1
|
See Toh JH, Du M, Tang X, Su Y, Rojo T, Patterson CO, Williams NR, Zhang C, Gupta S. Interaction Effects on the Dynamical Anderson Metal-Insulator Transition Using Kicked Quantum Gases. PHYSICAL REVIEW LETTERS 2024; 133:076301. [PMID: 39213552 DOI: 10.1103/physrevlett.133.076301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/12/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding the interplay of interaction and disorder in quantum transport poses long-standing scientific challenges for theory and experiment. While highly controlled ultracold atomic platforms combining atomic interactions with spatially disordered lattices have led to remarkable advances, the extension of such controlled studies to phenomena in high-dimensional disordered systems, such as the three-dimensional Anderson metal-insulator transition has been limited. Kicked quantum gases provide an alternate experimental platform that captures the Anderson model in momentum space and features dynamical localization as the analog of Anderson localization. Here, we utilize a momentum space lattice platform using quasiperiodically kicked ultracold atomic gases to experimentally investigate interaction effects on the three-dimensional dynamical Anderson metal-insulator transition. We observe interaction-driven subdiffusion and a divergence of delocalization onset time on approaching the phase boundary. Mean-field numerical simulations show qualitative agreement with experimental observations, but with significant quantitative deviations.
Collapse
|
2
|
Shen X, Davidson N, Bruun GM, Sun M, Wu Z. Strongly Interacting Bose-Fermi Mixtures: Mediated Interaction, Phase Diagram, and Sound Propagation. PHYSICAL REVIEW LETTERS 2024; 132:033401. [PMID: 38307087 DOI: 10.1103/physrevlett.132.033401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
Motivated by recent surprising experimental findings, we develop a strong-coupling theory for Bose-Fermi mixtures capable of treating resonant interspecies interactions while satisfying the compressibility sum rule. We show that the mixture can be stable at large interaction strengths close to resonance, in agreement with the experiment, but at odds with the widely used perturbation theory. We also calculate the sound velocity of the Bose gas in the ^{133}Cs-^{6}Li mixture, again finding good agreement with the experimental observations both at weak and strong interactions. A central ingredient of our theory is the generalization of a fermion mediated interaction to strong Bose-Fermi scatterings and to finite frequencies. This further leads to a predicted hybridization of the sound modes of the Bose and Fermi gases, which can be directly observed using Bragg spectroscopy.
Collapse
Affiliation(s)
- Xin Shen
- College of Sciences, China Jiliang University, Hangzhou 310018, China
| | - Nir Davidson
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Georg M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Mingyuan Sun
- State Key Lab of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Zhigang Wu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Patel K, Cai G, Ando H, Chin C. Sound Propagation in a Bose-Fermi Mixture: From Weak to Strong Interactions. PHYSICAL REVIEW LETTERS 2023; 131:083003. [PMID: 37683156 DOI: 10.1103/physrevlett.131.083003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 09/10/2023]
Abstract
Particlelike excitations, or quasiparticles, emerging from interacting fermionic and bosonic quantum fields underlie many intriguing quantum phenomena in high energy and condensed matter systems. Computation of the properties of these excitations is frequently intractable in the strong interaction regime. Quantum degenerate Bose-Fermi mixtures offer promising prospects to elucidate the physics of such quasiparticles. In this work, we investigate phonon propagation in an atomic Bose-Einstein condensate immersed in a degenerate Fermi gas with interspecies scattering length a_{BF} tuned by a Feshbach resonance. We observe sound mode softening with moderate attractive interactions. For even greater attraction, surprisingly, stable sound propagation reemerges and persists across the resonance. The stability of phonons with resonant interactions opens up opportunities to investigate novel Bose-Fermi liquids and fermionic pairing in the strong interaction regime.
Collapse
Affiliation(s)
- Krutik Patel
- The James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Geyue Cai
- The James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Henry Ando
- The James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Cheng Chin
- The James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
4
|
Liu XP, Yao XC, Deng Y, Wang XQ, Wang YX, Huang CJ, Li X, Chen YA, Pan JW. Universal Dynamical Scaling of Quasi-Two-Dimensional Vortices in a Strongly Interacting Fermionic Superfluid. PHYSICAL REVIEW LETTERS 2021; 126:185302. [PMID: 34018783 DOI: 10.1103/physrevlett.126.185302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 09/02/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Vortices play a leading role in many fascinating quantum phenomena. Here we generate a large number of vortices by thermally quenching a fermionic superfluid of ^{6}Li atoms in an oblate optical trap and study their annihilation dynamics and spatial distribution. Over a wide interaction range from the attractive to the repulsive side across the Feshbach resonance, these quasi-two-dimensional vortices are observed to follow algebraic scaling laws both in time and space, having exponents consistent with the two-dimensional universality. We further simulate the classical XY model on the square lattice by a Glauber dynamics and find good agreement between the numerical and experimental behaviors. Our work provides a direct demonstration of the universal 2D vortex dynamics.
Collapse
Affiliation(s)
- Xiang-Pei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Xing-Can Yao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Youjin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- MinJiang Collaborative Center for Theoretical Physics, College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| | - Xiao-Qiong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yu-Xuan Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Chun-Jiong Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Xiaopeng Li
- State Key Laboratory of Surface Physics, Institute of Nanoelectronics and Quantum Computing,and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Yu-Ao Chen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
5
|
Effective p-wave Fermi-Fermi Interaction Induced by Bosonic Superfluids. Sci Rep 2020; 10:10822. [PMID: 32616717 PMCID: PMC7331653 DOI: 10.1038/s41598-020-67020-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022] Open
Abstract
We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature by using the determinant quantum Monte Carlo method within the weakly interacting regime. Here we consider the attractive Bose-Hubbard model and free spinless fermions. In the absence of boson-fermion interactions, we obtain the boundary of the collapsed state of the attractive bosons. In the presence of boson-fermion interactions, an effective p-wave interaction between fermions will be induced as far as the bosons are in a superfluid state. Moreover, we find the emergence of the composite fermion pairs at low temperatures.
Collapse
|
6
|
A Dual-Species Bose-Einstein Condensate with Attractive Interspecies Interactions. CONDENSED MATTER 2020. [DOI: 10.3390/condmat5010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on the production of a 41 K- 87 Rb dual-species Bose–Einstein condensate with tunable interspecies interaction and we study the mixture in the attractive regime; i.e., for negative values of the interspecies scattering length a 12 . The binary condensate is prepared in the ground state and confined in a pure optical trap. We exploit Feshbach resonances for tuning the value of a 12 . After compensating the gravitational sag between the two species with a magnetic field gradient, we drive the mixture into the attractive regime. We let the system evolve both in free space and in an optical waveguide. In both geometries, for strong attractive interactions, we observe the formation of self-bound states, recognizable as quantum droplets. Our findings prove that robust, long-lived droplet states can be realized in attractive two-species mixtures, despite the two atomic components possibly experiencing different potentials.
Collapse
|
7
|
Green A, Li H, Toh JHS, Tang X, McCormick KC, Li M, Tiesinga E, Kotochigova S, Gupta S. Feshbach Resonances in p-Wave Three-Body Recombination within Fermi-Fermi Mixtures of Open-Shell 6Li and Closed-Shell 173Yb Atoms. PHYSICAL REVIEW. X 2020; 10:10.1103/PhysRevX.10.031037. [PMID: 34408918 PMCID: PMC8369980 DOI: 10.1103/physrevx.10.031037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report on the observation of magnetic Feshbach resonances in a Fermi-Fermi mixture of ultracold atoms with extreme mass imbalance and on their unique p-wave dominated three-body recombination processes. Our system consists of open-shell alkali-metal 6Li and closed-shell 173Yb atoms, both spin polarized and held at various temperatures between 1 and 20 μK. We confirm that Feshbach resonances in this system are solely the result of a weak separation-dependent hyperfine coupling between the electronic spin of 6Li and the nuclear spin of 173Yb. Our analysis also shows that three-body recombination rates are controlled by the identical fermion nature of the mixture, even in the presence of s-wave collisions between the two species and with recombination rate coefficients outside the Wigner threshold regime at our lowest temperature. Specifically, a comparison of experimental and theoretical line shapes of the recombination process indicates that the characteristic asymmetric line shape as a function of applied magnetic field and a maximum recombination rate coefficient that is independent of temperature can only be explained by triatomic collisions with nonzero, p-wave total orbital angular momentum. The resonances can be used to form ultracold doublet ground-state molecules and to simulate quantum superfluidity in mass-imbalanced mixtures.
Collapse
Affiliation(s)
- Alaina Green
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Hui Li
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Jun Hui See Toh
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Xinxin Tang
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | | | - Ming Li
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Eite Tiesinga
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | | | - Subhadeep Gupta
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
8
|
Pierce M, Leyronas X, Chevy F. Few Versus Many-Body Physics of an Impurity Immersed in a Superfluid of Spin 1/2 Attractive Fermions. PHYSICAL REVIEW LETTERS 2019; 123:080403. [PMID: 31491212 DOI: 10.1103/physrevlett.123.080403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/12/2019] [Indexed: 06/10/2023]
Abstract
In this Letter we investigate the properties of an impurity immersed in a superfluid of strongly correlated spin 1/2 fermions and we calculate the beyond-mean-field corrections to the energy of a weakly interacting impurity. We show that these corrections are divergent and have to be regularized by properly accounting for three-body physics in the problem and that our approach naturally provides a unifying framework for Bose and Fermi polaron physics.
Collapse
Affiliation(s)
- M Pierce
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 75005 Paris France
| | - X Leyronas
- Laboratoire de physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, 75005 Paris France
| | - F Chevy
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 75005 Paris France
| |
Collapse
|
9
|
Observation of fermion-mediated interactions between bosonic atoms. Nature 2019; 568:61-64. [DOI: 10.1038/s41586-019-1055-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/30/2019] [Indexed: 11/08/2022]
|
10
|
Kinnunen JJ, Wu Z, Bruun GM. Induced p-Wave Pairing in Bose-Fermi Mixtures. PHYSICAL REVIEW LETTERS 2018; 121:253402. [PMID: 30608823 DOI: 10.1103/physrevlett.121.253402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of p-wave pairing between spin polarized fermions immersed in a Bose-Einstein condensate. The fermions interact via the exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency and momentum dependence of the resulting induced interaction. We demonstrate that both retardation and self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-fermion interaction strength as well as their masses, and identify the most suitable system for realizing a p-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using light bosons mixed with heavy fermions.
Collapse
Affiliation(s)
- Jami J Kinnunen
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Zhigang Wu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Georg M Bruun
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
11
|
Cao L, Bolsinger V, Mistakidis SI, Koutentakis GM, Krönke S, Schurer JM, Schmelcher P. A unified ab initio approach to the correlated quantum dynamics of ultracold fermionic and bosonic mixtures. J Chem Phys 2018; 147:044106. [PMID: 28764383 DOI: 10.1063/1.4993512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We extent the recently developed Multi-Layer Multi-Configuration Time-Dependent Hartree method for Bosons for simulating the correlated quantum dynamics of bosonic mixtures to the fermionic sector and establish a unifying approach for the investigation of the correlated quantum dynamics of a mixture of indistinguishable particles, be it fermions or bosons. Relying on a multi-layer wave-function expansion, the resulting Multi-Layer Multi-Configuration Time-Dependent Hartree method for Mixtures (ML-MCTDHX) can be adapted to efficiently resolve system-specific intra- and inter-species correlations. The versatility and efficiency of ML-MCTDHX are demonstrated by applying it to the problem of colliding few-atom mixtures of both Bose-Fermi and Fermi-Fermi types. Thereby, we elucidate the role of correlations in the transmission and reflection properties of the collisional events. In particular, we present examples where the reflection (transmission) at the other atomic species is a correlation-dominated effect, i.e., it is suppressed in the mean-field approximation.
Collapse
Affiliation(s)
- L Cao
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - V Bolsinger
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S I Mistakidis
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G M Koutentakis
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S Krönke
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J M Schurer
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - P Schmelcher
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
12
|
DeSalvo BJ, Patel K, Johansen J, Chin C. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2017; 119:233401. [PMID: 29286694 DOI: 10.1103/physrevlett.119.233401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/07/2023]
Abstract
We report on the formation of a stable quantum degenerate mixture of fermionic ^{6}Li and bosonic ^{133}Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.
Collapse
Affiliation(s)
- B J DeSalvo
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Krutik Patel
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jacob Johansen
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Cheng Chin
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
13
|
Hurst HM, Efimkin DK, Spielman IB, Galitski V. Kinetic theory of dark solitons with tunable friction. PHYSICAL REVIEW. A 2017; 95:053604. [PMID: 29744482 PMCID: PMC5937562 DOI: 10.1103/physreva.95.053604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose-Einstein condensate coupled to a noninteracting Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semiclassical dynamics of the dark soliton, a particlelike object with negative mass, and calculate its friction coefficient. Surprisingly, it depends periodically on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We develop a general theory of stochastic dynamics for negative-mass objects and find that their dynamics are drastically different from their positive-mass counterparts: they do not undergo Brownian motion. From the exact phase-space probability distribution function (i.e., in position and velocity), we find that both the trajectory and lifetime of the soliton are altered by friction, and the soliton can undergo Brownian motion only in the presence of friction and a confining potential. These results agree qualitatively with experimental observations by Aycock et al. [Proc. Natl. Acad. Sci. USA 114, 2503 (2017)] in a similar system with bosonic impurity scatterers.
Collapse
Affiliation(s)
- Hilary M Hurst
- Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
| | - Dmitry K Efimkin
- The Center for Complex Quantum Systems, The University of Texas at Austin, Austin, Texas 78712-1192, USA
| | - I B Spielman
- Joint Quantum Institute, National Institute of Standards and Technology and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - Victor Galitski
- Joint Quantum Institute and Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
| |
Collapse
|
14
|
Laurent S, Pierce M, Delehaye M, Yefsah T, Chevy F, Salomon C. Connecting Few-Body Inelastic Decay to Quantum Correlations in a Many-Body System: A Weakly Coupled Impurity in a Resonant Fermi Gas. PHYSICAL REVIEW LETTERS 2017; 118:103403. [PMID: 28339272 DOI: 10.1103/physrevlett.118.103403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 06/06/2023]
Abstract
We study three-body recombination in an ultracold Bose-Fermi mixture. We first show theoretically that, for weak interspecies coupling, the loss rate is proportional to Tan's contact. Second, using a ^{7}Li/^{6}Li mixture we probe the recombination rate in both the thermal and dual superfluid regimes. We find excellent agreement with our model in the BEC-BCS crossover. At unitarity where the fermion-fermion scattering length diverges, we show that the loss rate is proportional to n_{f}^{4/3}, where n_{f} is the fermionic density. This unusual exponent signals nontrivial two-body correlations in the system. Our results demonstrate that few-body losses can be used as a quantitative probe of quantum correlations in many-body ensembles.
Collapse
Affiliation(s)
- Sébastien Laurent
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Matthieu Pierce
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Marion Delehaye
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Tarik Yefsah
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Frédéric Chevy
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France
| | - Christophe Salomon
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, 24 rue Lhomond, 75005 Paris, France
| |
Collapse
|