1
|
Kanazawa T, Furukawa A. Microrheology of active suspensions. SOFT MATTER 2024; 20:5527-5537. [PMID: 38920265 DOI: 10.1039/d4sm00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
We study the microrheology of active suspensions through direct hydrodynamic simulations using model pusher-like microswimmers. We demonstrate that the friction coefficient of a probe particle is notably reduced by hydrodynamic interactions (HIs) among a moving probe and the swimmers. When a swimmer approaches a probe from the rear (front) side, the repulsive HIs between them are weakened (intensified), which results in a slight front-rear asymmetry in swimmer orientation distribution around the probe, creating a significant additional net driving force acting on the probe from the rear side. The present drag-reduction mechanism qualitatively differs from that of the viscosity-reduction observed in sheared bulk systems and depends on probing details. This study provides insights into our fundamental knowledge of hydrodynamic effects in active suspensions and serves as a practical example illuminating distinctions between micro- and macrorheology measurements.
Collapse
Affiliation(s)
- Takahiro Kanazawa
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
2
|
Mo R, Xu D, Xu N. Thinning by cluster breaking: Active matter and shear flows share thinning mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2318917121. [PMID: 38843185 PMCID: PMC11181082 DOI: 10.1073/pnas.2318917121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/04/2024] [Indexed: 06/19/2024] Open
Abstract
Among many unexpected phenomena of active matter is the recently observed superfluid-like thinning (viscosity drop) behavior of bacteria suspensions. Understanding this peculiar self-propelled thinning by active matter is of theoretical and practical importance. Here, we find that, although distinct in driving mechanisms, active matter and shear flows exhibit similar thinning behaviors upon the increase of self-propulsion and shear forces, respectively. Our structural characterizations reveal that they actually share the same cluster-breaking mechanism of thinning. How fast and how shattered the cluster is broken determines the (dis)continuity of the thinning. This explains why adding active particles to Newtonian fluids can cause thinning, in which rotation of active particles play a key role in breaking clusters. Our work proposes a mechanism of self-propelled thinning and further establishes the underlying connections between active matter and shear flows.
Collapse
Affiliation(s)
- Ruoyang Mo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ding Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ning Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Department of Physics, University of Science and Technology of China, Hefei230026, People’s Republic of China
| |
Collapse
|
3
|
Huang Y, Wu C, Chen J, Tang J. Colloidal Self-Assembly: From Passive to Active Systems. Angew Chem Int Ed Engl 2024; 63:e202313885. [PMID: 38059754 DOI: 10.1002/anie.202313885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Self-assembly fundamentally implies the organization of small sub-units into large structures or patterns without the intervention of specific local interactions. This process is commonly observed in nature, occurring at various scales ranging from atomic/molecular assembly to the formation of complex biological structures. Colloidal particles may serve as micrometer-scale surrogates for studying assembly, particularly for the poorly understood kinetic and dynamic processes at the atomic scale. Recent advances in colloidal self-assembly have enabled the programmable creation of novel materials with tailored properties. We here provide an overview and comparison of both passive and active colloidal self-assembly, with a discussion on the energy landscape and interactions governing both types. In the realm of passive colloidal assembly, many impressive and important structures have been realized, including colloidal molecules, one-dimensional chains, two-dimensional lattices, and three-dimensional crystals. In contrast, active colloidal self-assembly, driven by optical, electric, chemical, or other fields, involves more intricate dynamic processes, offering more flexibility and potential new applications. A comparative analysis underscores the critical distinctions between passive and active colloidal assemblies, highlighting the unique collective behaviors emerging in active systems. These behaviors encompass collective motion, motility-induced phase segregation, and exotic properties arising from out-of-equilibrium thermodynamics. Through this comparison, we aim to identify the future opportunities in active assembly research, which may suggest new application domains.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
4
|
Bickmann J, Bröker S, Te Vrugt M, Wittkowski R. Active Brownian particles in external force fields: Field-theoretical models, generalized barometric law, and programmable density patterns. Phys Rev E 2023; 108:044601. [PMID: 37978644 DOI: 10.1103/physreve.108.044601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/24/2023] [Indexed: 11/19/2023]
Abstract
We investigate the influence of external forces on the collective dynamics of interacting active Brownian particles in two as well as three spatial dimensions. Via explicit coarse graining, we derive predictive models, i.e., models that give a direct relation between the models' coefficients and the bare parameters of the system, that are applicable for space- and time-dependent external force fields. We study these models for the cases of gravity and harmonic traps. In particular, we derive a generalized barometric formula for interacting active Brownian particles under gravity that is valid for low to high concentrations and activities of the particles. Furthermore, we show that one can use an external harmonic trap to induce motility-induced phase separation in systems that, without external fields, remain in a homogeneous state. This finding makes it possible to realize programmable density patterns in systems of active Brownian particles. Our analytic predictions are found to be in very good agreement with Brownian dynamics simulations.
Collapse
Affiliation(s)
- Jens Bickmann
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Stephan Bröker
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Michael Te Vrugt
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
5
|
Haldar A, Sarkar A, Chatterjee S, Basu A. Active XY model on a substrate: Density fluctuations and phase ordering. Phys Rev E 2023; 108:034114. [PMID: 37849142 DOI: 10.1103/physreve.108.034114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/13/2023] [Indexed: 10/19/2023]
Abstract
We explore the generic long-wavelength properties of an active XY model on a substrate, consisting of a collection of nearly phase-ordered active XY spins in contact with a diffusing, conserved species, as a representative system of active spinners with a conservation law. The spins rotate actively in response to the local density fluctuations and local phase differences, on a solid substrate. We investigate this system by Monte Carlo simulations of an agent-based model, which we set up, complemented by the hydrodynamic theory for the system. We demonstrate that this system can phase-synchronize without any hydrodynamic interactions. Our combined numerical and analytical studies show that this model, when stable, displays hitherto unstudied scaling behavior: As a consequence of the interplay between the mobility, active rotation, and number conservation, such a system can be stable over a wide range of the model parameters characterized by a novel correspondence between the phase and density fluctuations. In different regions of the phase space where the phase-ordered system is stable, it displays generalized quasi-long-range order (QLRO): It shows phase ordering which is generically either logarithmically stronger than the conventional QLRO found in its equilibrium limit, together with "miniscule number fluctuations," or logarithmically weaker than QLRO along with "giant number fluctuations," showing a novel one-to-one correspondence between phase ordering and density fluctuations in the ordered states. Intriguingly, these scaling exponents are found to depend explicitly on the model parameters. We further show that in other parameter regimes there are no stable, ordered phases. Instead, two distinct types of disordered states with short-range phase order are found, characterized by the presence or absence of stable clusters of finite sizes. In a surprising connection, the hydrodynamic theory for this model also describes the fluctuations in a Kardar-Parisi-Zhang (KPZ) surface with a conserved species on it, or an active fluid membrane with a finite tension, without momentum conservation and a conserved species living on it. This implies the existence of stable fluctuating surfaces that are only logarithmically smoother or rougher than the Edward-Wilkinson surface at two dimensions (2D) can exist, in contrast to the 2D pure KPZ-like "rough" surfaces.
Collapse
Affiliation(s)
- Astik Haldar
- Theory Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Calcutta 700064, West Bengal, India
| | - Apurba Sarkar
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata-700032, West Bengal, India
| | - Swarnajit Chatterjee
- Center for Biophysics & Department for Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Abhik Basu
- Theory Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF Bidhannagar, Calcutta 700064, West Bengal, India
| |
Collapse
|
6
|
Modica KJ, Omar AK, Takatori SC. Boundary design regulates the diffusion of active matter in heterogeneous environments. SOFT MATTER 2023; 19:1890-1899. [PMID: 36790413 DOI: 10.1039/d2sm01421a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Physical boundaries play a key role in governing the overall transport properties of nearby self-propelled particles. In this work, we develop dispersion theories and conduct Brownian dynamics simulations to predict the coupling between surface accumulation and effective diffusivity of active particles in boundary-rich media. We focus on three models that are well-understood for passive systems: particle transport in (i) an array of fixed volume-excluding obstacles; (ii) a pore with spatially heterogeneous width; and (iii) a tortuous path with kinks and corners. While the impact of these entropic barriers on passive particle transport is well established, we find that these classical models of porous media flows break down due to the unique interplay between activity and the microstructure of the internal geometry. We study the activity-induced slowdown of effective diffusivity by formulating a Smoluchowski description of long-time self diffusivity which contains contributions from the density and fluctuation fields of the active particles. Particle-based and finite element simulations corroborate this perspective and reveal important nonequilibrium considerations of active transport.
Collapse
Affiliation(s)
- Kevin J Modica
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Ahmad K Omar
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sho C Takatori
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
7
|
Chui JYY, Douarche C, Auradou H, Juanes R. Rheology of bacterial superfluids in viscous environments. SOFT MATTER 2021; 17:7004-7013. [PMID: 34240724 DOI: 10.1039/d1sm00243k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viscous environments are ubiquitous in nature and in engineering applications, from mucus in lungs to oil recovery strategies in the earth's subsurface - and in all these environments, bacteria also thrive. The behavior of bacteria in viscous environments has been investigated for a single bacterium, but not for active suspensions. Dense populations of pusher-type bacteria are known to create superfluidic regimes where the effective viscosity of the entire suspension is reduced through collective motion, and the main purpose of this study is to investigate how a viscous environment will affect this behavior. Using a Couette rheometer, we measure shear stress as a function of the applied shear rate to define the effective viscosity of suspensions of Escherichia coli (E. coli), while varying both the bacterial density within the suspension and the viscosity of the suspending fluid. We document the remarkable observation that E. coli decreases the effective suspension viscosity to near-zero (superfluidic regime) for all solvent viscosities tested (1-17 mPa s). Specifically, we observe that the bacterial density needed to trigger this superfluidic regime and the maximum shear rate under which this regime can be sustained both decrease with increasing solvent viscosity. We find that the resulting rheograms can be well approximated by the Carreau-Yasuda law. Using this, we propose a constitutive model as a function of the solvent viscosity and the bacterial concentration only. This model captures the onset of the superfluidic regime and offers promising avenues for the modelling of flow of bacterial suspensions in viscous environments.
Collapse
Affiliation(s)
- Jane Y Y Chui
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | - Harold Auradou
- Université Paris-Saclay, CNRS, FAST, 91405, Orsay, France.
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
9
|
El Hasadi YM, Crapper M. Self-propelled nanofluids a coolant inspired from nature with enhanced thermal transport properties. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wu C, Cao T, Cao Y. Collective depinning of driven monolayer active colloidal particles with magnetic dipole and Mie-type interactions. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1718790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Cange Wu
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Tingting Cao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Yigang Cao
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, People’s Republic of China
| |
Collapse
|
11
|
Bickmann J, Wittkowski R. Predictive local field theory for interacting active Brownian spheres in two spatial dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:214001. [PMID: 31791019 DOI: 10.1088/1361-648x/ab5e0e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We present a predictive local field theory for the nonequilibrium dynamics of interacting active Brownian particles with a spherical shape in two spatial dimensions. The theory is derived by a rigorous coarse-graining starting from the Langevin equations that describe the trajectories of the individual particles. For high accuracy and generality of the theory, it includes configurational order parameters and derivatives up to infinite order. In addition, we discuss possible approximations of the theory and present reduced models that are easier to apply. We show that our theory contains popular models such as Active Model B+ as special cases and that it provides explicit expressions for the coefficients occurring in these and other, often phenomenological, models. As a further outcome, the theory yields an analytical expression for the density-dependent mean swimming speed of the particles. To demonstrate an application of the new theory, we analyze a simple reduced model of the lowest nontrivial order in derivatives, which is able to predict the onset of motility-induced phase separation of the particles. By a linear stability analysis, an analytical expression for the spinodal corresponding to motility-induced phase separation is obtained. This expression is evaluated for the case of particles interacting repulsively by a Weeks-Chandler-Andersen potential. The analytical predictions for the spinodal associated with these particles are found to be in very good agreement with the results of Brownian dynamics simulations that are based on the same Langevin equations as our theory. Furthermore, the critical point predicted by our analytical results agrees excellently with recent computational results from the literature.
Collapse
Affiliation(s)
- Jens Bickmann
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | |
Collapse
|
12
|
Epstein JM, Mandadapu KK. Time-reversal symmetry breaking in two-dimensional nonequilibrium viscous fluids. Phys Rev E 2020; 101:052614. [PMID: 32575182 DOI: 10.1103/physreve.101.052614] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
We study the rheological signatures of departure from equilibrium in two-dimensional viscous fluids with and without internal spin. Under the assumption of isotropy, we provide the most general linear constitutive relations for stress and couple stress in terms of the velocity and spin fields. Invoking Onsager's regression hypothesis for fluctuations about steady states, we derive the Green-Kubo formulas relating the transport coefficients to time-correlation functions of the fluctuating stress. In doing so, we show that one of the nonequilibrium transport coefficients, the odd viscosity, requires time-reversal symmetry breaking in the case of systems without internal spin. However, the Green-Kubo relations for systems with internal spin also show that there is a possibility for nonvanishing odd viscosity even when time-reversal symmetry is preserved. Furthermore, we find that breakdown of equipartition in nonequilibrium steady states results in the decoupling of the two rotational viscosities relating the vorticity and the internal spin.
Collapse
Affiliation(s)
- Jeffrey M Epstein
- Department of Physics, University of California, Berkeley, California, USA
| | - Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
13
|
Omar AK, Wang ZG, Brady JF. Microscopic origins of the swim pressure and the anomalous surface tension of active matter. Phys Rev E 2020; 101:012604. [PMID: 32069575 DOI: 10.1103/physreve.101.012604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 06/10/2023]
Abstract
The unique pressure exerted by active particles-the "swim" pressure-has proven to be a useful quantity in explaining many of the seemingly confounding behaviors of active particles. However, its use has also resulted in some puzzling findings including an extremely negative surface tension between phase separated active particles. Here, we demonstrate that this contradiction stems from the fact that the swim pressure is not a true pressure. At a boundary or interface, the reduction in particle swimming generates a net active force density-an entirely self-generated body force. The pressure at the boundary, which was previously identified as the swim pressure, is in fact an elevated (relative to the bulk) value of the traditional particle pressure that is generated by this interfacial force density. Recognizing this unique mechanism for stress generation allows us to define a much more physically plausible surface tension. We clarify the utility of the swim pressure as an "equivalent pressure" (analogous to those defined from electrostatic and gravitational body forces) and the conditions in which this concept can be appropriately applied.
Collapse
Affiliation(s)
- Ahmad K Omar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
14
|
Varga Z, Grenard V, Pecorario S, Taberlet N, Dolique V, Manneville S, Divoux T, McKinley GH, Swan JW. Hydrodynamics control shear-induced pattern formation in attractive suspensions. Proc Natl Acad Sci U S A 2019; 116:12193-12198. [PMID: 31164423 PMCID: PMC6591707 DOI: 10.1073/pnas.1901370116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dilute suspensions of repulsive particles exhibit a Newtonian response to flow that can be accurately predicted by the particle volume fraction and the viscosity of the suspending fluid. However, such a description fails when the particles are weakly attractive. In a simple shear flow, suspensions of attractive particles exhibit complex, anisotropic microstructures and flow instabilities that are poorly understood and plague industrial processes. One such phenomenon, the formation of log-rolling flocs, which is ubiquitously observed in suspensions of attractive particles that are sheared while confined between parallel plates, is an exemplar of this phenomenology. Combining experiments and discrete element simulations, we demonstrate that this shear-induced structuring is driven by hydrodynamic coupling between the flocs and the confining boundaries. Clusters of particles trigger the formation of viscous eddies that are spaced periodically and whose centers act as stable regions where particles aggregate to form flocs spanning the vorticity direction. Simulation results for the wavelength of the periodic pattern of stripes formed by the logs and for the log diameter are in quantitative agreement with experimental observations on both colloidal and noncolloidal suspensions. Numerical and experimental results are successfully combined by means of rescaling in terms of a Mason number that describes the strength of the shear flow relative to the rupture force between contacting particles in the flocs. The introduction of this dimensionless group leads to a universal stability diagram for the log-rolling structures and allows for application of shear-induced structuring as a tool for assembling and patterning suspensions of attractive particles.
Collapse
Affiliation(s)
- Zsigmond Varga
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Vincent Grenard
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université Claude Bernard, Université de Lyon, CNRS, F-69342 Lyon, France
| | - Stefano Pecorario
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université Claude Bernard, Université de Lyon, CNRS, F-69342 Lyon, France
| | - Nicolas Taberlet
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université Claude Bernard, Université de Lyon, CNRS, F-69342 Lyon, France
| | - Vincent Dolique
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université Claude Bernard, Université de Lyon, CNRS, F-69342 Lyon, France
| | - Sébastien Manneville
- Laboratoire de Physique, École Normale Supérieure de Lyon, Université Claude Bernard, Université de Lyon, CNRS, F-69342 Lyon, France
| | - Thibaut Divoux
- Centre de Recherche Paul Pascal, CNRS UMR 5031, 33600 Pessac, France
- MultiScale Material Science for Energy and Environment, Unité Mixte Internationale 3466, CNRS-Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Gareth H McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - James W Swan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
15
|
Affiliation(s)
- Eric W. Burkholder
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - John F. Brady
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
16
|
Asheichyk K, Solon AP, Rohwer CM, Krüger M. Response of active Brownian particles to shear flow. J Chem Phys 2019; 150:144111. [DOI: 10.1063/1.5086495] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kiryl Asheichyk
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Alexandre P. Solon
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matiére Condensée, LPTMC, F-75005 Paris, France
| | - Christian M. Rohwer
- 4th Institute for Theoretical Physics, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Matthias Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
17
|
Colloid Transport in Porous Media: A Review of Classical Mechanisms and Emerging Topics. Transp Porous Media 2019. [DOI: 10.1007/s11242-019-01270-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Dey KK. Dynamic Coupling at Low Reynolds Number. Angew Chem Int Ed Engl 2019; 58:2208-2228. [DOI: 10.1002/anie.201804599] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Krishna Kanti Dey
- Discipline of PhysicsIndian Institute of Technology Gandhinagar Gandhinagar Gujarat 382355 India
| |
Collapse
|
19
|
Affiliation(s)
- Krishna Kanti Dey
- Discipline of Physics; Indian Institute of Technology Gandhinagar; Gandhinagar Gujarat 382355 Indien
| |
Collapse
|
20
|
Loisy A, Eggers J, Liverpool TB. Active Suspensions have Nonmonotonic Flow Curves and Multiple Mechanical Equilibria. PHYSICAL REVIEW LETTERS 2018; 121:018001. [PMID: 30028150 DOI: 10.1103/physrevlett.121.018001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/16/2018] [Indexed: 06/08/2023]
Abstract
We point out unconventional mechanical properties of confined active fluids, such as bacterial suspensions, under shear. Using a minimal model of an active liquid crystal with no free parameters, we predict the existence of a window of bacteria concentration for which a suspension of E. Coli effectively behaves, at steady-state, as a negative viscosity fluid and reach a quantitative agreement with experimental measurements. Our theoretical analysis further shows that a negative apparent viscosity is due to a nonmonotonic local velocity profile, and it is associated with a nonmonotonic stress versus strain rate flow curve. This implies that fixed stress and fixed strain rate ensembles are not equivalent for active fluids.
Collapse
Affiliation(s)
- Aurore Loisy
- School of Mathematics, University of Bristol-Bristol BS8 1 TW, United Kingdom
| | - Jens Eggers
- School of Mathematics, University of Bristol-Bristol BS8 1 TW, United Kingdom
| | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol-Bristol BS8 1 TW, United Kingdom
- BrisSynBio, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| |
Collapse
|
21
|
Symmetric shear banding and swarming vortices in bacterial superfluids. Proc Natl Acad Sci U S A 2018; 115:7212-7217. [PMID: 29941551 DOI: 10.1073/pnas.1722505115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial suspensions-a premier example of active fluids-show an unusual response to shear stresses. Instead of increasing the viscosity of the suspending fluid, the emergent collective motions of swimming bacteria can turn a suspension into a superfluid with zero apparent viscosity. Although the existence of active superfluids has been demonstrated in bulk rheological measurements, the microscopic origin and dynamics of such an exotic phase have not been experimentally probed. Here, using high-speed confocal rheometry, we study the dynamics of concentrated bacterial suspensions under simple planar shear. We find that bacterial superfluids under shear exhibit unusual symmetric shear bands, defying the conventional wisdom on shear banding of complex fluids, where the formation of steady shear bands necessarily breaks the symmetry of unsheared samples. We propose a simple hydrodynamic model based on the local stress balance and the ergodic sampling of nonequilibrium shear configurations, which quantitatively describes the observed symmetric shear-banding structure. The model also successfully predicts various interesting features of swarming vortices in stationary bacterial suspensions. Our study provides insights into the physical properties of collective swarming in active fluids and illustrates their profound influences on transport processes.
Collapse
|
22
|
Burkholder EW, Brady JF. Do hydrodynamic interactions affect the swim pressure? SOFT MATTER 2018; 14:3581-3589. [PMID: 29683179 DOI: 10.1039/c8sm00197a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study the motion of a spherical active Brownian particle (ABP) of size a, moving with a fixed speed U0, and reorienting on a time scale τR in the presence of a confining boundary. Because momentum is conserved in the embedding fluid, we show that the average force per unit area on the boundary equals the bulk mechanical pressure P∞ = p∞f + Π∞, where p∞f is the fluid pressure and Π∞ is the particle pressure; this is true for active and passive particles alike regardless of how the particles interact with the boundary. As an example, we investigate how hydrodynamic interactions (HI) change the particle-phase pressure at the wall, and find that Πwall = n∞(kBT + ζ(Δ)U0l(Δ)/6), where ζ is the (Stokes) drag on the swimmer, l = U0τR is the run length, and Δ is the minimum gap size between the particle and the wall; as Δ → ∞ this is the familiar swim pressure [Takatori et al., Phys. Rev. Lett., 2014, 113, 1-5].
Collapse
Affiliation(s)
- Eric W Burkholder
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
23
|
Jibuti L, Zimmermann W, Rafaï S, Peyla P. Effective viscosity of a suspension of flagellar-beating microswimmers: Three-dimensional modeling. Phys Rev E 2017; 96:052610. [PMID: 29347779 DOI: 10.1103/physreve.96.052610] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Indexed: 11/07/2022]
Abstract
Micro-organisms usually can swim in their liquid environment by flagellar or ciliary beating. In this numerical work, we analyze the influence of flagellar beating on the orbits of a swimming cell in a shear flow. We also calculate the effect of the flagellar beating on the rheology of a dilute suspension of microswimmers. A three-dimensional model is proposed for Chlamydomonas Reinhardtii swimming with a breaststroke-like beating of two anterior flagella modeled by two counter-rotating fore beads. The active swimmer model reveals unusual angular orbits in a linear shear flow. Namely, the swimmer sustains orientations transiently across the flow. Such behavior is a result of the interplay between shear flow and the swimmer's periodic beating motion of flagella, which exert internal torques on the cell body. This peculiar behavior has some significant consequences on the rheological properties of the suspension. We calculate Einstein's viscosity of the suspension composed of such isolated modeled microswimmers (dilute case) in a shear flow. We use numerical simulations based on a Rotne-Prager-like approximation for hydrodynamic interaction between simplified flagella and the cell body. The results show an increased intrinsic viscosity for active swimmer suspensions in comparison to nonactive ones as well as a shear thinning behavior in accordance with previous experimental measurements [Phys. Rev. Lett. 104, 098102 (2010)10.1103/PhysRevLett.104.098102].
Collapse
Affiliation(s)
- Levan Jibuti
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Walter Zimmermann
- Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Salima Rafaï
- LIPhy, Université Grenoble Alpes and CNRS, F-38402 Grenoble, France
| | - Philippe Peyla
- LIPhy, Université Grenoble Alpes and CNRS, F-38402 Grenoble, France
| |
Collapse
|
24
|
Moradi M, Najafi A. Effective viscosity of a two-dimensional suspension of interacting active particles. Phys Rev E 2017; 96:022611. [PMID: 28950587 DOI: 10.1103/physreve.96.022611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Indexed: 06/07/2023]
Abstract
Suspensions of hydrodynamical active particles exhibit interesting rheological properties. For a dilute suspension of microswimmers, it has been shown that the effective viscosity of the suspension depends on the volume fraction of swimmers, and it behaves differently for pushers and pullers. Here we develop a theoretical framework to study the rheological properties of an interacting suspension. Taking into account the hydrodynamic interaction between swimmers and considering the small Péclet number condition, we calculate the effective viscosity of a two-dimensional suspension. For a dilute suspension, a perturbative result is obtained up to the second order of the surface fraction of swimmers. Our results show that the effective viscosity for the suspension can be very different for pushers and pullers.
Collapse
Affiliation(s)
- Moslem Moradi
- Physics Department, University of Zanjan, Zanjan 313, Iran
| | - Ali Najafi
- Physics Department, University of Zanjan, Zanjan 313, Iran
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|