1
|
Danner A, Masiello IV, Dvorak A, Kersten W, Lemmel H, Wagner R, Hasegawa Y. Simultaneous path weak-measurements in neutron interferometry. Sci Rep 2024; 14:25994. [PMID: 39472708 PMCID: PMC11522425 DOI: 10.1038/s41598-024-76167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
The statistical properties of the detection events constituting the interference fringes at the output of an interferometer are well-known. Nevertheless, there is still no unified view of what is happening to a quantum system inside an interferometer. Strong measurements of path operators destroy the interference effect. In weak measurements, an observable is weakly coupled to a pointer system and the resulting weak values quantify the observable by minimally disturbing the system. Previous which-way experiments with weak measurements could extract either the real or imaginary part of a single weak value with each ensemble. Here, we present the simultaneous full complex quantification of two path weak values with a single ensemble in a Mach-Zehnder neutron interferometer. Magnetic fields, oscillating with different frequencies, change the energy state in each interferometer path. The time-dependent phase between the energy states distinctly marks each path. The resulting beating intensity modulation at the interferometer output gives both path weak values. For the present experiment, the weak values' absolute value and phase directly describe the observed amplitude and phase of the intensity modulation.
Collapse
Affiliation(s)
- Armin Danner
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria.
| | | | - Andreas Dvorak
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
| | - Wenzel Kersten
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
| | - Hartmut Lemmel
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
- Institut Laue-Langevin, 71 avenue des Martyrs, 38000, Grenoble, France
| | - Richard Wagner
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
- Laboratoire Léon Brillouin, UMR12 CEA-CNRS, Université Paris-Saclay, CEA Saclay, 91191, Gif sur Yvette, France
| | - Yuji Hasegawa
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
- Department of Applied Physics, Hokkaido University, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
2
|
Kreuzgruber E, Wagner R, Geerits N, Lemmel H, Sponar S. Violation of a Leggett-Garg Inequality Using Ideal Negative Measurements in Neutron Interferometry. PHYSICAL REVIEW LETTERS 2024; 132:260201. [PMID: 38996291 DOI: 10.1103/physrevlett.132.260201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/08/2024] [Accepted: 05/22/2024] [Indexed: 07/14/2024]
Abstract
Leggett-Garg inequalities (LGIs) have been proposed in order to assess how far the predictions of quantum mechanics defy "macroscopic realism." With LGIs, correlations of measurements performed on a single system at different times are described. We report on an experiment that demonstrates the violation of an LGI with neutrons. The final measured value of the Leggett-Garg correlator K=1.120±0.007(stat)±0.019(sys), obtained in a neutron interferometric experiment, is clearly above the limit K=1 predicted by macrorealistic theories. The experimental results are analyzed within the framework of dynamical theory of neutron diffraction, evidently reproducing the obtained values.
Collapse
|
3
|
Wagner R, Kersten W, Lemmel H, Sponar S, Hasegawa Y. Quantum causality emerging in a delayed-choice quantum Cheshire Cat experiment with neutrons. Sci Rep 2023; 13:3865. [PMID: 36890148 PMCID: PMC9995660 DOI: 10.1038/s41598-023-29970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
We report an experiment with neutrons in a silicon perfect crystal interferometer, that realizes a quantum Cheshire Cat in a delayed choice setting. In our setup the quantum Cheshire Cat is established by spatially separating the particle and its property (i.e. the neutron and its spin) into the two different paths of the interferometer. The condition for a delayed choice setting is achieved by postponing the choice of path assignment for the quantum Cheshire Cat, i.e. which path is taken by the particle and which by its property, until the point in time when the neutron wave function has already split and entered the interferometer. The results of the experiment suggest not only the fact that the neutrons and its spin are separated and take different paths in the interferometer, but also quantum-mechanical causality is implied, insomuch that the behavior of a quantum system is affected by the choice of the selection at a later point in time.
Collapse
Affiliation(s)
- Richard Wagner
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria. .,Institut Laue Langevin, 38000, Grenoble, France.
| | - Wenzel Kersten
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
| | - Hartmut Lemmel
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria.,Institut Laue Langevin, 38000, Grenoble, France
| | - Stephan Sponar
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria
| | - Yuji Hasegawa
- Atominstitut, TU Wien, Stadionallee 2, 1020, Vienna, Austria.,Department of Applied Physics, Hokkaido University, Kita-ku, Sapporo, 060-8628, Japan
| |
Collapse
|
4
|
Xu L, Xu H, Jiang T, Xu F, Zheng K, Wang B, Zhang A, Zhang L. Direct Characterization of Quantum Measurements Using Weak Values. PHYSICAL REVIEW LETTERS 2021; 127:180401. [PMID: 34767426 DOI: 10.1103/physrevlett.127.180401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The time-symmetric formalism endows the weak measurement and its outcome, the weak value, with many unique features. In particular, it allows a direct tomography of quantum states without resorting to complicated reconstruction algorithms and provides an operational meaning to wave functions and density matrices. Here, we propose and experimentally demonstrate the direct tomography of a measurement apparatus by taking the backward direction of weak measurement formalism. Our protocol works rigorously with the arbitrary measurement strength, which offers improved accuracy and precision. The precision can be further improved by taking into account the completeness condition of the measurement operators, which also ensures the feasibility of our protocol for the characterization of the arbitrary quantum measurement. Our work provides new insight on the symmetry between quantum states and measurements, as well as an efficient method to characterize a measurement apparatus.
Collapse
Affiliation(s)
- Liang Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Huichao Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Purple Mountain Laboratories, Nanjing, Jiangsu 211111, China
| | - Tao Jiang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Feixiang Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaimin Zheng
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ben Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Aonan Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lijian Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Ogawa K, Okazaki T, Kobayashi H, Nakanishi T, Tomita A. Direct measurement of ultrafast temporal wavefunctions. OPTICS EXPRESS 2021; 29:19403-19416. [PMID: 34266050 DOI: 10.1364/oe.423969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
The large capacity and robustness of information encoding in the temporal mode of photons is important in quantum information processing, in which characterizing temporal quantum states with high usability and time resolution is essential. We propose and demonstrate a direct measurement method of temporal complex wavefunctions for weak light at a single-photon level with subpicosecond time resolution. Our direct measurement is realized by ultrafast metrology of the interference between the light under test and self-generated monochromatic reference light; no external reference light or complicated post-processing algorithms are required. Hence, this method is versatile and potentially widely applicable for temporal state characterization.
Collapse
|
6
|
Ho LB. Systematic errors in direct state measurements with quantum controlled measurements. JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS 2020; 53:115501. [DOI: 10.1088/1361-6455/ab7881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Elitzur AC, Cohen E. Some Notes on Counterfactuals in Quantum Mechanics. ENTROPY 2020; 22:e22030266. [PMID: 33286040 PMCID: PMC7516718 DOI: 10.3390/e22030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 11/16/2022]
Abstract
Counterfactuals, i.e., events that could have occurred but eventually did not, play a unique role in quantum mechanics in that they exert causal effects despite their non-occurrence. They are therefore vital for a better understanding of quantum mechanics (QM) and possibly the universe as a whole. In earlier works, we have studied counterfactuals both conceptually and experimentally. A fruitful framework termed quantum oblivion has emerged, referring to situations where one particle seems to "forget" its interaction with other particles despite the latter being visibly affected. This framework proved to have significant explanatory power, which we now extend to tackle additional riddles. The time-symmetric causality employed by the Two State-Vector Formalism (TSVF) reveals a subtle realm ruled by "weak values," already demonstrated by numerous experiments. They offer a realistic, simple and intuitively appealing explanation to the unique role of quantum non-events, as well as to the foundations of QM. In this spirit, we performed a weak value analysis of quantum oblivion and suggest some new avenues for further research.
Collapse
Affiliation(s)
- Avshalom C. Elitzur
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA;
- Iyar, The Israeli Institute for Advanced Research, POB 651, Zichron Ya’akov 3095303, Israel
| | - Eliahu Cohen
- Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel
- Correspondence: ; Tel.: +972-373-84268
| |
Collapse
|
8
|
Zhang S, Zhou Y, Mei Y, Liao K, Wen YL, Li J, Zhang XD, Du S, Yan H, Zhu SL. δ-Quench Measurement of a Pure Quantum-State Wave Function. PHYSICAL REVIEW LETTERS 2019; 123:190402. [PMID: 31765181 DOI: 10.1103/physrevlett.123.190402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The measurement of a quantum state wave function not only acts as a fundamental part in quantum physics but also plays an important role in developing practical quantum technologies. Conventional quantum state tomography has been widely used to estimate quantum wave functions, which usually requires complicated measurement techniques. The recent weak-value-based quantum measurement circumvents this resource issue but relies on an extra pointer space. Here, we theoretically propose and then experimentally demonstrate a direct and efficient measurement strategy based on a δ-quench probe: by quenching its complex probability amplitude one by one (δ quench) in the given basis, we can directly obtain the quantum wave function of a pure ensemble by projecting the quenched state onto a postselection state. We confirm its power by experimentally measuring photonic complex temporal wave functions. This new method is versatile and can find applications in quantum information science and engineering.
Collapse
Affiliation(s)
- Shanchao Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Yiru Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Yefeng Mei
- Department of Physics & William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Kaiyu Liao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Yong-Li Wen
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Jianfeng Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Xin-Ding Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Shengwang Du
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
- Department of Physics & William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Hui Yan
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Shi-Liang Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
Pan WW, Xu XY, Kedem Y, Wang QQ, Chen Z, Jan M, Sun K, Xu JS, Han YJ, Li CF, Guo GC. Direct Measurement of a Nonlocal Entangled Quantum State. PHYSICAL REVIEW LETTERS 2019; 123:150402. [PMID: 31702297 DOI: 10.1103/physrevlett.123.150402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Entanglement and the wave function description are two of the core concepts that make quantum mechanics such a unique theory. A method to directly measure the wave function, using weak values, was demonstrated by Lundeen et al. [Nature 474, 188 (2011)]. However, it is not applicable to a scenario of two disjoint systems, where nonlocal entanglement can be a crucial element, since that requires obtaining weak values of nonlocal observables. Here, for the first time, we propose a method to directly measure a nonlocal wave function of a bipartite system, using modular values. The method is experimentally implemented for a photon pair in a hyperentangled state, i.e., entangled both in polarization and momentum degrees of freedom.
Collapse
Affiliation(s)
- Wei-Wei Pan
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiao-Ye Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yaron Kedem
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Qin-Qin Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhe Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Munsif Jan
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Kai Sun
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin-Shi Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yong-Jian Han
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
10
|
Universality of local weak interactions and its application for interferometric alignment. Proc Natl Acad Sci U S A 2019; 116:2881-2890. [PMID: 30723153 PMCID: PMC6386691 DOI: 10.1073/pnas.1812970116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The modification of the effect of interactions of a particle as a function of its preselected and postselected states is analyzed theoretically and experimentally. The universality property of this modification in the case of local interactions of a spatially preselected and postselected particle has been found. It allowed us to define an operational approach for the characterization of the presence of a quantum particle in a particular place: the way it modifies the effect of local interactions. The experiment demonstrating this universality property provides an efficient interferometric alignment method, in which the position of the beam on a single detector throughout one phase scan yields all misalignment parameters.
Collapse
|
11
|
Ho LB. Improving direct state measurements by using rebits in real enlarged Hilbert spaces. PHYSICS LETTERS A 2019; 383:289-294. [DOI: 10.1016/j.physleta.2018.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
12
|
Calderaro L, Foletto G, Dequal D, Villoresi P, Vallone G. Direct Reconstruction of the Quantum Density Matrix by Strong Measurements. PHYSICAL REVIEW LETTERS 2018; 121:230501. [PMID: 30576212 DOI: 10.1103/physrevlett.121.230501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 06/09/2023]
Abstract
New techniques based on weak measurements have recently been introduced to the field of quantum state reconstruction. Some of them allow the direct measurement of each matrix element of an unknown density operator and need only O(d) different operations, compared to d^{2} linearly independent projectors in the case of standard quantum state tomography, for the reconstruction of an arbitrary mixed state. However, due to the weakness of these couplings, these protocols are approximated and prone to large statistical errors. We propose a method which is similar to the weak measurement protocols but works regardless of the coupling strength: our protocol is not approximated and thus improves the accuracy and precision of the results with respect to weak measurement schemes. We experimentally apply it to the polarization state of single photons and compare the results to those of preexisting methods for different values of the coupling strength. Our results show that our method outperforms previous proposals in terms of accuracy and statistical errors.
Collapse
Affiliation(s)
- Luca Calderaro
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
- Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo", Università di Padova, via Venezia 15, 35131 Padova, Italy
| | - Giulio Foletto
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
| | - Daniele Dequal
- Matera Laser Ranging Observatory, Agenzia Spaziale Italiana, Matera 75100, Italy
| | - Paolo Villoresi
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, via Trasea 7, 35131 Padova, Italy
| | - Giuseppe Vallone
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, via Trasea 7, 35131 Padova, Italy
| |
Collapse
|
13
|
Aharonov Y, Cohen E, Carmi A, Elitzur AC. Extraordinary interactions between light and matter determined by anomalous weak values. Proc Math Phys Eng Sci 2018. [DOI: 10.1098/rspa.2018.0030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Some predictions regarding pre- and post-selected states are far-reaching, thereby requiring validation with standard quantum measurements in addition to the customary weak measurements used so far, as well as other advanced techniques. We go further pursuing this goal, proposing two thought experiments which incorporate novel yet feasible validation methods of unconventional light-matter interactions. An excited atom traverses a Mach–Zehnder interferometer (MZI) under a special combination of pre- and post-selection. In the first experiment, photons emitted by the superposed atom, after being hit by two laser beams, are individually counted. Despite the interaction having definitely taken place, as revealed by the atom becoming ground, the numbers of photons emitted from each arm of the MZI are predicted, at the ensemble level, to be different from those expected with standard stimulated emission. In the second experiment, the atom spontaneously emits a photon while still in the MZI. This photon later serves as a strong measurement of the atom's energy upon hitting a photographic plate. The experiment is repeated to enable an interference effect of the emitted photons. Interestingly, the latter gives the appearance that the photons have been emitted by the atom from a position much farther from the two MZI arms
L
and
R
, as if in a ‘phantom arm’
R
′. Nevertheless, their time of arrival is similar to that of photons coming from
L
and
R
. These experiments also emphasize the key role of anomalous weak values in determining light–matter interactions. In fact, they present a straightforward realization of an entity we term counter-particles, namely pre- and post-selected states acting as if they have negative physical variables such as mass and energy. The novel verification methods we suggest for testing these predictions resemble weak measurements in some aspects, yet result from definite atomic transitions verified by the detected photons.
Collapse
Affiliation(s)
- Yakir Aharonov
- School of Physics and Astronomy, Tel Aviv University, Tel-Aviv 6997801, Israel
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Schmid College of Science, Chapman University, Orange, CA 92866, USA
- Iyar, The Israeli Institute for Advanced Research, POB 651, Zichron Ya'akov 3095303, Israel
| | - Eliahu Cohen
- Iyar, The Israeli Institute for Advanced Research, POB 651, Zichron Ya'akov 3095303, Israel
- Physics Department, Centre for Research in Photonics, University of Ottawa, Advanced Research Complex, 25 Templeton, Ottawa, Ontario, Canada K1N 6N5
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, UK
| | - Avishy Carmi
- Iyar, The Israeli Institute for Advanced Research, POB 651, Zichron Ya'akov 3095303, Israel
- Center for Quantum Information Science and Technology and Faculty of Engineering Sciences Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Avshalom C. Elitzur
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Iyar, The Israeli Institute for Advanced Research, POB 651, Zichron Ya'akov 3095303, Israel
| |
Collapse
|
14
|
Aharonov Y, Cohen E, Elitzur AC, Smolin L. Interaction-Free Effects Between Distant Atoms. FOUNDATIONS OF PHYSICS 2017; 48:1-16. [PMID: 31997829 PMCID: PMC6956877 DOI: 10.1007/s10701-017-0127-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 11/29/2017] [Indexed: 06/10/2023]
Abstract
A Gedanken experiment is presented where an excited and a ground-state atom are positioned such that, within the former's half-life time, they exchange a photon with 50% probability. A measurement of their energy state will therefore indicate in 50% of the cases that no photon was exchanged. Yet other measurements would reveal that, by the mere possibility of exchange, the two atoms have become entangled. Consequently, the "no exchange" result, apparently precluding entanglement, is non-locally established between the atoms by this very entanglement. This quantum-mechanical version of the ancient Liar Paradox can be realized with already existing transmission schemes, with the addition of Bell's theorem applied to the no-exchange cases. Under appropriate probabilities, the initially-excited atom, still excited, can be entangled with additional atoms time and again, or alternatively, exert multipartite nonlocal correlations in an interaction free manner. When densely repeated several times, this result also gives rise to the Quantum Zeno effect, again exerted between distant atoms without photon exchange. We discuss these experiments as variants of interaction-free-measurement, now generalized for both spatial and temporal uncertainties. We next employ weak measurements for elucidating the paradox. Interpretational issues are discussed in the conclusion, and a resolution is offered within the Two-State Vector Formalism and its new Heisenberg framework.
Collapse
Affiliation(s)
- Yakir Aharonov
- School of Physics and Astronomy, Tel Aviv University, 6997801 Tel-Aviv, Israel
- Schmid College of Science, Chapman University, Orange, CA 92866 USA
- Iyar, The Israeli Institute for Advanced Research, POB 651, 3095303 Zichron Ya’akov, Israel
| | - Eliahu Cohen
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL UK
- Iyar, The Israeli Institute for Advanced Research, POB 651, 3095303 Zichron Ya’akov, Israel
| | - Avshalom C. Elitzur
- Schmid College of Science, Chapman University, Orange, CA 92866 USA
- Iyar, The Israeli Institute for Advanced Research, POB 651, 3095303 Zichron Ya’akov, Israel
| | - Lee Smolin
- Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2J 2Y5 Canada
| |
Collapse
|
15
|
Vaidman L. Weak value controversy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2017; 375:rsta.2016.0395. [PMID: 28971947 PMCID: PMC5628259 DOI: 10.1098/rsta.2016.0395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2017] [Indexed: 06/07/2023]
Abstract
Recent controversy regarding the meaning and usefulness of weak values is reviewed. It is argued that in spite of recent statistical arguments by Ferrie and Combes, experiments with anomalous weak values provide useful amplification techniques for precision measurements of small effects in many realistic situations. The statistical nature of weak values is questioned. Although measuring weak values requires an ensemble, it is argued that the weak value, similarly to an eigenvalue, is a property of a single pre- and post-selected quantum system.This article is part of the themed issue 'Second quantum revolution: foundational questions'.
Collapse
Affiliation(s)
- L Vaidman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|