1
|
Chen JF, Quan HT. Optimal control theory for maximum power of Brownian heat engines. Phys Rev E 2024; 110:L042105. [PMID: 39562878 DOI: 10.1103/physreve.110.l042105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
The pursuit of achieving the maximum output power in microscopic heat engines has gained increasing attention in the field of stochastic thermodynamics. We employ the optimal control theory to study Brownian heat engines and determine the optimal heat-engine cycles in a generic damped situation, which were previously known only in the overdamped and the underdamped limits. These optimal cycles include two isothermal processes, two adiabatic processes, and an extra isochoric relaxation process at the high stiffness constraint. Our results determine the maximum output power under realistic control constraints, and also bridge the gap of the optimal cycles between the overdamped and the underdamped limits. Hence, we solve an outstanding problem in the studies of heat engines by employing the optimal control theory to stochastic thermodynamics. These findings bring valuable insights for the design of high-performance Brownian heat engines in experimental setups.
Collapse
Affiliation(s)
| | - H T Quan
- School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Zhang X, Shi T, Quan HT. Exact work distribution and Jarzynski's equality of a relativistic particle in an expanding piston. Phys Rev E 2024; 110:024128. [PMID: 39295019 DOI: 10.1103/physreve.110.024128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024]
Abstract
We study the nonequilibrium work in a pedagogical model of relativistic ideal gas. We obtain the exact work distribution and verify Jarzynski's equality. In the nonrelativistic limit, our results recover the nonrelativistic results of Lua and Grosberg [J. Phys. Chem. B 109, 6805 (2005)1520-610610.1021/jp0455428]. We also find that, unlike the nonrelativistic case, the work distribution no longer has zeros and the number of collisions in this relativistic gas model is finite. In addition, based on an analysis of the experimental parameters, we conclude that it is difficult to detect the relativistic effects of the work distribution of the ideal gas in a piston system with the current experimental techniques.
Collapse
|
3
|
Chen JF, Quan HT. Hierarchical structure of fluctuation theorems for a driven system in contact with multiple heat reservoirs. Phys Rev E 2023; 107:024135. [PMID: 36932622 DOI: 10.1103/physreve.107.024135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
For driven open systems in contact with multiple heat reservoirs, we find the marginal distributions of work or heat do not satisfy any fluctuation theorem, but only the joint distribution of work and heat satisfies a family of fluctuation theorems. A hierarchical structure of these fluctuation theorems is discovered from microreversibility of the dynamics by adopting a step-by-step coarse-graining procedure in both classical and quantum regimes. Thus, we put all fluctuation theorems concerning work and heat into a unified framework. We also propose a general method to calculate the joint statistics of work and heat in the situation of multiple heat reservoirs via the Feynman-Kac equation. For a classical Brownian particle in contact with multiple heat reservoirs, we verify the validity of the fluctuation theorems for the joint distribution of work and heat.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Chen JF. Optimizing Brownian heat engine with shortcut strategy. Phys Rev E 2022; 106:054108. [PMID: 36559462 DOI: 10.1103/physreve.106.054108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Shortcuts to isothermality provide a powerful method to speed up quasistatic thermodynamic processes within finite-time manipulation. We employ the shortcut strategy to design and optimize Brownian heat engines, and we formulate a geometric description of the energetics with the thermodynamic length. We obtain a tight and reachable bound of the output power for shortcut-driven heat engines. The bound is reached by the optimal shortcut protocol to vary the control parameters with a proper constant velocity of the thermodynamic length. With the shortcut strategy, we optimize the control of Brownian heat engines to achieve the maximum power in the general-damped situation. We also derive the efficiency at the maximum power and the maximum power at the given efficiency for shortcut-driven heat engines.
Collapse
Affiliation(s)
- Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Chen YH, Chen JF, Fei Z, Quan HT. Microscopic theory of the Curzon-Ahlborn heat engine based on a Brownian particle. Phys Rev E 2022; 106:024105. [PMID: 36109948 DOI: 10.1103/physreve.106.024105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The Curzon-Ahlborn (CA) efficiency, as the efficiency at the maximum power (EMP) of the endoreversible Carnot engine, has significant impact on finite-time thermodynamics. However, the CA engine is based on many assumptions. In the past few decades, although a lot of efforts have been made, a microscopic theory of the CA engine is still lacking. By adopting the method of the stochastic differential equation of energy, we formulate a microscopic theory of the CA engine realized with a highly underdamped Brownian particle in a class of nonharmonic potentials. This theory gives microscopic interpretation of all assumptions made by Curzon and Ahlborn. In other words, we find a microscopic counterpart of the CA engine in stochastic thermodynamics. Also, based on this theory, we derive the explicit expression of the protocol associated with the maximum power for any given efficiency, and we obtain analytical results of the power and the efficiency statistics for the Brownian CA engine. Our research brings new perspectives to experimental studies of finite-time microscopic heat engines featured with fluctuations.
Collapse
Affiliation(s)
- Y H Chen
- School of Physics, Peking University, Beijing 100871, China
| | - Jin-Fu Chen
- School of Physics, Peking University, Beijing 100871, China
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Zhaoyu Fei
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - H T Quan
- School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Wadia NS, Zarcone RV, DeWeese MR. Solution to the Fokker-Planck equation for slowly driven Brownian motion: Emergent geometry and a formula for the corresponding thermodynamic metric. Phys Rev E 2022; 105:034130. [PMID: 35428124 DOI: 10.1103/physreve.105.034130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Considerable progress has recently been made with geometrical approaches to understanding and controlling small out-of-equilibrium systems, but a mathematically rigorous foundation for these methods has been lacking. Towards this end, we develop a perturbative solution to the Fokker-Planck equation for one-dimensional driven Brownian motion in the overdamped limit enabled by the spectral properties of the corresponding single-particle Schrödinger operator. The perturbation theory is in powers of the inverse characteristic timescale of variation of the fastest varying control parameter, measured in units of the system timescale, which is set by the smallest eigenvalue of the corresponding Schrödinger operator. It applies to any Brownian system for which the Schrödinger operator has a confining potential. We use the theory to rigorously derive an exact formula for a Riemannian "thermodynamic" metric in the space of control parameters of the system. We show that up to second-order terms in the perturbation theory, optimal dissipation-minimizing driving protocols minimize the length defined by this metric. We also show that a previously proposed metric is calculable from our exact formula with corrections that are exponentially suppressed in a characteristic length scale. We illustrate our formula using the two-dimensional example of a harmonic oscillator with time-dependent spring constant in a time-dependent electric field. Lastly, we demonstrate that the Riemannian geometric structure of the optimal control problem is emergent; it derives from the form of the perturbative expansion for the probability density and persists to all orders of the expansion.
Collapse
Affiliation(s)
- Neha S Wadia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Ryan V Zarcone
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA
| | - Michael R DeWeese
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, California 94720, USA.,Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.,Redwood Center for Theoretical Neuroscience and Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Salazar DSP. Detailed fluctuation theorem bound for apparent violations of the second law. Phys Rev E 2021; 104:L062101. [PMID: 35030841 DOI: 10.1103/physreve.104.l062101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The second law of thermodynamics is a statement about the statistics of the entropy production, 〈Σ〉≥0. For small systems, it is known that the entropy production is a random variable and negative values (Σ<0) might be observed in some experiments. This situation is sometimes called apparent violation of the second law. In this sense, how often is the second law violated? For a given average 〈Σ〉, we show that the strong detailed fluctuation theorem implies a lower tight bound for the apparent violations of the second law. As applications, we verify that the bound is satisfied for the entropy produced in the heat exchange problem between two reservoirs mediated by a bosonic mode in the weak-coupling approximation, a levitated nanoparticle, and a classical particle in a box.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Chen JF, Sun CP, Dong H. Extrapolating the thermodynamic length with finite-time measurements. Phys Rev E 2021; 104:034117. [PMID: 34654162 DOI: 10.1103/physreve.104.034117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/27/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic length, though providing a lower bound for the excess work required in a finite-time thermodynamic process, is determined by the properties of the equilibrium states reached by the quasistatic process and is thus beyond the direct experimental measurement. We propose an experimental strategy to measure the thermodynamic length of an open classical or quantum system by extrapolating finite-time measurements. The current proposal enables the measurement of the thermodynamic length for a single control parameter without requiring extra effort to find the optimal control scheme, and is illustrated with examples of the quantum harmonic oscillator with tuning frequency and the classical ideal gas with changing volume. Such a strategy shall shed light on the experimental design of the lacking platforms to measure the thermodynamic length.
Collapse
Affiliation(s)
- Jin-Fu Chen
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Beijing Computational Science Research Center, Beijing 100193, China.,Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
9
|
Ma YH, Zhai RX, Chen J, Sun CP, Dong H. Experimental Test of the 1/τ-Scaling Entropy Generation in Finite-Time Thermodynamics. PHYSICAL REVIEW LETTERS 2020; 125:210601. [PMID: 33275022 DOI: 10.1103/physrevlett.125.210601] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/12/2020] [Accepted: 10/07/2020] [Indexed: 06/12/2023]
Abstract
The finite-time dynamics, apart from its fundamental importance in nonequilibrium thermodynamics, is of great significance in designing heat engine cycles. We build an experimental apparatus to test the predicted long-time 1/τ scaling of the irreversible entropy generation in the finite-time (τ) thermodynamic process by compressing dry air in a temperature-controlled water bath. We present the first direct experimental validation of the scaling, utilized in many finite-time thermodynamic models at the long-time regime. The experimental data also demonstrate a clear deviation from the scaling at the short-time regime. We show the optimal control scheme to minimize the irreversible entropy generation in finite-time process. Such optimization shall bring new insight to the practical design of heat engine cycles.
Collapse
Affiliation(s)
- Yu-Han Ma
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Ruo-Xun Zhai
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
- Beijing Normal University, Beijing 100875, China
| | - Jinfu Chen
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - C P Sun
- Beijing Computational Science Research Center, Beijing 100193, China
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, No. 10 Xibeiwang East Road, Haidian District, Beijing 100193, China
| |
Collapse
|
10
|
Qiu T, Fei Z, Pan R, Quan HT. Path-integral approach to the calculation of the characteristic function of work. Phys Rev E 2020; 101:032111. [PMID: 32290008 DOI: 10.1103/physreve.101.032111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/19/2020] [Indexed: 11/07/2022]
Abstract
Work statistics characterizes important features of a nonequilibrium thermodynamic process, but the calculation of the work statistics in an arbitrary nonequilibrium process is usually a cumbersome task. In this work, we study the work statistics in quantum systems by employing Feynman's path-integral approach. We derive the analytical work distributions of two prototype quantum systems. The results are proved to be equivalent to the results obtained based on Schrödinger's formalism. We also calculate the work distributions in their classical counterparts by employing the path-integral approach. Our study demonstrates the effectiveness of the path-integral approach for the calculation of work statistics in both quantum and classical thermodynamics, and brings important insights to the understanding of the trajectory work in quantum systems.
Collapse
Affiliation(s)
- Tian Qiu
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhaoyu Fei
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Rui Pan
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China
| | - H T Quan
- Institute of Condensed Matter and Material Physics, School of Physics, Peking University, Beijing, 100871, China.,Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.,Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing, 100871, China
| |
Collapse
|
11
|
Salazar DSP. Work distribution in thermal processes. Phys Rev E 2020; 101:030101. [PMID: 32289888 DOI: 10.1103/physreve.101.030101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
We find the moment generating function (mgf) of the nonequilibrium work for open systems undergoing a thermal process, i.e., when the stochastic dynamics maps thermal states into time-dependent thermal states. The mgf is given in terms of a temperaturelike scalar satisfying a first-order ordinary differential equation. We apply the result to some paradigmatic situations: a levitated nanoparticle in a breathing optical trap, a Brownian particle in a box with a moving piston, and a two-state system driven by an external field, where the work mgfs are obtained for different timescales and compared with Monte Carlo simulations.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade Acadêmica de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900, Brazil
| |
Collapse
|
12
|
Van Vu T, Hasegawa Y. Uncertainty relations for time-delayed Langevin systems. Phys Rev E 2019; 100:012134. [PMID: 31499914 DOI: 10.1103/physreve.100.012134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/10/2023]
Abstract
The thermodynamic uncertainty relation, which establishes a universal trade-off between nonequilibrium current fluctuations and dissipation, has been found for various Markovian systems. However, this relation has not been revealed for non-Markovian systems; therefore, we investigate the thermodynamic uncertainty relation for time-delayed Langevin systems. We prove that the fluctuation of arbitrary dynamical observables is constrained by the Kullback-Leibler divergence between the distributions of the forward path and its reversed counterpart. Specifically, for observables that are antisymmetric under time reversal, the fluctuation is bounded from below by a function of a quantity that can be identified as a generalization of the total entropy production in Markovian systems. We also provide a lower bound for arbitrary observables that are odd under position reversal. The term in this bound reflects the extent to which the position symmetry has been broken in the system and can be positive even in equilibrium. Our results hold for finite observation times and a large class of time-delayed systems because detailed underlying dynamics are not required for the derivation. We numerically verify the derived uncertainty relations using two single time-delay systems and one distributed time-delay system.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Salazar DSP, Lira SA. Stochastic thermodynamics of nonharmonic oscillators in high vacuum. Phys Rev E 2019; 99:062119. [PMID: 31330744 DOI: 10.1103/physreve.99.062119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/10/2023]
Abstract
We perform an analytic study on the stochastic thermodynamics of a small classical particle trapped in a time-dependent single-well potential in the highly underdamped limit. It is shown that the nonequilibrium probability density function for the system's energy is a Maxwell-Boltzmann distribution (as in equilibrium) with a closed form time-dependent effective temperature and fractional degrees of freedom. We also find that the solvable model satisfies the Crooks fluctuation theorem, as expected. Moreover, we compute the average work in this isothermal process and characterize analytically the optimal protocol for minimum work. The optimal protocol presents an initial and a final jump which correspond to adiabatic processes linked by a smooth exponential time-dependent part for all kinds of single-well potentials. Furthermore, we argue that this result connects two distinct relevant experimental setups for trapped nanoparticles, the levitated particle in a harmonic trap, and the free particle in a box, as they are limiting cases of the general single-well potential and display the time-dependent optimal protocols. Finally, we highlight the connection between our system and an equivalent model of a gas of Brownian particles.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade Acadêmica de Educacão a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900 Brazil
| | - Sérgio A Lira
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-900 Brazil
| |
Collapse
|