1
|
Alston H, Bertrand T. Boosting macroscopic diffusion with local resetting. Phys Rev E 2025; 111:034114. [PMID: 40247575 DOI: 10.1103/physreve.111.034114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/18/2025] [Indexed: 04/19/2025]
Abstract
Stochastic interactions generically enhance self-diffusivity in living and biological systems, e.g., optimizing navigation strategies and controlling material properties of cellular tissues and bacterial aggregates. Despite this, the physical mechanisms underlying this nonequilibrium behavior are poorly understood. Here, we introduce a model of interactions between an agent and its environment in the form of a local stochastic resetting mechanism, in which the agent's position is set to the nearest of a predetermined array of sites with a fixed rate. We derive analytic results for the self-diffusion coefficient, showing explicitly that this mechanism enhances diffusivity. Strikingly, we show analytically that this enhancement is optimized by regular arrays of resetting sites. Altogether, our results ultimately provide the conditions for the optimization of the macroscopic transport properties of diffusive systems with local random binding interactions.
Collapse
Affiliation(s)
- Henry Alston
- Imperial College London, Department of Mathematics, South Kensington, London SW7 2AZ, United Kingdom
| | - Thibault Bertrand
- Imperial College London, Department of Mathematics, South Kensington, London SW7 2AZ, United Kingdom
| |
Collapse
|
2
|
Biswas A, Dubbeldam JLA, Sandev T, Pal A. A resetting particle embedded in a viscoelastic bath. CHAOS (WOODBURY, N.Y.) 2025; 35:031102. [PMID: 40085676 DOI: 10.1063/5.0253019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/14/2025] [Indexed: 03/16/2025]
Abstract
We examine the behavior of a colloidal particle immersed in a viscoelastic bath undergoing stochastic resetting at a rate r. Microscopic probes suspended in a viscoelastic environment do not follow the classical theory of Brownian motion. This is primarily because the memory from successive collisions between the medium particles and the probes does not necessarily decay instantly as opposed to the classical Langevin equation. To treat such a system, one needs to incorporate the memory effects into the Langevin equation. The resulting equation formulated by Kubo, known as the generalized Langevin equation (GLE), has been instrumental to describing the transport of particles in inhomogeneous or viscoelastic environments. The purpose of this work, henceforth, is to study the behavior of such a colloidal particle governed by the GLE under resetting dynamics. To this end, we extend the renewal formalism to compute the general expression for the position variance and the correlation function of the resetting particle driven by the environmental memory. These generic results are then illustrated for the prototypical example of the Jeffreys viscoelastic fluid model. In particular, we identify various timescales and intermittent plateaus in the transient phase before the system relaxes to the steady state; and further discuss the effect of resetting pertaining to these behaviors. Our results are supported by numerical simulations showing an excellent agreement.
Collapse
Affiliation(s)
- Arup Biswas
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Johan L A Dubbeldam
- Delft Institute of Applied Mathematics, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Trifce Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia
- Department of Physics, Korea University, Seoul 02841, South Korea
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
3
|
Jolakoski P, Trajanovski P, Pal A, Stojkoski V, Kocarev L, Sandev T. Impact of stochastic resetting on resource allocation: The case of reallocating geometric Brownian motion. Phys Rev E 2025; 111:034129. [PMID: 40247495 DOI: 10.1103/physreve.111.034129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/04/2025] [Indexed: 04/19/2025]
Abstract
We study the effects of stochastic resetting on the reallocating geometric Brownian motion (RGBM), an established model for resource redistribution relevant to systems such as population dynamics, evolutionary processes, economic activity, and even cosmology. The RGBM model is inherently nonstationary and non-ergodic, leading to complex resource redistribution dynamics. By introducing stochastic resetting, which periodically returns the system to a predetermined state, we examine how this mechanism modifies RGBM behavior. Our analysis uncovers distinct long-term regimes determined by the interplay between the resetting rate, the strength of resource redistribution, and standard geometric Brownian motion parameters: the drift and the noise amplitude. Notably, we identify a critical resetting rate beyond which the self-averaging time becomes effectively infinite. In this regime, the first two moments are stationary, indicating a stabilized distribution of an initially unstable, mean-repulsive process. We demonstrate that optimal resetting can effectively balance growth and redistribution, reducing inequality in the resource distribution. These findings help us understand better the management of resource dynamics in uncertain environments.
Collapse
Affiliation(s)
- Petar Jolakoski
- Macedonian Academy of Sciences and Arts, Research Center for Computer Science and Information Technologies, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Pece Trajanovski
- Macedonian Academy of Sciences and Arts, Research Center for Computer Science and Information Technologies, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Ss. Cyril and Methodius University in Skopje, Institute of Physics, Faculty of Natural Sciences and Mathematics, Arhimedova 3, 1000 Skopje, Macedonia
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Viktor Stojkoski
- Ss. Cyril and Methodius University in Skopje, Faculty of Economics, 1000 Skopje, Macedonia
- University of Corvinus, Center for Collective Learning, Budapest, Hungary
| | - Ljupco Kocarev
- Macedonian Academy of Sciences and Arts, Research Center for Computer Science and Information Technologies, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Ss. Cyril and Methodius University, Faculty of Computer Science and Engineering, PO Box 393, 1000 Skopje, Macedonia
| | - Trifce Sandev
- Macedonian Academy of Sciences and Arts, Research Center for Computer Science and Information Technologies, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Ss. Cyril and Methodius University in Skopje, Institute of Physics, Faculty of Natural Sciences and Mathematics, Arhimedova 3, 1000 Skopje, Macedonia
- Korea University, Department of Physics, Seoul 02841, Korea
| |
Collapse
|
4
|
Radice M, Cristadoro G, Thapa S. Optimal conditions for first passage of jump processes with resetting. CHAOS (WOODBURY, N.Y.) 2025; 35:023131. [PMID: 39928748 DOI: 10.1063/5.0243875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/16/2025] [Indexed: 02/12/2025]
Abstract
We investigate the first passage time beyond a barrier located at b≥0 of a random walk with independent and identically distributed jumps, starting from x0=0. The walk is subject to stochastic resetting, meaning that after each step the evolution is restarted with fixed probability r. We consider a resetting protocol that is an intermediate situation between a random walk (r=0) and an uncorrelated sequence of jumps all starting from the origin (r=1) and derive a general condition for determining when restarting the process with 0
Collapse
Affiliation(s)
- Mattia Radice
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Giampaolo Cristadoro
- Dipartimento di Matematica e Applicazioni, Università degli Studi Milano-Bicocca, 20126 Milan, Italy
| | - Samudrajit Thapa
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| |
Collapse
|
5
|
González G. Diffusive transport through a double-cone channel under stochastic resetting. CHAOS (WOODBURY, N.Y.) 2025; 35:023105. [PMID: 39899575 DOI: 10.1063/5.0235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025]
Abstract
We study three-dimensional diffusive transport of particles through a double-cone channel under stochastic resetting by means of the modified Fick-Jacobs equation. Exact analytical expressions for the unconditional first-passage density and the mean first-passage times in the channel are obtained, and their behavior as a function of the resetting rate is highlighted. Our results show a difference in the mean first-passage times between a narrow-wide-narrow and wide-narrow-wide double-cone geometry. We find in the narrow-wide-narrow double-cone channel with absorbing boundaries a discontinuous transition for the optimal resetting rates, which is not present for the wide-narrow-wide double-cone channel. Furthermore, it is shown how resetting can expedite or slow down the escape of the particle through the double-cone channel. Our results extend the solutions obtained by Jain et al. [J. Chem. Phys. 158, 054113 (2023)].
Collapse
|
6
|
Barman HK, Nandi A, Das D. Optimizing search processes in systems with state toggling: Exact condition delimiting the efficacy of stochastic resetting strategy. Phys Rev E 2025; 111:024142. [PMID: 40103076 DOI: 10.1103/physreve.111.024142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025]
Abstract
Will the strategy of resetting help a stochastic process to reach its target efficiently, with its environment continually toggling between a strongly favorable and an unfavorable (or weakly favorable) state? A diffusive run-and-tumble motion, transport of molecular motors on or off a filament, and motion under flashing optical traps are special examples of such state toggling. For any general process with toggling under Poisson reset, we derive a mathematical condition for continuous transitions where the advantage rendered by resetting vanishes. For the case of diffusive motion with linear potentials of unequal strength, we present exact solutions, which reveal that there is quite generically a re-entrance of the advantage of resetting as a function of the strength of the strongly favorable potential. This result is shown to be valid for quadratic potential traps by using the general condition of transition.
Collapse
Affiliation(s)
- Hillol Kumar Barman
- Indian Institute of Technology Bombay, Department of Physics, Powai, Mumbai 400076, India
| | - Amitabha Nandi
- Indian Institute of Technology Bombay, Department of Physics, Powai, Mumbai 400076, India
| | - Dibyendu Das
- Indian Institute of Technology Bombay, Department of Physics, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Church J, Blumer O, Keidar TD, Ploutno L, Reuveni S, Hirshberg B. Accelerating Molecular Dynamics through Informed Resetting. J Chem Theory Comput 2025; 21:605-613. [PMID: 39772645 PMCID: PMC11781593 DOI: 10.1021/acs.jctc.4c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
We present a procedure for enhanced sampling of molecular dynamics simulations through informed stochastic resetting. Many phenomena, such as protein folding and crystal nucleation, occur over time scales inaccessible in standard simulations. We recently showed that stochastic resetting can accelerate molecular simulations that exhibit broad transition time distributions. However, standard stochastic resetting does not exploit any information about the reaction progress. For a model system and chignolin in explicit water, we demonstrate that an informed resetting protocol leads to greater accelerations than standard stochastic resetting in molecular dynamics and Metadynamics simulations. This is achieved by resetting only when a certain condition is met, e.g., when the distance from the target along the reaction coordinate is larger than some threshold. We use these accelerated simulations to infer important kinetic observables such as the unbiased mean first-passage time and direct transit time. For the latter, Metadynamics with informed resetting leads to speedups of 2-3 orders of magnitude over unbiased simulations with relative errors of only ∼35-70%. Our work significantly extends the applicability of stochastic resetting for enhanced sampling of molecular simulations.
Collapse
Affiliation(s)
| | - Ofir Blumer
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Tommer D. Keidar
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Leo Ploutno
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shlomi Reuveni
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Barak Hirshberg
- School
of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Yin R, Wang Q, Tornow S, Barkai E. Restart uncertainty relation for monitored quantum dynamics. Proc Natl Acad Sci U S A 2025; 122:e2402912121. [PMID: 39746039 PMCID: PMC11725946 DOI: 10.1073/pnas.2402912121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 11/22/2024] [Indexed: 01/04/2025] Open
Abstract
We introduce a time-energy uncertainty relation within the context of restarts in monitored quantum dynamics. Previous studies have established that the mean recurrence time, which represents the time taken to return to the initial state, is quantized as an integer multiple of the sampling time, displaying pointwise discontinuous transitions at resonances. Our findings demonstrate that the natural utilization of the restart mechanism in laboratory experiments, driven by finite data collection time spans, leads to a broadening effect on the transitions of the mean recurrence time. Our proposed uncertainty relation captures the underlying essence of these phenomena, by connecting the broadening of the mean hitting time near resonances, to the intrinsic energies of the quantum system and to the fluctuations of recurrence time. Our uncertainty relation has also been validated through remote experiments conducted on an International Business Machines Corporation (IBM) quantum computer. This work not only contributes to our understanding of fundamental aspects related to quantum measurements and dynamics, but also offers practical insights for the design of efficient quantum algorithms with mid-circuit measurements.
Collapse
Affiliation(s)
- Ruoyu Yin
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan52900, Israel
| | - Qingyuan Wang
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan52900, Israel
| | - Sabine Tornow
- Department of Computer Science, Research Institute CODE (Cyber Defence), University of the Bundeswehr Munich, Munich81739, Germany
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan52900, Israel
| |
Collapse
|
9
|
Goswami K. Stochastic resetting in a nonequilibrium environment. Phys Rev E 2025; 111:014150. [PMID: 39972878 DOI: 10.1103/physreve.111.014150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 01/07/2025] [Indexed: 02/21/2025]
Abstract
This study examines the dynamics of a tracer particle diffusing in a nonequilibrium medium under stochastic resetting. The nonequilibrium state is induced by harmonic coupling between the tracer and bath particles, generating memory effects with an exponential decay in time. We explore the tracer's behavior under a Poissonian resetting protocol, where resetting does not disturb the bath environment, with a focus on key dynamical behavior and first-passage properties, both in the presence and absence of an external force. The interplay between coupling strength and diffusivity of bath particles significantly impacts both the tracer's relaxation dynamics and search time, with external forces further modulating these effects. Our analysis identifies distinct hot and cold bath particles based on their diffusivities, revealing that coupling to a hot particle facilitates the searching process, whereas coupling to a cold particle hinders it. Using a combination of numerical simulations and analytical methods, this study provides a comprehensive framework for understanding resetting mechanisms in non-Markovian systems, with potential applications to complex environments such as active and viscoelastic media, where memory-driven dynamics and nonequilibrium interactions are significant.
Collapse
Affiliation(s)
- Koushik Goswami
- National Center for Theoretical Sciences, Physics Division, National Taiwan University, Taipei 106319, Taiwan
| |
Collapse
|
10
|
Guerrero-Estrada AG, Riascos AP, Boyer D. Random walks with long-range memory on networks. CHAOS (WOODBURY, N.Y.) 2025; 35:013117. [PMID: 39787287 DOI: 10.1063/5.0243892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
We study an exactly solvable random walk model with long-range memory on arbitrary networks. The walker performs unbiased random steps to nearest-neighbor nodes and intermittently resets to previously visited nodes in a preferential way such that the most visited nodes have proportionally a higher probability to be chosen for revisit. The occupation probability can be expressed as a sum over the eigenmodes of the standard random walk matrix of the network, where the amplitudes slowly decay as power-laws at large times, instead of exponentially. The stationary state is the same as in the absence of memory, and detailed balance is fulfilled. However, the relaxation of the transient part becomes critically self-organized at late times, as it is dominated by a single power-law whose exponent depends on the second largest eigenvalue and on the resetting probability. We apply our findings to finite networks, such as rings, complete graphs, Watts-Strogatz, and Barabási-Albert networks, and to Barbell and comb-like graphs. Our study could be of interest for modeling complex transport phenomena, such as human mobility, epidemic spreading, or animal foraging.
Collapse
Affiliation(s)
| | | | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Singh RK, Metzler R, Sandev T. Bernoulli trial under subsystem restarts: Two competing searchers looking for a target. CHAOS (WOODBURY, N.Y.) 2025; 35:011103. [PMID: 39817785 DOI: 10.1063/5.0238201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
We study a pair of independent searchers competing for a target under restarts and find that introduction of restarts tends to enhance the search efficiency of an already efficient searcher. As a result, the difference between the search probabilities of the individual searchers increases when the system is subject to restarts. This result holds true independent of the identity of individual searchers or the specific details of the distribution of restart times. However, when only one of a pair of searchers is subject to restarts while the other evolves in an unperturbed manner, a concept termed as subsystem restarts, we find that the search probability exhibits a nonmonotonic dependence on the restart rate. We also study the mean search time for a pair of run and tumble and Brownian searchers when only the run and tumble particle is subject to restarts. We find that, analogous to restarting the whole system, the mean search time exhibits a nonmonotonic dependence on restart rates.
Collapse
Affiliation(s)
- R K Singh
- Department of Biomedical Engineering, Ben-Gurion University of the Negev, Be'er Sheva 85105, Israel
| | - R Metzler
- Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany
- Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | - T Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia
- Department of Physics, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Bodrova AS, Chechkin AV, Dubey AK. Granular gases under resetting. Phys Rev E 2025; 111:015405. [PMID: 39972721 DOI: 10.1103/physreve.111.015405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/16/2024] [Indexed: 02/21/2025]
Abstract
We investigate the granular temperatures in force-free granular gases under exponential resetting. When a resetting event occurs, the granular temperature attains its initial value, whereas it decreases because of the inelastic collisions between the resetting events. We develop a theory and perform computer simulations for granular gas cooling in the presence of Poissonian resetting events. We also investigate the probability density function to quantify the distribution of granular temperatures. Our theory may help us to understand the behavior of nonperiodically driven granular systems.
Collapse
Affiliation(s)
- Anna S Bodrova
- Moscow Institute of Electronics and Mathematics, HSE University, Moscow 123458, Russia
| | - Aleksei V Chechkin
- University of Potsdam, Institute of Physics and Astronomy, 14476 Potsdam, Germany
- Wroclaw University of Science and Technology, Faculty of Pure and Applied Mathematics, Wyspianskiego 27, Wrocław 50-370, Poland
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Awadhesh Kumar Dubey
- Guru Ghasidas Vishwavidyalaya, Department of Pure and Applied Physics, Koni, Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
13
|
Biswas A, Dubey A, Kundu A, Pal A. Drift-diffusive resetting search process with stochastic returns: Speedup beyond optimal instantaneous return. Phys Rev E 2025; 111:014142. [PMID: 39972881 DOI: 10.1103/physreve.111.014142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Stochastic resetting has recently emerged as a proficient strategy to reduce the completion time for a broad class of first-passage processes. In the canonical setup, one intermittently resets a given system to its initial configuration only to start afresh and continue evolving in time until the target goal is met. This is, however, an instantaneous process and thus less feasible for any practical purposes. A crucial generalization in this regard is to consider a finite-time return process which has significant ramifications to the firstpassage properties. Intriguingly, it has recently been shown that for diffusive search processes, returning in finite but stochastic time can gain significant speedup over the instantaneous resetting process. Unlike diffusion which has a diverging mean completion time, in this paper, we ask whether this phenomena can also be observed for a first-passage process with finite mean completion time. To this end, we explore the setup of a classical drift-diffusive search process in one dimension with stochastic resetting and further assume that the return phase is modulated by a potential U(x)=λ|x| with λ>0. For this process, we compute the mean first-passage time exactly and underpin its characteristics with respect to the resetting rate and potential strength. We find a unified phase space that allows us to explore and identify the system parameter regions where stochastic return supersedes over both the underlying process and the process under instantaneous resetting. Furthermore and quite interestingly, we find that for a range of parameters the mean completion time under stochastic return protocol can be reduced further than the optimally restarted instantaneous processes. We thus believe that resetting with stochastic returns can serve as a better optimization strategy owing to its dominance over classical first passage under resetting.
Collapse
Affiliation(s)
- Arup Biswas
- Homi Bhabha National Institute, The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Ashutosh Dubey
- Homi Bhabha National Institute, The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Anupam Kundu
- International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India
| | - Arnab Pal
- Homi Bhabha National Institute, The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and , Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
14
|
Michelitsch TM, D'Onofrio G, Polito F, Riascos AP. Random walks with stochastic resetting in complex networks: A discrete-time approach. CHAOS (WOODBURY, N.Y.) 2025; 35:013119. [PMID: 39787289 DOI: 10.1063/5.0238517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/01/2024] [Indexed: 01/12/2025]
Abstract
We consider a discrete-time Markovian random walk with resets on a connected undirected network. The resets, in which the walker is relocated to randomly chosen nodes, are governed by an independent discrete-time renewal process. Some nodes of the network are target nodes, and we focus on the statistics of first hitting of these nodes. In the non-Markov case of the renewal process, we consider both light- and fat-tailed inter-reset distributions. We derive the propagator matrix in terms of discrete backward recurrence time probability density functions, and in the light-tailed case, we show the existence of a non-equilibrium steady state. In order to tackle the non-Markov scenario, we derive a defective propagator matrix, which describes an auxiliary walk characterized by killing the walker as soon as it hits target nodes. This propagator provides the information on the mean first passage statistics to the target nodes. We establish sufficient conditions for ergodicity of the walk under resetting. Furthermore, we discuss a generic resetting mechanism for which the walk is non-ergodic. Finally, we analyze inter-reset time distributions with infinite mean where we focus on the Sibuya case. We apply these results to study the mean first passage times for Markovian and non-Markovian (Sibuya) renewal resetting protocols in realizations of Watts-Strogatz and Barabási-Albert random graphs. We show nontrivial behavior of the dependence of the mean first passage time on the proportions of the relocation nodes, target nodes, and of the resetting rates. It turns out that, in the large-world case of the Watts-Strogatz graph, the efficiency of a random searcher particularly benefits from the presence of resets.
Collapse
Affiliation(s)
- Thomas M Michelitsch
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, F-75005 Paris, France
| | - Giuseppe D'Onofrio
- Department of Mathematical Sciences, Politecnico di Torino, 10129 Torino, Italy
| | - Federico Polito
- Department of Mathematics "G. Peano," University of Torino, 10123 Torino, Italy
| | | |
Collapse
|
15
|
Li A, Sun X, Zhu S, Zhu F. Random walks on scale-free flowers with stochastic resetting. CHAOS (WOODBURY, N.Y.) 2025; 35:013124. [PMID: 39792698 DOI: 10.1063/5.0242793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
This study explores the impact of stochastic resetting on the random walk dynamics within scale-free (u,v)-flowers. Utilizing the generating function technique, we develop a recursive relationship for the generating function of the first passage time and establish a connection between the mean first passage time with and without resetting. Our investigation spans multiple scenarios, with the random walker starting from various positions and aiming to reach different target nodes, allowing us to identify the optimal resetting probability that minimizes the mean first passage time for each case. We demonstrate that stochastic resetting significantly improves search efficiency, especially in larger networks. These findings underscore the effectiveness of stochastic resetting as a strategy for optimizing search algorithms in complex networks, offering valuable applications in domains such as biological transport, data networks, and search processes where rapid and efficient exploration is vital.
Collapse
Affiliation(s)
- Anlin Li
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaohan Sun
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shaoxiang Zhu
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Feng Zhu
- School of Mathematical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
16
|
Liu J, Li Y, Ghosh PK, Nayak S, Marchesoni F. Ratcheting by Stochastic Resetting With Fat-Tailed Time Distributions. Chemphyschem 2024; 25:e202400313. [PMID: 39129421 PMCID: PMC11614377 DOI: 10.1002/cphc.202400313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
We investigated both numerically and analytically the drift of a Brownian particle in a ratchet potential under stochastic resetting with fat-tailed distributions. As a study case we chose a Pareto time distribution with tail index β. We observed that for1 / 2 < β < 1 ${1/2\char60 \beta \char60 1}$ rectification occurs even if forβ < 1 ${\beta \char60 1}$ the mean resetting time is infinite. However, forβ ≤ 1 / 2 ${\beta \le 1/2}$ rectification is completely suppressed. For low noise levels, the drift speed attains a maximum for β immediately above 1, that is for finite but large mean resetting times. In correspondence with such an optimal drift the particle diffusion over the ratchet potential turns from normal to superdiffusive, a property also related to the fat tails of the resetting time distribution.
Collapse
Affiliation(s)
- Jianli Liu
- IMOE Key Laboratory of Advanced Mico-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and TechnologySchool of Physics Science and EngineeringTongji UniversityShanghai200092China
| | - Yunyun Li
- IMOE Key Laboratory of Advanced Mico-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and TechnologySchool of Physics Science and EngineeringTongji UniversityShanghai200092China
| | - Pulak K. Ghosh
- Department of ChemistryPresidency UniversityKolkata700073India
| | - Shubhadip Nayak
- Department of ChemistryPresidency UniversityKolkata700073India
| | - Fabio Marchesoni
- IMOE Key Laboratory of Advanced Mico-Structured Materials and Shanghai Key Laboratory of Special Artificial Microstructure Materials and TechnologySchool of Physics Science and EngineeringTongji UniversityShanghai200092China
- Dipartimento di FisicaUniversità di Camerino, I-62032CamerinoItaly
| |
Collapse
|
17
|
Sunil JC, Blythe RA, Evans MR, Majumdar SN. Minimizing the profligacy of searches with reset. Phys Rev E 2024; 110:054122. [PMID: 39690600 DOI: 10.1103/physreve.110.054122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/17/2024] [Indexed: 12/19/2024]
Abstract
We introduce the profligacy of a search process as a competition between its expected cost and the probability of finding the target. The arbiter of the competition is a parameter λ that represents how much a searcher invests into increasing the chance of success. Minimizing the profligacy with respect to the search strategy specifies the optimal search. We show that in the case of diffusion with stochastic resetting, the amount of resetting in the optimal strategy has a highly nontrivial dependence on model parameters resulting in classical continuous transitions, discontinuous transitions and tricritical points, as well as nonstandard discontinuous transitions exhibiting reentrant behavior and overhangs.
Collapse
|
18
|
Pal PS, Park JM, Pal A, Park H, Lee JS. Active motion can be beneficial for target search with resetting in a thermal environment. Phys Rev E 2024; 110:054124. [PMID: 39690586 DOI: 10.1103/physreve.110.054124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/25/2024] [Indexed: 12/19/2024]
Abstract
Stochastic resetting has recently emerged as an efficient target-searching strategy in various physical and biological systems. The efficiency of this strategy depends on the type of environmental noise, whether it is thermal or telegraphic (active). While the impact of each noise type on a search process has been investigated separately, their combined effects have not been explored. In this work, we explore the effects of stochastic resetting on an active system, namely a self-propelled run-and-tumble particle immersed in a thermal bath. In particular, we assume that the position of the particle is reset at a fixed rate with or without reversing the direction of self-propelled velocity. Using standard renewal techniques, we compute the mean search time of this active particle to a fixed target and investigate the interplay between active and thermal fluctuations. We find that the active search can outperform the Brownian search when the magnitude and flipping rate of self-propelled velocity are large and the strength of environmental noise is small. Notably, we find that the presence of thermal noise in the environment helps reduce the mean first passage time of the run-and-tumble particle compared to the absence of thermal noise. Finally, we observe that reversing the direction of self-propelled velocity while resetting can also reduce the overall search time.
Collapse
|
19
|
Pal S, Boyer D, Dagdug L, Pal A. Channel-facilitated transport under resetting dynamics. J Chem Phys 2024; 161:144114. [PMID: 39387414 DOI: 10.1063/5.0231306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
The transport of particles through channels holds immense significance in physics, chemistry, and biological sciences. For instance, the motion of solutes through biological membranes is facilitated by specialized proteins that create water-filled channels. Valuable insights can be obtained by studying the transition paths of particles through a channel and gathering information on their lifetimes inside the channel as well as their exit probabilities. In a similar vein, we consider a one-dimensional model of channel-facilitated transport where a diffusive particle is subject to attractive interactions with the walls of the channel. We study the statistics of conditional and unconditional escape times in the presence of resetting-an intermittent dynamics that brings the particle back to its initial coordinate stochastically. We determine analytically the physical conditions under which such a resetting mechanism becomes beneficial for the faster escape of the particles from the channel, thus enhancing transport. Our theory has been verified with the aid of Brownian dynamics simulations for various interaction strengths and extents. The overall results presented herein highlight the scope of resetting-based strategies to be universally promising for complex transport processes of single or long molecules through biological membranes.
Collapse
Affiliation(s)
- Suvam Pal
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata, India
| | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Leonardo Dagdug
- Physics Department, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Ciudad de México 09340, Mexico
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
20
|
Biswas A, Kundu A, Pal A. Search with stochastic home returns can expedite classical first passage under resetting. Phys Rev E 2024; 110:L042101. [PMID: 39562855 DOI: 10.1103/physreve.110.l042101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/05/2024] [Indexed: 11/21/2024]
Abstract
Classical first passage under resetting is a paradigm in the search process. Despite its multitude of applications across interdisciplinary sciences, experimental realizations of such resetting processes posit practical challenges in calibrating these zero time irreversible transitions. Here, we consider a strategy in which resetting is performed using finite-time return protocols in lieu of instantaneous returns. These controls could also be accompanied with random fluctuations or errors allowing target detection even during the return phase. To better understand the phenomena, we develop a unified renewal approach that can encapsulate arbitrary search processes centered around home in a fairly general topography containing targets, various resetting times, and return mechanisms in arbitrary dimensions. While such finite-time protocols would apparently seem to prolong the overall search time in comparison to the instantaneous resetting process, we show on the contrary that a significant speed-up can be gained by leveraging the stochasticity in home returns. The formalism is then explored to reveal a universal criterion distilling the benefits of this strategy. We demonstrate how this general principle can be utilized to improve overall performance of a one-dimensional diffusive search process reinforced with experimentally feasible parameters. We believe that such strategies designed with inherent randomness can be made optimal with precise controllability in complex search processes.
Collapse
|
21
|
Lapeyre GJ, Aquino T, Dentz M. Unified approach to reset processes and application to coupling between process and reset. Phys Rev E 2024; 110:044138. [PMID: 39562956 DOI: 10.1103/physreve.110.044138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024]
Abstract
Processes under reset, where realizations are interrupted according to some stochastic rule and restarted from the initial state, find broad application in modeling physical, chemical, and biological phenomena and in designing search strategies. While a wealth of theoretical results has been recently obtained, current derivations tend to focus on specific processes, obscuring the general principles and preventing broad applicability. We present a unified approach to those observables of stochastic processes under reset that take the form of averages of functionals depending on the most recent renewal period. We derive general solutions, and determine the conditions for existence and equality of stationary values with and without reset. For intermittent (i.e., broadly distributed) reset times, we derive exact asymptotic expressions for observables that vary asymptotically as a power of time. We illustrate the general approach with results for occupation densities and moments of subdiffusive processes. We focus on subdiffusion-decay processes with microscopic dependence between transport and decay, where the probability of a random walker to be removed and subsequently restarted depends on the local transit times. In contrast to the uncoupled case, restarting the particle upon decay does not produce a probability current associated with restart equal to the decay rate, but instead drastically alters the time dependence of the decay rate and the resulting current due to memory effects associated with ageing. Our framework shows that such effects are independent of the specific microscopic details, uncovering the general impact of restart on occupation densities, spatial moments, and other quantities.
Collapse
|
22
|
Scher Y, Kumar A, Santhanam MS, Reuveni S. Continuous gated first-passage processes. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:108101. [PMID: 39208840 DOI: 10.1088/1361-6633/ad7530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Gated first-passage processes, where completion depends on both hitting a target and satisfying additional constraints, are prevalent across various fields. Despite their significance, analytical solutions to basic problems remain unknown, e.g. the detection time of a diffusing particle by a gated interval, disk, or sphere. In this paper, we elucidate the challenges posed by continuous gated first-passage processes and present a renewal framework to overcome them. This framework offers a unified approach for a wide range of problems, including those with single-point, half-line, and interval targets. The latter have so far evaded exact solutions. Our analysis reveals that solutions to gated problems can be obtained directly from the ungated dynamics. This, in turn, reveals universal properties and asymptotic behaviors, shedding light on cryptic intermediate-time regimes and refining the notion of high-crypticity for continuous-space gated processes. Moreover, we extend our formalism to higher dimensions, showcasing its versatility and applicability. Overall, this work provides valuable insights into the dynamics of continuous gated first-passage processes and offers analytical tools for studying them across diverse domains.
Collapse
Affiliation(s)
- Yuval Scher
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Aanjaneya Kumar
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India
| | - M S Santhanam
- Department of Physics, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pune 411008, India
| | - Shlomi Reuveni
- School of Chemistry, Center for the Physics & Chemistry of Living Systems, Ratner Institute for Single Molecule Chemistry, and the Sackler Center for Computational Molecular & Materials Science, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
23
|
Chatterjee P, Aravinda S, Modak R. Quest for optimal quantum resetting: Protocols for a particle on a chain. Phys Rev E 2024; 110:034132. [PMID: 39425336 DOI: 10.1103/physreve.110.034132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/04/2024] [Indexed: 10/21/2024]
Abstract
In the classical context, it is well known that, sometimes, if a search does not find its target, it is better to start the process anew. This is known as resetting. The quantum counterpart of resetting also indicates speeding up the detection process by eliminating the dark states, i.e., situations in which the particle avoids detection. In this work, we introduce the most probable position resetting (MPR) protocol, in which, at a given resetting step, resets are done with certain probabilities to the set of possible peak positions (where the probability of finding the particle is maximum) that could occur because of the previous resets and followed by uninterrupted unitary evolution, irrespective of which path was taken by the particle in previous steps. In a tight-binding lattice model, there exists a twofold degeneracy (left and right) of the positions of maximum probability. The survival probability with optimal restart rate approaches 0 (detection probability approaches 1) when the particle is reset with equal probability on both sides path independently. This protocol significantly reduces the optimal mean first-detected-passage time (FDT), and it performs better even if the detector is far apart compared to the usual resetting protocols in which the particle is brought back to the initial position. We propose a modified protocol, an adaptive two-stage MPR, by making the associated probabilities of going to the right and left a function of steps. In this protocol, we see a further reduction of the optimal mean FDT and improvement in the search process when the detector is far apart.
Collapse
|
24
|
Radice M, Cristadoro G. Optimizing leapover lengths of Lévy flights with resetting. Phys Rev E 2024; 110:L022103. [PMID: 39295047 DOI: 10.1103/physreve.110.l022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024]
Abstract
We consider a one-dimensional search process under stochastic resetting conditions. A target is located at b≥0 and a searcher, starting from the origin, performs a discrete-time random walk with independent jumps drawn from a heavy-tailed distribution. Before each jump, there is a given probability r of restarting the walk from the initial position. The efficiency of a "myopic search"-in which the search stops upon crossing the target for the first time-is usually characterized in terms of the first-passage time τ. On the other hand, great relevance is encapsulated by the leapover length l=x_{τ}-b, which measures how far from the target the search ends. For symmetric heavy-tailed jump distributions, in the absence of resetting the average leapover is always infinite. Here we show instead that resetting induces a finite average leapover ℓ_{b}(r) if the mean jump length is finite. We compute exactly ℓ_{b}(r) and determine the condition under which resetting allows for nontrivial optimization, i.e., for the existence of r^{*} such that ℓ_{b}(r^{*}) is minimal and smaller than the average leapover of the single jump.
Collapse
|
25
|
Sandev T, Iomin A. Fractional heterogeneous telegraph processes: Interplay between heterogeneity, memory, and stochastic resetting. Phys Rev E 2024; 110:024101. [PMID: 39294975 DOI: 10.1103/physreve.110.024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/11/2024] [Indexed: 09/21/2024]
Abstract
Fractional heterogeneous telegraph processes are considered in the framework of telegrapher's equations accompanied by memory effects. The integral decomposition method is developed for the rigorous treating of the problem. Exact solutions for the probability density functions and the mean squared displacements are obtained. A relation between the fractional heterogeneous telegrapher's equation and the corresponding Langevin equation has been established in the framework of the developed subordination approach. The telegraph process in the presence of stochastic resetting has been studied, as well. An exact expression for both the nonequilibrium stationary distributions/states and the mean squared displacements are obtained.
Collapse
Affiliation(s)
- Trifce Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia; Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia; and Department of Physics, Korea University, Seoul 02841, Korea
| | | |
Collapse
|
26
|
Montero M, Palassini M, Masoliver J. Effect of stochastic resettings on the counting of level crossings for inertial random processes. Phys Rev E 2024; 110:014116. [PMID: 39160907 DOI: 10.1103/physreve.110.014116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/17/2024] [Indexed: 08/21/2024]
Abstract
We study the counting of level crossings for inertial random processes exposed to stochastic resetting events. We develop the general approach of stochastic resetting for inertial processes with sudden changes in the state characterized by position and velocity. We obtain the level-crossing intensity in terms of that of underlying reset-free process for resetting events with Poissonian statistics. We apply this result to the random acceleration process and the inertial Brownian motion. In both cases, we show that there is an optimal resetting rate that maximizes the crossing intensity, and we obtain the asymptotic behavior of the crossing intensity for large and small resetting rates. Finally, we discuss the stationary distribution and the mean first-arrival time in the presence of resettings.
Collapse
|
27
|
Yin R, Wang Q, Barkai E. Instability in the quantum restart problem. Phys Rev E 2024; 109:064150. [PMID: 39020895 DOI: 10.1103/physreve.109.064150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024]
Abstract
Repeatedly monitored quantum walks with a rate 1/τ yield discrete-time trajectories which are inherently random. With these paths the first-hitting time with sharp restart is studied. We find an instability in the optimal mean hitting time, which is not found in the corresponding classical random-walk process. This instability implies that a small change in parameters can lead to a rather large change of the optimal restart time. We show that the optimal restart time versus τ, as a control parameter, exhibits sets of staircases and plunges. The plunges, are due to the mentioned instability, which in turn is related to the quantum oscillations of the first-hitting time probability, in the absence of restarts. Furthermore, we prove that there are only two patterns of staircase structures, dependent on the parity of the distance between the target and the source in units of lattice constant. The global minimum of the hitting time is controlled not only by the restart time, as in classical problems, but also by the sampling time τ. We provide numerical evidence that this global minimum occurs for the τ minimizing the mean hitting time, given restarts taking place after each measurement. Last, we numerically show that the instability found in this work is relatively robust against stochastic perturbations in the sampling time τ.
Collapse
|
28
|
Nikitin I, Belan S. Constructing efficient strategies for the process optimization by restart. Phys Rev E 2024; 109:054117. [PMID: 38907416 DOI: 10.1103/physreve.109.054117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/19/2024] [Indexed: 06/24/2024]
Abstract
Optimization of the mean completion time of random processes by restart is a subject of active theoretical research in statistical physics and has long found practical application in computer science. Meanwhile, one of the key issues remains largely unsolved: how to construct a restart strategy for a process whose detailed statistics are unknown to ensure that the expected completion time will reduce? Addressing this query here we propose several constructive criteria for the effectiveness of various protocols of noninstantaneous restart in the mean completion time problem and in the success probability problem. Being expressed in terms of a small number of easily estimated statistical characteristics of the original process (MAD, median completion time, low-order statistical moments of completion time), these criteria allow informed restart decision based on partial information.
Collapse
|
29
|
Carollo F, Lesanovsky I, Garrahan JP. Universal and nonuniversal probability laws in Markovian open quantum dynamics subject to generalized reset processes. Phys Rev E 2024; 109:044129. [PMID: 38755866 DOI: 10.1103/physreve.109.044129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
We consider quantum-jump trajectories of Markovian open quantum systems subject to stochastic in time resets of their state to an initial configuration. The reset events provide a partitioning of quantum trajectories into consecutive time intervals, defining sequences of random variables from the values of a trajectory observable within each of the intervals. For observables related to functions of the quantum state, we show that the probability of certain orderings in the sequences obeys a universal law. This law does not depend on the chosen observable and, in the case of Poissonian reset processes, not even on the details of the dynamics. When considering (discrete) observables associated with the counting of quantum jumps, the probabilities in general lose their universal character. Universality is only recovered in cases when the probability of observing equal outcomes in the same sequence is vanishingly small, which we can achieve in a weak-reset-rate limit. Our results extend previous findings on classical stochastic processes [N. R. Smith et al., Europhys. Lett. 142, 51002 (2023)0295-507510.1209/0295-5075/acd79e] to the quantum domain and to state-dependent reset processes, shedding light on relevant aspects for the emergence of universal probability laws.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
30
|
Żbik B, Dybiec B. Lévy flights and Lévy walks under stochastic resetting. Phys Rev E 2024; 109:044147. [PMID: 38755837 DOI: 10.1103/physreve.109.044147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
Stochastic resetting is a protocol of starting anew, which can be used to facilitate the escape kinetics. We demonstrate that restarting can accelerate the escape kinetics from a finite interval restricted by two absorbing boundaries also in the presence of heavy-tailed, Lévy-type, α-stable noise. However, the width of the domain where resetting is beneficial depends on the value of the stability index α determining the power-law decay of the jump length distribution. For heavier (smaller α) distributions, the domain becomes narrower in comparison to lighter tails. Additionally, we explore connections between Lévy flights (LFs) and Lévy walks (LWs) in the presence of stochastic resetting. First of all, we show that for Lévy walks, the stochastic resetting can also be beneficial in the domain where the coefficient of variation is smaller than 1. Moreover, we demonstrate that in the domain where LWs are characterized by a finite mean jump duration (length), with the increasing width of the interval, the LWs start to share similarities with LFs under stochastic resetting.
Collapse
Affiliation(s)
- Bartosz Żbik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
31
|
Méndez V, Flaquer-Galmés R, Campos D. First-passage time of a Brownian searcher with stochastic resetting to random positions. Phys Rev E 2024; 109:044134. [PMID: 38755900 DOI: 10.1103/physreve.109.044134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/22/2024] [Indexed: 05/18/2024]
Abstract
We study the effect of a resetting point randomly distributed around the origin on the mean first-passage time of a Brownian searcher moving in one dimension. We compare the search efficiency with that corresponding to reset to the origin and find that the mean first-passage time of the latter can be larger or smaller than the distributed case, depending on whether the resetting points are symmetrically or asymmetrically distributed. In particular, we prove the existence of an optimal reset rate that minimizes the mean first-passage time for distributed resetting to a finite interval if the target is located outside this interval. When the target position belongs to the resetting interval or it is infinite then no optimal reset rate exists, but there is an optimal resetting interval width or resetting characteristic scale which minimizes the mean first-passage time. We also show that the first-passage density averaged over the resetting points depends on its first moment only. As a consequence, there is an equivalent point such that the first-passage problem with resetting to that point is statistically equivalent to the case of distributed resetting. We end our study by analyzing the fluctuations of the first-passage times for these cases. All our analytical results are verified through numerical simulations.
Collapse
Affiliation(s)
- V Méndez
- Grup de Física Estadística, Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - R Flaquer-Galmés
- Grup de Física Estadística, Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - D Campos
- Grup de Física Estadística, Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
32
|
Santra S, Singh P. Exact fluctuation and long-range correlations in a single-file model under resetting. Phys Rev E 2024; 109:034123. [PMID: 38632800 DOI: 10.1103/physreve.109.034123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/24/2024] [Indexed: 04/19/2024]
Abstract
Resetting is a renewal mechanism in which a process is intermittently repeated after a random or fixed time. This simple act of stop and repeat profoundly influences the behavior of a system as exemplified by the emergence of nonequilibrium properties and expedition of search processes. Herein we explore the ramifications of stochastic resetting in the context of a single-file system called random average process (RAP) in one dimension. In particular, we focus on the dynamics of tracer particles and analytically compute the variance, equal time correlation, autocorrelation, and unequal time correlation between the positions of different tracer particles. Our study unveils that resetting gives rise to rather different behaviors depending on whether the particles move symmetrically or asymmetrically. For the asymmetric case, the system for instance exhibits a long-range correlation which is not seen in absence of the resetting. Similarly, in contrast to the reset-free RAP, the variance shows distinct scalings for symmetric and asymmetric cases. While for the symmetric case, it decays (towards its steady value) as ∼e^{-rt}/sqrt[t], we find ∼te^{-rt} decay for the asymmetric case (r being the resetting rate). Finally, we examine the autocorrelation and unequal time correlation in the steady state and demonstrate that they obey interesting scaling forms at late times. All our analytical results are substantiated by extensive numerical simulations.
Collapse
Affiliation(s)
- Saikat Santra
- International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Prashant Singh
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Biroli M, Kulkarni M, Majumdar SN, Schehr G. Dynamically emergent correlations between particles in a switching harmonic trap. Phys Rev E 2024; 109:L032106. [PMID: 38632730 DOI: 10.1103/physreve.109.l032106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024]
Abstract
We study a one dimensional gas of N noninteracting diffusing particles in a harmonic trap, whose stiffness switches between two values μ_{1} and μ_{2} with constant rates r_{1} and r_{2}, respectively. Despite the absence of direct interaction between the particles, we show that strong correlations between them emerge in the stationary state at long times, induced purely by the dynamics itself. We compute exactly the joint distribution of the positions of the particles in the stationary state, which allows us to compute several physical observables analytically. In particular, we show that the extreme value statistics (EVS), i.e., the distribution of the position of the rightmost particle, has a nontrivial shape in the large N limit. The scaling function characterizing this EVS has a finite support with a tunable shape (by varying the parameters). Remarkably, this scaling function turns out to be universal. First, it also describes the distribution of the position of the kth rightmost particle in a 1d trap. Moreover, the distribution of the position of the particle farthest from the center of the harmonic trap in d dimensions is also described by the same scaling function for all d≥1. Numerical simulations are in excellent agreement with our analytical predictions.
Collapse
Affiliation(s)
- Marco Biroli
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Manas Kulkarni
- ICTS, Tata Institute of Fundamental Research, Bengaluru 560089, India
| | - Satya N Majumdar
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Grégory Schehr
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
34
|
Julián-Salgado P, Dagdug L, Boyer D. Diffusion with two resetting points. Phys Rev E 2024; 109:024134. [PMID: 38491676 DOI: 10.1103/physreve.109.024134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/02/2024] [Indexed: 03/18/2024]
Abstract
We study the problem of a target search by a Brownian particle subject to stochastic resetting to a pair of sites. The mean search time is minimized by an optimal resetting rate which does not vary smoothly, in contrast with the well-known single site case, but exhibits a discontinuous transition as the position of one resetting site is varied while keeping the initial position of the particle fixed, or vice versa. The discontinuity vanishes at a "liquid-gas" critical point in position space. This critical point exists provided that the relative weight m of the further site is comprised in the interval [2.9028...,8.5603...]. When the initial position is a random variable that follows the resetting point distribution, a discontinuous transition also exists for the optimal rate as the distance between the resetting points is varied, provided that m exceeds the critical value m_{c}=6.6008.... This setup can be mapped onto an intermittent search problem with switching diffusion coefficients and represents a minimal model for the study of distributed resetting.
Collapse
Affiliation(s)
- Pedro Julián-Salgado
- Basic Sciences and Engineering, Universidad Autónoma Metropolitana, Apartado Postal 55-534, Mexico City 09340, Mexico
| | - Leonardo Dagdug
- Basic Sciences and Engineering, Universidad Autónoma Metropolitana, Apartado Postal 55-534, Mexico City 09340, Mexico
| | - Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
35
|
Cantisán J, Nieto AR, Seoane JM, Sanjuán MAF. Energy-based stochastic resetting can avoid noise-enhanced stability. Phys Rev E 2024; 109:024201. [PMID: 38491618 DOI: 10.1103/physreve.109.024201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/18/2024]
Abstract
The theory of stochastic resetting asserts that restarting a stochastic process can expedite its completion. In this paper, we study the escape process of a Brownian particle in an open Hamiltonian system that suffers noise-enhanced stability. This phenomenon implies that under specific noise amplitudes the escape process is delayed. Here, we propose a protocol for stochastic resetting that can avoid the noise-enhanced stability effect. In our approach, instead of resetting the trajectories at certain time intervals, a trajectory is reset when a predefined energy threshold is reached. The trajectories that delay the escape process are the ones that lower their energy due to the stochastic fluctuations. Our resetting approach leverages this fact and avoids long transients by resetting trajectories before they reach low-energy levels. Finally, we show that the chaotic dynamics (i.e., the sensitive dependence on initial conditions) catalyzes the effectiveness of the resetting strategy.
Collapse
Affiliation(s)
- Julia Cantisán
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Alexandre R Nieto
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Jesús M Seoane
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Miguel A F Sanjuán
- Nonlinear Dynamics, Chaos and Complex Systems Group, Departamento de Física, Universidad Rey Juan Carlos, Tulipán s/n, 28933 Móstoles, Madrid, Spain
| |
Collapse
|
36
|
Boyer D, Mercado-Vásquez G, Majumdar SN, Schehr G. Optimizing the random search of a finite-lived target by a Lévy flight. Phys Rev E 2024; 109:L022103. [PMID: 38491567 DOI: 10.1103/physreve.109.l022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 03/18/2024]
Abstract
In many random search processes of interest in chemistry, biology, or during rescue operations, an entity must find a specific target site before the latter becomes inactive, no longer available for reaction or lost. We present exact results on a minimal model system, a one-dimensional searcher performing a discrete time random walk, or Lévy flight. In contrast with the case of a permanent target, the capture probability and the conditional mean first passage time can be optimized. The optimal Lévy index takes a nontrivial value, even in the long lifetime limit, and exhibits an abrupt transition as the initial distance to the target is varied. Depending on the target lifetime, this transition is discontinuous or continuous, separated by a nonconventional tricritical point. These results pave the way to the optimization of search processes under time constraints.
Collapse
Affiliation(s)
- Denis Boyer
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Gabriel Mercado-Vásquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois, 60637, USA
| | - Satya N Majumdar
- LPTMS, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Grégory Schehr
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
37
|
Lahiri S, Gupta S. Efficiency of a microscopic heat engine subjected to stochastic resetting. Phys Rev E 2024; 109:014129. [PMID: 38366425 DOI: 10.1103/physreve.109.014129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/15/2023] [Indexed: 02/18/2024]
Abstract
We explore the thermodynamics of stochastic heat engines in the presence of stochastic resetting. The setup comprises an engine whose working substance is a Brownian particle undergoing overdamped Langevin dynamics in a harmonic potential with a time-dependent stiffness, with the dynamics interrupted at random times with a resetting to a fixed location. The effect of resetting to the potential minimum is shown to enhance the efficiency of the engine, while the output work is shown to have a nonmonotonic dependence on the rate of resetting. The resetting events are found to drive the system out of the linear response regime, even for small differences in the bath temperatures. Shifting the reset point from the potential minimum is observed to reduce the engine efficiency. The experimental setup for the realization of such an engine is briefly discussed.
Collapse
Affiliation(s)
- Sourabh Lahiri
- Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India
| | - Shamik Gupta
- Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
38
|
Biroli M, Larralde H, Majumdar SN, Schehr G. Exact extreme, order, and sum statistics in a class of strongly correlated systems. Phys Rev E 2024; 109:014101. [PMID: 38366495 DOI: 10.1103/physreve.109.014101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/27/2023] [Indexed: 02/18/2024]
Abstract
Even though strongly correlated systems are abundant, only a few exceptional cases admit analytical solutions. In this paper we present a large class of solvable systems with strong correlations. We consider a set of N independent and identically distributed random variables {X_{1},X_{2},...,X_{N}} whose common distribution has a parameter Y (or a set of parameters) which itself is random with its own distribution. For a fixed value of this parameter Y, the X_{i} variables are independent and we call them conditionally independent and identically distributed. However, once integrated over the distribution of the parameter Y, the X_{i} variables get strongly correlated yet retain a solvable structure for various observables, such as for the sum and the extremes of X_{i}^{'}s. This provides a simple procedure to generate a class of solvable strongly correlated systems. We illustrate how this procedure works via three physical examples where N particles on a line perform independent (i) Brownian motions, (ii) ballistic motions with random initial velocities, and (iii) Lévy flights, but they get strongly correlated via simultaneous resetting to the origin. Our results are verified in numerical simulations. This procedure can be used to generate an endless variety of solvable strongly correlated systems.
Collapse
Affiliation(s)
- Marco Biroli
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Hernán Larralde
- Instituto de Ciencias Físicas, UNAM, CP 62210 Cuernavaca Morelos, México
| | - Satya N Majumdar
- LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Grégory Schehr
- Sorbonne Université, Laboratoire de Physique Théorique et Hautes Energies, CNRS UMR 7589, 75252 Paris Cedex 05, France
| |
Collapse
|
39
|
Sarvaharman S, Giuggioli L. Particle-environment interactions in arbitrary dimensions: A unifying analytic framework to model diffusion with inert spatial heterogeneities. PHYSICAL REVIEW RESEARCH 2023; 5:physrevresearch.5.043281. [PMID: 40297495 PMCID: PMC7617621 DOI: 10.1103/physrevresearch.5.043281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Inert interactions between randomly moving entities and spatial disorder play a crucial role in quantifying the diffusive properties of a system, with examples ranging from molecules advancing along dendritic spines to antipredator displacements of animals due to sparse vegetation. Despite the ubiquity of such phenomena, a general framework to model the movement explicitly in the presence of spatial heterogeneities is missing. Here, we tackle this challenge and develop an analytic theory to model inert particle-environment interactions in domains of arbitrary shape and dimensions. We use a discrete space formulation, which allows us to model the interactions between an agent and the environment as perturbed dynamics between lattice sites. Interactions from spatial disorder, such as impenetrable and permeable obstacles or regions of increased or decreased diffusivity, as well as many others, can be modelled using our framework. We provide exact expressions for the generating function of the occupation probability of the diffusing particle and related transport quantities such as first-passage, return, and exit probabilities and their respective means. We uncover a surprising property, the disorder indifference phenomenon of the mean first-passage time in the presence of a permeable barrier in quasi-1D systems. We demonstrate the widespread applicability of our formalism by considering three examples that span across scales and disciplines. (1) We explore an enhancement strategy of transdermal drug delivery. (2) We represent the movement decisions of an animal undergoing thigomotaxis, the tendency to remain at the peripheries of its enclosure, using a spatially disordered environment. (3) We illustrate the use of spatial heterogeneities to model inert interactions between particles by modeling the search for a promoter region on the DNA by transcription factors during gene transcription.
Collapse
Affiliation(s)
- Seeralan Sarvaharman
- School of Engineering Mathematics and Technology, University of Bristol, BristolBS8 1TW, United Kingdom
| | - Luca Giuggioli
- School of Engineering Mathematics and Technology, University of Bristol, BristolBS8 1TW, United Kingdom
| |
Collapse
|
40
|
Kleiman DE, Nadeem H, Shukla D. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning. J Phys Chem B 2023; 127:10669-10681. [PMID: 38081185 DOI: 10.1021/acs.jpcb.3c04843] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Molecular dynamics (MD) simulations are fundamental computational tools for the study of proteins and their free energy landscapes. However, sampling protein conformational changes through MD simulations is challenging due to the relatively long time scales of these processes. Many enhanced sampling approaches have emerged to tackle this problem, including biased sampling and path-sampling methods. In this Perspective, we focus on adaptive sampling algorithms. These techniques differ from other approaches because the thermodynamic ensemble is preserved and the sampling is enhanced solely by restarting MD trajectories at particularly chosen seeds rather than introducing biasing forces. We begin our treatment with an overview of theoretically transparent methods, where we discuss principles and guidelines for adaptive sampling. Then, we present a brief summary of select methods that have been applied to realistic systems in the past. Finally, we discuss recent advances in adaptive sampling methodology powered by deep learning techniques, as well as their shortcomings.
Collapse
Affiliation(s)
- Diego E Kleiman
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hassan Nadeem
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Diwakar Shukla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
41
|
Bebon R, Godec A. Controlling Uncertainty of Empirical First-Passage Times in the Small-Sample Regime. PHYSICAL REVIEW LETTERS 2023; 131:237101. [PMID: 38134782 DOI: 10.1103/physrevlett.131.237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/18/2023] [Accepted: 10/31/2023] [Indexed: 12/24/2023]
Abstract
We derive general bounds on the probability that the empirical first-passage time τ[over ¯]_{n}≡∑_{i=1}^{n}τ_{i}/n of a reversible ergodic Markov process inferred from a sample of n independent realizations deviates from the true mean first-passage time by more than any given amount in either direction. We construct nonasymptotic confidence intervals that hold in the elusive small-sample regime and thus fill the gap between asymptotic methods and the Bayesian approach that is known to be sensitive to prior belief and tends to underestimate uncertainty in the small-sample setting. We prove sharp bounds on extreme first-passage times that control uncertainty even in cases where the mean alone does not sufficiently characterize the statistics. Our concentration-of-measure-based results allow for model-free error control and reliable error estimation in kinetic inference, and are thus important for the analysis of experimental and simulation data in the presence of limited sampling.
Collapse
Affiliation(s)
- Rick Bebon
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| |
Collapse
|
42
|
Barkai E, Flaquer-Galmés R, Méndez V. Ergodic properties of Brownian motion under stochastic resetting. Phys Rev E 2023; 108:064102. [PMID: 38243500 DOI: 10.1103/physreve.108.064102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/26/2023] [Indexed: 01/21/2024]
Abstract
We study the ergodic properties of one-dimensional Brownian motion with resetting. Using generic classes of statistics of times between resets, we find respectively for thin- or fat-tailed distributions the normalized or non-normalized invariant density of this process. The former case corresponds to known results in the resetting literature and the latter to infinite ergodic theory. Two types of ergodic transitions are found in this system. The first is when the mean waiting time between resets diverges, when standard ergodic theory switches to infinite ergodic theory. The second is when the mean of the square root of time between resets diverges and the properties of the invariant density are drastically modified. We then find a fractional integral equation describing the density of particles. This finite time tool is particularly useful close to the ergodic transition where convergence to asymptotic limits is logarithmically slow. Our study implies rich ergodic behaviors for this nonequilibrium process which should hold far beyond the case of Brownian motion analyzed here.
Collapse
Affiliation(s)
- E Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan 52900, Israel
| | - R Flaquer-Galmés
- Grup de Física Estadística, Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - V Méndez
- Grup de Física Estadística, Departament de Física, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
43
|
Masó-Puigdellosas A, Sandev T, Méndez V. Random Walks on Comb-like Structures under Stochastic Resetting. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1529. [PMID: 37998221 PMCID: PMC10670394 DOI: 10.3390/e25111529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
We study the long-time dynamics of the mean squared displacement of a random walker moving on a comb structure under the effect of stochastic resetting. We consider that the walker's motion along the backbone is diffusive and it performs short jumps separated by random resting periods along fingers. We take into account two different types of resetting acting separately: global resetting from any point in the comb to the initial position and resetting from a finger to the corresponding backbone. We analyze the interplay between the waiting process and Markovian and non-Markovian resetting processes on the overall mean squared displacement. The Markovian resetting from the fingers is found to induce normal diffusion, thereby minimizing the trapping effect of fingers. In contrast, for non-Markovian local resetting, an interesting crossover with three different regimes emerges, with two of them subdiffusive and one of them diffusive. Thus, an interesting interplay between the exponents characterizing the waiting time distributions of the subdiffusive random walk and resetting takes place. As for global resetting, its effect is even more drastic as it precludes normal diffusion. Specifically, such a resetting can induce a constant asymptotic mean squared displacement in the Markovian case or two distinct regimes of subdiffusive motion in the non-Markovian case.
Collapse
Affiliation(s)
- Axel Masó-Puigdellosas
- Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, Edifici Cc, E-08193 Cerdanyola, Spain;
| | - Trifce Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia;
- Institute of Physics & Astronomy, University of Potsdam, D-14476 Potsdam, Germany
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia
| | - Vicenç Méndez
- Grup de Física Estadística, Departament de Física, Universitat Autònoma de Barcelona, Edifici Cc, E-08193 Cerdanyola, Spain;
| |
Collapse
|
44
|
Singh RK, Sandev T, Singh S. Bernoulli trial under restarts: A comparative study of resetting transitions. Phys Rev E 2023; 108:L052106. [PMID: 38115400 DOI: 10.1103/physreve.108.l052106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023]
Abstract
A Bernoulli trial describing the escape behavior of a lamb to a safe haven in pursuit by a lion is studied under restarts. The process ends in two ways: either the lamb makes it to the safe haven (success) or is captured by the lion (failure). We study the first passage properties of this Bernoulli trial and find that only mean first passage time exists. Considering Poisson and sharp resetting, we find that the success probability is a monotonically decreasing function of the restart rate. The mean time, however, exhibits a nonmonotonic dependence on the restart rate taking a minimal value at an optimal restart rate. Furthermore, for sharp restart, the mean time possesses a local and a global minima. As a result, the optimal restart rate exhibits a continuous transition for Poisson resetting while it exhibits a discontinuous transition for sharp resetting as a function of the relative separation of the lion and the lamb. We also find that the distribution of first passage times under sharp resetting exhibits a periodic behavior.
Collapse
Affiliation(s)
- R K Singh
- Department of Physics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - T Sandev
- Research Center for Computer Science and Information Technologies, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, 1000 Skopje, Macedonia
- Institute of Physics & Astronomy, University of Potsdam, D-14776 Potsdam-Golm, Germany
- Institute of Physics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Arhimedova 3, 1000 Skopje, Macedonia
| | - Sadhana Singh
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
45
|
Guo W, Yan H, Chen H. Extremal statistics for a resetting Brownian motion before its first-passage time. Phys Rev E 2023; 108:044115. [PMID: 37978585 DOI: 10.1103/physreve.108.044115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
We study the extreme value statistics of a one-dimensional resetting Brownian motion (RBM) till its first passage through the origin starting from the position x_{0} (>0). By deriving the exit probability of RBM in an interval [0,M] from the origin, we obtain the distribution P_{r}(M|x_{0}) of the maximum displacement M and thus gives the expected value 〈M〉 of M as functions of the resetting rate r and x_{0}. We find that 〈M〉 decreases monotonically as r increases, and tends to 2x_{0} as r→∞. In the opposite limit, 〈M〉 diverges logarithmically as r→0. Moreover, we derive the propagator of RBM in the Laplace domain in the presence of both absorbing ends, and then leads to the joint distribution P_{r}(M,t_{m}|x_{0}) of M and the time t_{m} at which this maximum is achieved in the Laplace domain by using a path decomposition technique, from which the expected value 〈t_{m}〉 of t_{m} is obtained explicitly. Interestingly, 〈t_{m}〉 shows a nonmonotonic dependence on r, and attains its minimum at an optimal r^{*}≈2.71691D/x_{0}^{2}, where D is the diffusion coefficient. Finally, we perform extensive simulations to validate our theoretical results.
Collapse
Affiliation(s)
- Wusong Guo
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Hao Yan
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| | - Hanshuang Chen
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
46
|
Olsen KS. Steady-state moments under resetting to a distribution. Phys Rev E 2023; 108:044120. [PMID: 37978618 DOI: 10.1103/physreve.108.044120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/19/2023] [Indexed: 11/19/2023]
Abstract
The nonequilibrium steady state emerging from stochastic resetting to a distribution is studied. We show that for a range of processes, the steady-state moments can be expressed as a linear combination of the moments of the distribution of resetting positions. The coefficients of this series are universal in the sense that they do not depend on the resetting distribution, only the underlying dynamics. We consider the case of a Brownian particle and a run-and-tumble particle confined in a harmonic potential, where we derive explicit closed-form expressions for all moments for any resetting distribution. Numerical simulations are used to verify the results, showing excellent agreement.
Collapse
Affiliation(s)
- Kristian Stølevik Olsen
- Nordita, Royal Institute of Technology, and Stockholm University, Hannes Alfvéns Väg 12, 106 91 Stockholm, Sweden and Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
47
|
Pal PS, Pal A, Park H, Lee JS. Thermodynamic trade-off relation for first passage time in resetting processes. Phys Rev E 2023; 108:044117. [PMID: 37978646 DOI: 10.1103/physreve.108.044117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/14/2023] [Indexed: 11/19/2023]
Abstract
Resetting is a strategy for boosting the speed of a target-searching process. Since its introduction over a decade ago, most studies have been carried out under the assumption that resetting takes place instantaneously. However, due to its irreversible nature, resetting processes incur a thermodynamic cost, which becomes infinite in the case of instantaneous resetting. Here, we take into consideration both the cost and the first passage time (FPT) required for a resetting process, in which the reset or return to the initial location is implemented using a trapping potential over a finite but random time period. An iterative generating function and a counting functional method à la Feynman and Kac are employed to calculate the FPT and the average work for this process. From these results, we obtain an explicit form of the time-cost trade-off relation, which provides the lower bound of the mean FPT for a given work input when the trapping potential is linear. This trade-off relation clearly shows that instantaneous resetting is achievable only when an infinite amount of work is provided. More surprisingly, the trade-off relation derived from the linear potential seems to be valid for a wide range of trapping potentials. In addition, we have also shown that the fixed-time or sharp resetting can further enhance the trade-off relation compared to that of the stochastic resetting.
Collapse
Affiliation(s)
- P S Pal
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Arnab Pal
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Hyunggyu Park
- Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
| | - Jae Sung Lee
- School of Physics, Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
48
|
Capała K, Dybiec B. Optimization of escape kinetics by reflecting and resetting. CHAOS (WOODBURY, N.Y.) 2023; 33:103124. [PMID: 37832519 DOI: 10.1063/5.0159475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Stochastic restarting is a strategy of starting anew. Incorporation of the resetting to the random walks can result in a decrease in the mean first passage time due to the ability to limit unfavorably meandering, sub-optimal trajectories. In this paper, we examine how stochastic resetting influences escape dynamics from the (-∞,1) interval in the presence of the single-well power-law |x|κ potentials with κ>0. Examination of the mean first passage time is complemented by the analysis of the coefficient of variation, which provides a robust and reliable indicator assessing the efficiency of stochastic resetting. The restrictive nature of resetting is compared to placing a reflective boundary in the system at hand. In particular, for each potential, the position of the reflecting barrier giving the same mean first passage time as the optimal resetting rate is determined. Finally, in addition to reflecting, we compare the effectiveness of other resetting strategies with respect to optimization of the mean first passage time.
Collapse
Affiliation(s)
- Karol Capała
- Personal Health Data Science Group, Sano-Centre for Computational Personalised Medicine, Czarnowiejska 36, 30-054 Kraków, Poland
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Bartłomiej Dybiec
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
49
|
Höll M, Nissan A, Berkowitz B, Barkai E. Controls that expedite first-passage times in disordered systems. Phys Rev E 2023; 108:034124. [PMID: 37849182 DOI: 10.1103/physreve.108.034124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/28/2023] [Indexed: 10/19/2023]
Abstract
First-passage time statistics in disordered systems exhibiting scale invariance are studied widely. In particular, long trapping times in energy or entropic traps are fat-tailed distributed, which slow the overall transport process. We study the statistical properties of the first-passage time of biased processes in different models, and we employ the big-jump principle that shows the dominance of the maximum trapping time on the first-passage time. We demonstrate that the removal of this maximum significantly expedites transport. As the disorder increases, the system enters a phase where the removal shows a dramatic effect. Our results show how we may speed up transport in strongly disordered systems exploiting scale invariance. In contrast to the disordered systems studied here, the removal principle has essentially no effect in homogeneous systems; this indicates that improving the conductance of a poorly conducting system is, theoretically, relatively easy as compared to a homogeneous system.
Collapse
Affiliation(s)
- Marc Höll
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Alon Nissan
- Institute of Environmental Engineering, ETH Zurich, Zurich, Switzerland
| | - Brian Berkowitz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eli Barkai
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
50
|
Ni Z, Zheng Y. First Detection and Tunneling Time of a Quantum Walk. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1231. [PMID: 37628261 PMCID: PMC10453060 DOI: 10.3390/e25081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
We consider the first detection problem for a one-dimensional quantum walk with repeated local measurements. Employing the stroboscopic projective measurement protocol and the renewal equation, we study the effect of tunneling on the detection time. Specifically, we study the continuous-time quantum walk on an infinite tight-binding lattice for two typical situations with physical reality. The first is the case of a quantum walk in the absence of tunneling with a Gaussian initial state. The second is the case where a barrier is added to the system. It is shown that the transition of the decay behavior of the first detection probability can be observed by modifying the initial condition, and in the presence of a tunneling barrier, the particle can be detected earlier than the impurity-free lattice. This suggests that the evolution of the walker is expedited when it tunnels through the barrier under repeated measurement. The first detection tunneling time is introduced to investigate the tunneling time of the quantum walk. In addition, we analyze the critical transitive point by deriving an asymptotic formula.
Collapse
Affiliation(s)
- Zhenbo Ni
- School of Physics, Shandong University, Jinan 250100, China;
- Department of Physics, Bar Ilan University, Ramat-Gan 52900, Israel
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China;
| |
Collapse
|