1
|
Reis FDAA, Voller VR. Universal superdiffusion of random walks in media with embedded fractal networks of low diffusivity. Phys Rev E 2024; 110:L022102. [PMID: 39295050 DOI: 10.1103/physreve.110.l022102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/28/2024] [Indexed: 09/21/2024]
Abstract
Diffusion in composite media with high contrasts between diffusion coefficients in fractal sets of inclusions and in their embedding matrices is modeled by lattice random walks (RWs) with probabilities p<1 of hops from fractal sites and 1 from matrix sites. Superdiffusion is predicted in time intervals that depend on p and with diffusion exponents that depend on the dimensions of matrix (E) and fractal (D_{F}) as ν=1/(2+D_{F}-E). This contrasts with the nonuniversal subdiffusion of RWs confined to fractal media. Simulations with four fractals show the anomaly at several time decades for p≲10^{-3} and the crossover to the asymptotic normal diffusion. These results show that superdiffusion can be observed in isotropic RWs with finite moments of hop length distributions and allow the estimation of the dimension of the inclusion set from the diffusion exponent. However, displacements within single trajectories have normal scaling, which shows transient ergodicity breaking.
Collapse
|
2
|
Kalz E, Vuijk HD, Sommer JU, Metzler R, Sharma A. Oscillatory Force Autocorrelations in Equilibrium Odd-Diffusive Systems. PHYSICAL REVIEW LETTERS 2024; 132:057102. [PMID: 38364150 DOI: 10.1103/physrevlett.132.057102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 02/18/2024]
Abstract
The force autocorrelation function (FACF), a concept of fundamental interest in statistical mechanics, encodes the effect of interactions on the dynamics of a tagged particle. In equilibrium, the FACF is believed to decay monotonically in time, which is a signature of slowing down of the dynamics of the tagged particle due to interactions. Here, we analytically show that in odd-diffusive systems, which are characterized by a diffusion tensor with antisymmetric elements, the FACF can become negative and even exhibit temporal oscillations. We also demonstrate that, despite the isotropy, the knowledge of FACF alone is not sufficient to describe the dynamics: the full autocorrelation tensor is required and contains an antisymmetric part. These unusual properties translate into enhanced dynamics of the tagged particle quantified via the self-diffusion coefficient that, remarkably, increases due to particle interactions.
Collapse
Affiliation(s)
- Erik Kalz
- University of Potsdam, Institute of Physics and Astronomy, D-14476 Potsdam, Germany
| | - Hidde Derk Vuijk
- University of Augsburg, Institute of Physics, D-86159 Augsburg, Germany
| | - Jens-Uwe Sommer
- Leibniz-Institute for Polymer Research, Institute Theory of Polymers, D-01069 Dresden, Germany
- Technical University of Dresden, Institute for Theoretical Physics, D-01069 Dresden, Germany
- Technical University of Dresden, Cluster of Excellence Physics of Life, D-01069 Dresden, Germany
| | - Ralf Metzler
- University of Potsdam, Institute of Physics and Astronomy, D-14476 Potsdam, Germany
- Asia Pacific Centre for Theoretical Physics, KR-37673 Pohang, Republic of Korea
| | - Abhinav Sharma
- University of Augsburg, Institute of Physics, D-86159 Augsburg, Germany
- Leibniz-Institute for Polymer Research, Institute Theory of Polymers, D-01069 Dresden, Germany
| |
Collapse
|
3
|
Nakai F, Uneyama T. Brownian yet non-Gaussian diffusion of a light particle in heavy gas: Lorentz-gas-based analysis. Phys Rev E 2023; 108:044129. [PMID: 37978684 DOI: 10.1103/physreve.108.044129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023]
Abstract
Non-Gaussian diffusion was recently observed in a gas mixture with mass and fraction contrast [F. Nakai et al., Phys. Rev. E 107, 014605 (2023)2470-004510.1103/PhysRevE.107.014605]. The mean-square displacement of a minor gas particle with a small mass is linear in time, while the displacement distribution deviates from the Gaussian distribution, which is called the Brownian yet non-Gaussian diffusion. In this work, we theoretically analyze this case where the mass contrast is sufficiently large. Major heavy particles can be interpreted as immobile obstacles, and a minor light particle behaves like a Lorentz gas particle within an intermediate timescale. Despite the similarity between the gas mixture and the conventional Lorentz gas system, the Lorentz gas description cannot fully describe the Brownian yet non-Gaussian diffusion. A successful description can be achieved through a canonical ensemble average of the statistical quantities of the Lorentz gas over the initial speed. Furhter, we show that the van Hove correlation function has a nonexponential tail, which is contrary to the exponential tail observed in various systems.
Collapse
Affiliation(s)
- Fumiaki Nakai
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | - Takashi Uneyama
- Department of Materials Physics, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Rizkallah P, Sarracino A, Bénichou O, Illien P. Absolute Negative Mobility of an Active Tracer in a Crowded Environment. PHYSICAL REVIEW LETTERS 2023; 130:218201. [PMID: 37295085 DOI: 10.1103/physrevlett.130.218201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/17/2023] [Accepted: 04/11/2023] [Indexed: 06/12/2023]
Abstract
Absolute negative mobility (ANM) refers to the situation where the average velocity of a driven tracer is opposite to the direction of the driving force. This effect was evidenced in different models of nonequilibrium transport in complex environments, whose description remains effective. Here, we provide a microscopic theory for this phenomenon. We show that it emerges in the model of an active tracer particle submitted to an external force and which evolves on a discrete lattice populated with mobile passive crowders. Resorting to a decoupling approximation, we compute analytically the velocity of the tracer particle as a function of the different parameters of the system and confront our results to numerical simulations. We determine the range of parameters where ANM can be observed, characterize the response of the environment to the displacement of the tracer, and clarify the mechanism underlying ANM and its relationship with negative differential mobility (another hallmark of driven systems far from the linear response).
Collapse
Affiliation(s)
- Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Dipartimento di Ingegneria, Università della Campania Luigi Vanvitelli, 81031 Aversa (CE), Italy
- Istituto dei Sistemi Complessi-CNR, P.le Aldo Moro 2, 00185, Rome, Italy
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Grabsch A, Rizkallah P, Illien P, Bénichou O. Driven Tracer in the Symmetric Exclusion Process: Linear Response and Beyond. PHYSICAL REVIEW LETTERS 2023; 130:020402. [PMID: 36706397 DOI: 10.1103/physrevlett.130.020402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium situation has received a lot of attention, the case where the tracer is driven by an external force, which provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer's position in function of the driving force, up to quadratic order (beyond linear response). This result constitutes the first determination of the bias dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with obstacles in one dimension.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
Caraglio M, Franosch T. Analytic Solution of an Active Brownian Particle in a Harmonic Well. PHYSICAL REVIEW LETTERS 2022; 129:158001. [PMID: 36269953 DOI: 10.1103/physrevlett.129.158001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We provide an analytical solution for the time-dependent Fokker-Planck equation for a two-dimensional active Brownian particle trapped in an isotropic harmonic potential. Using the passive Brownian particle as basis states we show that the Fokker-Planck operator becomes lower diagonal, implying that the eigenvalues are unaffected by the activity. The propagator is then expressed as a combination of the equilibrium eigenstates with weights obeying exact iterative relations. We show that for the low-order correlation functions, such as the positional autocorrelation function, the recursion terminates at finite order in the Péclet number, allowing us to generate exact compact expressions and derive the velocity autocorrelation function and the time-dependent diffusion coefficient. The nonmonotonic behavior of latter quantities serves as a fingerprint of the nonequilibrium dynamics.
Collapse
Affiliation(s)
- Michele Caraglio
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
7
|
Poncet A, Grabsch A, Bénichou O, Illien P. Exact time dependence of the cumulants of a tracer position in a dense lattice gas. Phys Rev E 2022; 105:054139. [PMID: 35706275 DOI: 10.1103/physreve.105.054139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We develop a general method to calculate the exact time dependence of the cumulants of the position of a tracer particle in a dense lattice gas of hardcore particles. More precisely, we calculate the cumulant-generating function associated with the position of a tagged particle at arbitrary time, and at leading order in the density of vacancies on the lattice. In particular, our approach gives access to the short-time dynamics of the cumulants of the tracer position, a regime in which few results are known. The generality of our approach is demonstrated by showing that it goes beyond the case of a symmetric 1D random walk and covers the important situations of (1) a biased tracer, (2) comblike structures, and (3) d-dimensional situations.
Collapse
Affiliation(s)
- Alexis Poncet
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
Rizkallah P, Sarracino A, Bénichou O, Illien P. Microscopic Theory for the Diffusion of an Active Particle in a Crowded Environment. PHYSICAL REVIEW LETTERS 2022; 128:038001. [PMID: 35119883 DOI: 10.1103/physrevlett.128.038001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We calculate the diffusion coefficient of an active tracer in a schematic crowded environment, represented as a lattice gas of passive particles with hardcore interactions. Starting from the master equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our approximation is accurate for a very wide range of parameters, and that it correctly captures numerous nonequilibrium effects, which are the signature of the activity in the system. In addition to the determination of the diffusion coefficient of the tracer, our approach allows us to characterize the perturbation of the environment induced by the displacement of the active tracer. Finally, we consider the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the tracer becomes explicit, and which we argue to be exact.
Collapse
Affiliation(s)
- Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Dipartimento di Ingegneria, Università della Campania "Luigi Vanvitelli", 81031 Aversa (CE), Italy
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Klett K, Cherstvy AG, Shin J, Sokolov IM, Metzler R. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Phys Rev E 2022; 104:064603. [PMID: 35030844 DOI: 10.1103/physreve.104.064603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.
Collapse
Affiliation(s)
- Kolja Klett
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Miron A, Mukamel D, Posch HA. Attraction and condensation of driven tracers in a narrow channel. Phys Rev E 2021; 104:024123. [PMID: 34525576 DOI: 10.1103/physreve.104.024123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
Emergent bath-mediated attraction and condensation arise when multiple particles are simultaneously driven through an equilibrated bath under geometric constraints. While such scenarios are observed in a variety of nonequilibrium phenomena with an abundance of experimental and numerical evidence, little quantitative understanding of how these interactions arise is currently available. Here we approach the problem by studying the behavior of two driven "tracer" particles, propagating through a bath in a 1D lattice with excluded-volume interactions. We apply the mean-field approximation to analytically explore the mechanism responsible for the tracers' emergent interactions and compute the resulting effective attractive potential. This mechanism is then numerically shown to extend to a realistic model of hard driven Brownian disks confined to a narrow 2D channel.
Collapse
Affiliation(s)
- Asaf Miron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Mukamel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Harald A Posch
- Computational Physics Group, Faculty of Physics, University of Vienna, Vienna 1090, Austria
| |
Collapse
|
11
|
Orts F, Ortega G, Garzón EM, Fuchs M, Puertas AM. Dynamics and friction of a large colloidal particle in a bath of hard spheres: Langevin dynamics simulations and hydrodynamic description. Phys Rev E 2020; 101:052607. [PMID: 32575230 DOI: 10.1103/physreve.101.052607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The analysis of the dynamics of tracer particles in a complex bath can provide valuable information about the microscopic behavior of the bath. In this work, we study the dynamics of a forced tracer in a colloidal bath by means of Langevin dynamics simulations and a theory model within continuum mechanics. In the simulations, the bath is comprised of quasihard spheres with a volume fraction of 50% immersed in a featureless quiescent solvent, and the tracer is pulled with a constant small force (within the linear regime). The theoretical analysis is based on the Navier-Stokes equation, where a term proportional to the velocity arises from coarse-graining the friction of the colloidal particles with the solvent. As a result, the final equation is similar to the Brinkman model, although the interpretation is different. A length scale appears in the model, k_{0}^{-1}, where the transverse momentum transport crosses over to friction with the solvent. The effective friction coefficient experienced by the tracer grows with the tracer size faster than the prediction from Stokes's law. Additionally, the velocity profiles in the bath decay faster than in a Newtonian fluid. The comparison between simulations and theory points to a boundary condition of effective partial slip at the tracer surface. We also study the fluctuations in the tracer position, showing that it reaches diffusion at long times, with a subdiffusive regime at intermediate times. The diffusion coefficient, obtained from the long-time slope of the mean-squared displacement, fulfills the Stokes-Einstein relation with the friction coefficient calculated from the steady tracer velocity, confirming the validity of the linear response formalism.
Collapse
Affiliation(s)
- F Orts
- Departamento de Informática, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | - G Ortega
- Departamento de Informática, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | - E M Garzón
- Departamento de Informática, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Almería, 04120 Almería, Spain
| | - M Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - A M Puertas
- Departamento de Física Aplicada, Universidad de Almería, 04120 Almería, Spain
| |
Collapse
|
12
|
Akimoto T, Saito K. Trace of anomalous diffusion in a biased quenched trap model. Phys Rev E 2020; 101:042133. [PMID: 32422836 DOI: 10.1103/physreve.101.042133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Diffusion in a quenched heterogeneous environment in the presence of bias is considered analytically. The first-passage-time statistics can be applied to obtain the drift and the diffusion coefficient in periodic quenched environments. We show several transition points at which sample-to-sample fluctuations of the drifts or the diffusion coefficients remain large even when the system size becomes large, i.e., non-self-averaging. Moreover, we find that the disorder average of the diffusion coefficient diverges or becomes 0 when the corresponding annealed model generates superdiffusion or subdiffusion, respectively. This result implies that anomalous diffusion in an annealed model is traced by anomaly of the diffusion coefficients in the corresponding quenched model.
Collapse
Affiliation(s)
- Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Keiji Saito
- Department of Physics, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
13
|
Wang H, Mohorič T, Zhang X, Dobnikar J, Horbach J. Active microrheology in two-dimensional magnetic networks. SOFT MATTER 2019; 15:4437-4444. [PMID: 31011733 DOI: 10.1039/c9sm00085b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We study active microrheology in two-dimensional (2D) magnetic networks. To this end, we use Langevin dynamics computer simulations where single non-magnetic or magnetic tracer particles are pulled through the network structures via a constant force f. Structural changes in the network around the pulled tracer particle are characterized in terms of pair correlation functions. These functions indicate that the non-magnetic tracer particles tend to strongly affect the network structure leading to the formation of channels at sufficiently high forces, while the magnetic tracer particles modify the network structure only slightly. At zero pulling force, f = 0, both non-magnetic and magnetic tracer particles are localized, i.e. they do not show diffusive behavior in the long-time limit. Nevertheless, the friction coefficient, as obtained from the steady-state velocity of the tracer particles, seems to indicate a linear-response regime at small values of f. Beyond the latter linear response regime, the diffusion dynamics of the tracer particles are anisotropic with superdiffusive behavior in force direction. This transport anomaly is investigated via van Hove correlation functions and residence time distributions.
Collapse
Affiliation(s)
- Hanqing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | | | | | | | | |
Collapse
|
14
|
Şenbil N, Gruber M, Zhang C, Fuchs M, Scheffold F. Observation of Strongly Heterogeneous Dynamics at the Depinning Transition in a Colloidal Glass. PHYSICAL REVIEW LETTERS 2019; 122:108002. [PMID: 30932679 DOI: 10.1103/physrevlett.122.108002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
We study experimentally the origin of heterogeneous dynamics in strongly driven glass-forming systems. Thereto, we apply a well-defined force with a laser line trap on individual colloidal polystyrene probe particles seeded in an emulsion glass composed of droplets of the same size. Fluid and glass states can be probed. We monitor the trajectories of the probe and measure displacements and their distributions. Our experiments reveal intermittent dynamics around a depinning transition at a threshold force. For smaller forces, linear response connects mean displacement, and quiescent mean squared displacement. Mode coupling theory calculations rationalize the observations.
Collapse
Affiliation(s)
- Nesrin Şenbil
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Markus Gruber
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Chi Zhang
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Frank Scheffold
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
15
|
Bénichou O, Illien P, Oshanin G, Sarracino A, Voituriez R. Tracer diffusion in crowded narrow channels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:443001. [PMID: 30211693 DOI: 10.1088/1361-648x/aae13a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We summarise different results on the diffusion of a tracer particle in lattice gases of hard-core particles with stochastic dynamics, which are confined to narrow channels-single-files, comb-like structures and quasi-one-dimensional channels with the width equal to several particle diameters. We show that in such geometries a surprisingly rich, sometimes even counter-intuitive, behaviour emerges, which is absent in unbounded systems. This is well-documented for the anomalous diffusion in single-files. Less known is the anomalous dynamics of a tracer particle in crowded branching single-files-comb-like structures, where several kinds of anomalous regimes take place. In narrow channels, which are broader than single-files, one encounters a wealth of anomalous behaviours in the case where the tracer particle is subject to a regular external bias: here, one observes an anomaly in the temporal evolution of the tracer particle velocity, super-diffusive at transient stages, and ultimately a giant diffusive broadening of fluctuations in the position of the tracer particle, as well as spectacular multi-tracer effects of self-clogging of narrow channels. Interactions between a biased tracer particle and a confined crowded environment also produce peculiar patterns in the out-of-equilibrium distribution of the environment particles, very different from the ones appearing in unbounded systems. For moderately dense systems, a surprising effect of a negative differential mobility takes place, such that the velocity of a biased tracer particle can be a non-monotonic function of the force. In some parameter ranges, both the velocity and the diffusion coefficient of a biased tracer particle can be non-monotonic functions of the density. We also survey different results obtained for a tracer particle diffusion in unbounded systems, which will permit a reader to have an exhaustively broad picture of the tracer diffusion in crowded environments.
Collapse
Affiliation(s)
- O Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
16
|
Hou R, Cherstvy AG, Metzler R, Akimoto T. Biased continuous-time random walks for ordinary and equilibrium cases: facilitation of diffusion, ergodicity breaking and ageing. Phys Chem Chem Phys 2018; 20:20827-20848. [PMID: 30066003 DOI: 10.1039/c8cp01863d] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We examine renewal processes with power-law waiting time distributions (WTDs) and non-zero drift via computing analytically and by computer simulations their ensemble and time averaged spreading characteristics. All possible values of the scaling exponent α are considered for the WTD ψ(t) ∼ 1/t1+α. We treat continuous-time random walks (CTRWs) with 0 < α < 1 for which the mean waiting time diverges, and investigate the behaviour of the process for both ordinary and equilibrium CTRWs for 1 < α < 2 and α > 2. We demonstrate that in the presence of a drift CTRWs with α < 1 are ageing and non-ergodic in the sense of the non-equivalence of their ensemble and time averaged displacement characteristics in the limit of lag times much shorter than the trajectory length. In the sense of the equivalence of ensemble and time averages, CTRW processes with 1 < α < 2 are ergodic for the equilibrium and non-ergodic for the ordinary situation. Lastly, CTRW renewal processes with α > 2-both for the equilibrium and ordinary situation-are always ergodic. For the situations 1 < α < 2 and α > 2 the variance of the diffusion process, however, depends on the initial ensemble. For biased CTRWs with α > 1 we also investigate the behaviour of the ergodicity breaking parameter. In addition, we demonstrate that for biased CTRWs the Einstein relation is valid on the level of the ensemble and time averaged displacements, in the entire range of the WTD exponent α.
Collapse
Affiliation(s)
- Ru Hou
- School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China.
| | | | | | | |
Collapse
|
17
|
Akimoto T, Cherstvy AG, Metzler R. Ergodicity, rejuvenation, enhancement, and slow relaxation of diffusion in biased continuous-time random walks. Phys Rev E 2018; 98:022105. [PMID: 30253516 DOI: 10.1103/physreve.98.022105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Bias plays an important role in the enhancement of diffusion in periodic potentials. Using the continuous-time random walk in the presence of a bias, we report on an interesting phenomenon for the enhancement of diffusion by the start of the measurement in a random energy landscape. When the variance of the waiting time diverges, in contrast to the bias-free case, the dynamics with bias becomes superdiffusive. In the superdiffusive regime, we find a distinct initial ensemble dependence of the diffusivity. Moreover, the diffusivity can be increased by the aging time when the initial ensemble is not in equilibrium. We show that the time-averaged variance converges to the corresponding ensemble-averaged variance; i.e., ergodicity is preserved. However, trajectory-to-trajectory fluctuations of the time-averaged variance decay unexpectedly slowly. Our findings provide a rejuvenation phenomenon in the superdiffusive regime, that is, the diffusivity for a nonequilibrium initial ensemble gradually increases to that for an equilibrium ensemble when the start of the measurement is delayed.
Collapse
Affiliation(s)
- Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|
18
|
Kliushnychenko OV, Lukyanets SP. Effects of collectively induced scattering of gas stream by impurity ensembles: Shock-wave enhancement and disorder-stimulated nonlinear screening. Phys Rev E 2018; 98:020101. [PMID: 30253471 DOI: 10.1103/physreve.98.020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Indexed: 06/08/2023]
Abstract
We report on specific effects of collective scattering for a cloud of heavy impurities exposed to a gas stream. Formation is presented of a common density perturbation and shock waves, both generated collectively by a system of scatterers at sudden application of the stream-inducing external field. Our results demonstrate that (i) the scattering of gas stream can be essentially amplified, due to nonlinear collective effects, upon fragmentation of a solid obstacle into a cluster of impurities (heterogeneously fractured obstacle); (ii) a cluster of disordered impurities can produce considerably stronger scattering accompanied by enhanced and accelerated shock wave, as compared to a regularly ordered cluster. We also show that the final steady-state density distribution is formed as a residual perturbation left after the shock front passage. In particular, a kinklike steady distribution profile can be formed as a result of shock front stopping effect. The possibility of the onset of solitary diffusive density waves, reminiscent of precursor solitons, is shown and briefly discussed.
Collapse
Affiliation(s)
- O V Kliushnychenko
- Institute of Physics, NAS of Ukraine, Prospect Nauky 46, 03028 Kiev, Ukraine
| | - S P Lukyanets
- Institute of Physics, NAS of Ukraine, Prospect Nauky 46, 03028 Kiev, Ukraine
| |
Collapse
|
19
|
Liao JJ, Zhu WJ, Ai BQ. Transport and diffusion of paramagnetic ellipsoidal particles in a rotating magnetic field. Phys Rev E 2018; 97:062151. [PMID: 30011563 DOI: 10.1103/physreve.97.062151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Indexed: 06/08/2023]
Abstract
Transport and diffusion of paramagnetic ellipsoidal particles under the action of a rotating magnetic field are numerically investigated in a two-dimensional channel. It is found that paramagnetic ellipsoidal particles in a rotating magnetic field can be rectified in the upper-lower asymmetric channel. The transport and the effective diffusion coefficient are much more different and complicated for active particles, while they have similar behaviors and change a little when applying rotating magnetic fields of different frequencies for passive particles. For active particles, the back-and-forth rotational motion facilitates the effective diffusion coefficient and reduces the rectification, whereas the rotational motion synchronous with the magnetic field suppresses the effective diffusion coefficient and enhances the rectification. There exist optimized values of the parameters (the anisotropic degree, the amplitude and frequency of magnetic field, the self-propelled velocity, and the rotational diffusion rate) at which the average velocity and diffusion take their maximal values. Particles with different shapes, self-propelled speeds, or rotational diffusion rates will move to the opposite directions and can be separated by applying rotating magnetic fields of suitable strength and frequency. Our results can be used to separate particles, orient the particles along any direction at will during motion, and control the particle diffusion.
Collapse
Affiliation(s)
- Jing-Jing Liao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
- College of Applied Science, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Wei-Jing Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
20
|
Illien P, Bénichou O, Oshanin G, Sarracino A, Voituriez R. Nonequilibrium Fluctuations and Enhanced Diffusion of a Driven Particle in a Dense Environment. PHYSICAL REVIEW LETTERS 2018; 120:200606. [PMID: 29864325 DOI: 10.1103/physrevlett.120.200606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/02/2018] [Indexed: 06/08/2023]
Abstract
We study the diffusion of a tracer particle driven out of equilibrium by an external force and traveling in a dense environment of arbitrary density. The system evolves on a discrete lattice and its stochastic dynamics is described by a master equation. Relying on a decoupling approximation that goes beyond the naive mean-field treatment of the problem, we calculate the fluctuations of the position of the tracer around its mean value on a lattice of arbitrary dimension, and with different boundary conditions. We reveal intrinsically nonequilibrium effects, such as enhanced diffusivity of the tracer induced by both the crowding interactions and the external driving. We finally consider the high-density and low-density limits of the model and show that our approximation scheme becomes exact in these limits.
Collapse
Affiliation(s)
- Pierre Illien
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
| | - Gleb Oshanin
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Istituto dei Sistemi Complessi-CNR, P.le Aldo Moro 2, 00185 Rome, Italy
- Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
- Laboratoire Jean Perrin, CNRS UMR 8237, Université Pierre-et-Marie-Curie, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
21
|
Leitmann S, Schwab T, Franosch T. Time-dependent perpendicular fluctuations in the driven lattice Lorentz gas. Phys Rev E 2018; 97:022101. [PMID: 29548093 DOI: 10.1103/physreve.97.022101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Indexed: 11/07/2022]
Abstract
We present results for the fluctuations of the displacement of a tracer particle on a planar lattice pulled by a step force in the presence of impenetrable, immobile obstacles. The fluctuations perpendicular to the applied force are evaluated exactly in first order of the obstacle density for arbitrarily strong pulling and all times. The complex time-dependent behavior is analyzed in terms of the diffusion coefficient, local exponent, and the non-Skellam parameter, which quantifies deviations from the dynamics on the lattice in the absence of obstacles. The non-Skellam parameter along the force is analyzed in terms of an asymptotic model and reveals a power-law growth for intermediate times.
Collapse
Affiliation(s)
- Sebastian Leitmann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Schwab
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| | - Thomas Franosch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21A, A-6020 Innsbruck, Austria
| |
Collapse
|
22
|
Abstract
This work focuses on quantitative representation of transport in systems with quenched disorder. Explicit mapping of the quenched trap model to continuous time random walk is presented. Linear temporal transformation, t→t/Λ^{1/α}, for a transient process in the subdiffusive regime is sufficient for asymptotic mapping. An exact form of the constant Λ^{1/α} is established. A disorder averaged position probability density function for a quenched trap model is obtained, and analytic expressions for the diffusion coefficient and drift are provided.
Collapse
Affiliation(s)
- Stanislav Burov
- Physics Department, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|