affiliation(s)
- Anne-Sophie Walter
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Zijie Zhu
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Marius Gächter
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Joaquín Minguzzi
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Stephan Roschinski
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Kilian Sandholzer
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Konrad Viebahn
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics & Quantum Center, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Kokail C, Sundar B, Zache TV, Elben A, Vermersch B, Dalmonte M, van Bijnen R, Zoller P. Quantum Variational Learning of the Entanglement Hamiltonian. PHYSICAL REVIEW LETTERS 2021; 127:170501. [PMID: 34739272 DOI: 10.1103/physrevlett.127.170501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Learning the structure of the entanglement Hamiltonian (EH) is central to characterizing quantum many-body states in analog quantum simulation. We describe a protocol where spatial deformations of the many-body Hamiltonian, physically realized on the quantum device, serve as an efficient variational ansatz for a local EH. Optimal variational parameters are determined in a feedback loop, involving quench dynamics with the deformed Hamiltonian as a quantum processing step, and classical optimization. We simulate the protocol for the ground state of Fermi-Hubbard models in quasi-1D geometries, finding excellent agreement of the EH with Bisognano-Wichmann predictions. Subsequent on-device spectroscopy enables a direct measurement of the entanglement spectrum, which we illustrate for a Fermi Hubbard model in a topological phase.
Collapse
Affiliation(s)
- Christian Kokail
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Bhuvanesh Sundar
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- JILA, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Torsten V Zache
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Andreas Elben
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Information and Matter and Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA
| | - Benoît Vermersch
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| | - Marcello Dalmonte
- The Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- SISSA, via Bonomea 265, 34136 Trieste, Italy
| | - Rick van Bijnen
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Peter Zoller
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Center for Quantum Physics, University of Innsbruck, Innsbruck A-6020, Austria
| |
Collapse
|
4
|
Lv QX, Du YX, Liang ZT, Liu HZ, Liang JH, Chen LQ, Zhou LM, Zhang SC, Zhang DW, Ai BQ, Yan H, Zhu SL. Measurement of Spin Chern Numbers in Quantum Simulated Topological Insulators. PHYSICAL REVIEW LETTERS 2021; 127:136802. [PMID: 34623865 DOI: 10.1103/physrevlett.127.136802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The topology of quantum systems has become a topic of great interest since the discovery of topological insulators. However, as a hallmark of the topological insulators, the spin Chern number has not yet been experimentally detected. The challenge to directly measure this topological invariant lies in the fact that this spin Chern number is defined based on artificially constructed wave functions. Here we experimentally mimic the celebrated Bernevig-Hughes-Zhang model with cold atoms, and then measure the spin Chern number with the linear response theory. We observe that, although the Chern number for each spin component is ill defined, the spin Chern number measured by their difference is still well defined when both energy and spin gaps are nonvanished.
Collapse
Affiliation(s)
- Qing-Xian Lv
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Yan-Xiong Du
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Zhen-Tao Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Hong-Zhi Liu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Jia-Hao Liang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Lin-Qing Chen
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Li-Ming Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Shan-Chao Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Dan-Wei Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Hui Yan
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Shi-Liang Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
5
|
Gluza M, Eisert J. Recovering Quantum Correlations in Optical Lattices from Interaction Quenches. PHYSICAL REVIEW LETTERS 2021; 127:090503. [PMID: 34506183 DOI: 10.1103/physrevlett.127.090503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/29/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Quantum simulations with ultracold atoms in optical lattices open up an exciting path toward understanding strongly interacting quantum systems. Atom gas microscopes are crucial for this as they offer single-site density resolution, unparalleled in other quantum many-body systems. However, currently a direct measurement of local coherent currents is out of reach. In this Letter, we show how to achieve that by measuring densities that are altered in response to quenches to noninteracting dynamics, e.g., after tilting the optical lattice. For this, we establish a data analysis method solving the closed set of equations relating tunneling currents and atom number dynamics, allowing us to reliably recover the full covariance matrix, including off-diagonal terms representing coherent currents. The signal processing builds upon semidefinite optimization, providing bona fide covariance matrices optimally matching the observed data. We demonstrate how the obtained information about noncommuting observables allows one to quantify entanglement at finite temperature, which opens up the possibility to study quantum correlations in quantum simulations going beyond classical capabilities.
Collapse
Affiliation(s)
- Marek Gluza
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jens Eisert
- Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| |
Collapse
|
6
|
Mizuta K, Takasan K, Nakagawa M, Kawakami N. Spatial-Translation-Induced Discrete Time Crystals. PHYSICAL REVIEW LETTERS 2018; 121:093001. [PMID: 30230902 DOI: 10.1103/physrevlett.121.093001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/11/2018] [Indexed: 06/08/2023]
Abstract
A discrete time crystal is a phase unique to nonequilibrium systems, where discrete time translation symmetry is spontaneously broken. Most conventional time crystals proposed so far rely on the spontaneous breaking of on-site symmetries and their corresponding on-site symmetry operations. In this Letter, we propose a new time crystal dubbed the "spatial-translation-induced discrete time crystal," which is realized by spatial translation and its symmetry breaking. Owing to the properties of spatial translation, in this new time crystal, various time crystal orders can only emerge by changing the filling but not changing the driving protocol. We demonstrate that the local transport of charges or spins shows a nontrivial oscillation, enabling detection and applications of time crystal orders, and also provide promising platforms including quantum circuits. Our proposal opens up a new avenue of realizing time crystal orders by spatial translation in various quantum simulators.
Collapse
Affiliation(s)
- Kaoru Mizuta
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuaki Takasan
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Masaya Nakagawa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Norio Kawakami
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Ukpong AM. Ab initio studies of coherent spin transport in Fe-hBN/graphene van der Waals multilayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:285302. [PMID: 28531091 DOI: 10.1088/1361-648x/aa74a4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents the results of ab initio studies of the electronic spin inversion and filtering in a ferromagnetic multilayer heterostructure. Spin-polarized electronic structure calculations are performed based on van der Waals density functional theory to give unique insights in to the generation, manipulation and transport of coherent spin conductance. By using an exact theory of the self-consistent ground state of the Fe-hBN/graphene multilayer as a model of the magnetic tunnel junction, hidden asymmetries are unraveled in the spin-resolved charge densities. It is shown that the injection of spin into the graphene/boron nitride tunnel layer from a ferromagnetic contact gives rise to coherent spin current. The projected Fermi surfaces of the up and down spin channels are analyzed to reveal Fermi arc topologies and spin anisotropies. It is also demonstrated that the coherent transport of pure spin-down current in the topological Weyl semimetal phase is robust. The implications of the results on out-of-plane transport of spin polarized conductance in van der Waals multilayer spintronic devices is discussed. The insights derived from this study are expected to open up prospects for further exploration of van der Waals magnetic multilayer heterostructures as a versatile platform for developing materials for Weyltronic applications.
Collapse
Affiliation(s)
- Aniekan Magnus Ukpong
- Theoretical and Computational Condensed Matter and Materials Physics Group, School of Chemistry and Physics, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, 1 King Edward Road, Scottsville 3201, Pietermaritzburg, South Africa
| |
Collapse
|
8
|
Wang C, Zhang P, Chen X, Yu J, Zhai H. Scheme to Measure the Topological Number of a Chern Insulator from Quench Dynamics. PHYSICAL REVIEW LETTERS 2017; 118:185701. [PMID: 28524691 DOI: 10.1103/physrevlett.118.185701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 05/22/2023]
Abstract
We show how the topological number of a static Hamiltonian can be measured from a dynamical quench process. We focus on a two-band Chern insulator in two dimension, for instance, the Haldane model, whose dynamical process can be described by a mapping from the [k_{x},k_{y},t] space to the Bloch sphere, characterized by the Hopf invariant. Such a mapping has been constructed experimentally by measurements in cold atom systems. We show that, taking any two constant vectors on the Bloch sphere, their inverse images of this mapping are two trajectories in the [k_{x},k_{y},t] space, and the linking number of these two trajectories exactly equals the Chern number of the static Hamiltonian. Applying this result to a recent experiment from the Hamburg group, we show that the linking number of the trajectories of the phase vortices determines the phase boundary of the static Hamiltonian.
Collapse
Affiliation(s)
- Ce Wang
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Pengfei Zhang
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Xin Chen
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Jinlong Yu
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Hui Zhai
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|