1
|
Han Y, Li H, Yi W. Interaction-Enhanced Superradiance of a Rydberg-Atom Array. PHYSICAL REVIEW LETTERS 2024; 133:243401. [PMID: 39750381 DOI: 10.1103/physrevlett.133.243401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/08/2024] [Indexed: 01/04/2025]
Abstract
We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths. The diverging susceptibility at these critical points is captured by emergent quantum Rabi models, each of which comprises a pair of collective atomic states with different numbers of atomic excitations. These collective states become degenerate at the critical interaction strengths, resulting in a superradiant phase for an arbitrarily small atom-cavity coupling.
Collapse
Affiliation(s)
| | | | - Wei Yi
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
- Anhui Province Key Laboratory of Quantum Network, University of Science and Technology of China, Hefei 230026, China
- CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
- Anhui Center for Fundamental Sciences in Theoretical Physics, University of Science and Technology of China, Hefei 230026 China
| |
Collapse
|
2
|
Bond LJ, Gerritsen B, Minář J, Young JT, Schachenmayer J, Safavi-Naini A. Open quantum dynamics with variational non-Gaussian states and the truncated Wigner approximation. J Chem Phys 2024; 161:184113. [PMID: 39530368 DOI: 10.1063/5.0226268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
We present a framework for simulating the open dynamics of spin-boson systems by combining variational non-Gaussian states with a quantum trajectories approach. We apply this method to a generic spin-boson Hamiltonian that has both Tavis-Cummings and Holstein type couplings and which has broad applications to a variety of quantum simulation platforms, polaritonic physics, and quantum chemistry. Additionally, we discuss how the recently developed truncated Wigner approximation for open quantum systems can be applied to the same Hamiltonian. We benchmark the performance of both methods and identify the regimes where each method is best suited. Finally, we discuss strategies to improve each technique.
Collapse
Affiliation(s)
- Liam J Bond
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Bas Gerritsen
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Jiří Minář
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Jeremy T Young
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Arghavan Safavi-Naini
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
3
|
Nill C, Cabot A, Trautmann A, Groß C, Lesanovsky I. Avalanche Terahertz Photon Detection in a Rydberg Tweezer Array. PHYSICAL REVIEW LETTERS 2024; 133:073603. [PMID: 39213559 DOI: 10.1103/physrevlett.133.073603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
We propose a protocol for the amplified detection of low-intensity terahertz radiation using Rydberg tweezer arrays. The protocol offers single photon sensitivity together with a low dark count rate. It is split into two phases: during a sensing phase, it harnesses strong terahertz-range transitions between highly excited Rydberg states to capture individual terahertz photons. During an amplification phase it exploits the Rydberg facilitation mechanism which converts a single terahertz photon into a substantial signal of Rydberg excitations. We discuss a concrete realization based on realistic atomic interaction parameters, develop a comprehensive theoretical model that incorporates the motion of trapped atoms and study the many-body dynamics using tensor network methods.
Collapse
Affiliation(s)
| | | | | | | | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
4
|
Zhang T, Cai Z. Quantum Slush State in Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2024; 132:206503. [PMID: 38829080 DOI: 10.1103/physrevlett.132.206503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
In this Letter, we propose an exotic quantum state that does not order at zero temperature in a Rydberg atom array with antiblockade mechanism. By performing an unbiased large-scale quantum Monte Carlo simulation, we investigate a minimal model with facilitated excitation in a disorder-free system. At zero temperature, this model exhibits a heterogeneous structure of liquid and glass mixture. This state, dubbed quantum slush state, features a quasi-long-range order with an algebraic decay for its correlation function, and is different from most well-established quantum phases of matter.
Collapse
Affiliation(s)
- Tengzhou Zhang
- Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control, Shanghai Research Center for Quantum Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi Cai
- Wilczek Quantum Center and Key Laboratory of Artificial Structures and Quantum Control, Shanghai Research Center for Quantum Sciences, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Bond LJ, Safavi-Naini A, Minář J. Fast Quantum State Preparation and Bath Dynamics Using Non-Gaussian Variational Ansatz and Quantum Optimal Control. PHYSICAL REVIEW LETTERS 2024; 132:170401. [PMID: 38728702 DOI: 10.1103/physrevlett.132.170401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024]
Abstract
Fast preparation of quantum many-body states is essential for myriad quantum algorithms and metrological applications. Here, we develop a new pathway for fast, nonadiabatic preparation of quantum many-body states that combines quantum optimal control with a variational Ansatz based on non-Gaussian states. We demonstrate our approach on the spin-boson model, a single spin interacting with the bath. We use a multipolaron Ansatz to prepare near-critical ground states. For one mode, we achieve a reduction in infidelity of up to ≈60 (≈10) times compared to linear (optimized local adiabatic) ramps; for many modes, we achieve a reduction in infidelity of up to ≈5 times compared to nonadiabatic linear ramps. Further, we show that the typical control quantity, the leakage from the variational manifold, provides only a loose bound on the state's fidelity. Instead, in analogy to the bond dimension of matrix product states, we suggest a controlled convergence criterion based on the number of polarons. Finally, motivated by the possibility of realizations in trapped ions, we study the dynamics of a system with bath properties going beyond the paradigm of (sub- and/or super-) Ohmic couplings.
Collapse
Affiliation(s)
- Liam J Bond
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Arghavan Safavi-Naini
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
| | - Jiří Minář
- Institute for Theoretical Physics, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands
- CWI, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
6
|
Magoni M, Nill C, Lesanovsky I. Coherent Spin-Phonon Scattering in Facilitated Rydberg Lattices. PHYSICAL REVIEW LETTERS 2024; 132:133401. [PMID: 38613299 DOI: 10.1103/physrevlett.132.133401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/23/2024] [Indexed: 04/14/2024]
Abstract
We investigate the dynamics of a one-dimensional spin system with facilitation constraint that can be studied using Rydberg atoms in arrays of optical tweezer traps. The elementary degrees of freedom of the system are domains of Rydberg excitations that expand ballistically through the lattice. Because of mechanical forces, Rydberg excited atoms are coupled to vibrations within their traps. At zero temperature and large trap depth, it is known that virtually excited lattice vibrations only renormalize the timescale of the ballistic propagation. However, when vibrational excitations are initially present-i.e., when the external motion of the atoms is prepared in an excited Fock state, coherent state or thermal state-resonant scattering between spin domain walls and phonons takes place. This coherent and deterministic process, which is free from disorder, leads to a reduction of the power-law exponent characterizing the expansion of spin domains. Furthermore, the spin domain dynamics is sensitive to the coherence properties of the atoms' vibrational state, such as the relative phase of coherently superimposed Fock states. Even for a translationally invariant initial state the latter manifests macroscopically in a phase-sensitive asymmetric expansion.
Collapse
Affiliation(s)
- Matteo Magoni
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck 6020, Austria
- Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Innsbruck 6020, Austria
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Chris Nill
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- Institute for Applied Physics, University of Bonn, Wegelerstraße 8, 53115 Bonn, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
7
|
Ding D, Bai Z, Liu Z, Shi B, Guo G, Li W, Adams CS. Ergodicity breaking from Rydberg clusters in a driven-dissipative many-body system. SCIENCE ADVANCES 2024; 10:eadl5893. [PMID: 38437588 PMCID: PMC10911772 DOI: 10.1126/sciadv.adl5893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024]
Abstract
It is challenging to probe ergodicity breaking trends of a quantum many-body system when dissipation inevitably damages quantum coherence originated from coherent coupling and dispersive two-body interactions. Rydberg atoms provide a test bed to detect emergent exotic many-body phases and nonergodic dynamics where the strong Rydberg atom interaction competes with and overtakes dissipative effects even at room temperature. Here, we report experimental evidence of a transition from ergodic toward ergodic breaking dynamics in driven-dissipative Rydberg atomic gases. The broken ergodicity is featured by the long-time phase oscillation, which is attributed to the formation of Rydberg excitation clusters in limit cycle phases. The broken symmetry in the limit cycle is a direct manifestation of many-body collective effects, which is verified experimentally by tuning atomic densities. The reported result reveals that Rydberg many-body systems are a promising candidate to probe ergodicity breaking dynamics, such as limit cycles, and enable the benchmark of nonequilibrium phase transition.
Collapse
Affiliation(s)
- Dongsheng Ding
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengyang Bai
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Zongkai Liu
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Baosen Shi
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guangcan Guo
- Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weibin Li
- School of Physics and Astronomy, and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - C. Stuart Adams
- Department of Physics, Joint Quantum Centre (JQC) Durham-Newcastle, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Verdel R, Zhu GY, Heyl M. Dynamical Localization Transition of String Breaking in Quantum Spin Chains. PHYSICAL REVIEW LETTERS 2023; 131:230402. [PMID: 38134792 DOI: 10.1103/physrevlett.131.230402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023]
Abstract
The fission of a string connecting two charges is an astounding phenomenon in confining gauge theories. The dynamics of this process have been studied intensively in recent years, with plenty of numerical results yielding a dichotomy: the confining string can decay relatively fast or persist up to extremely long times. Here, we put forward a dynamical localization transition as the mechanism underlying this dichotomy. To this end, we derive an effective string breaking description in the light-meson sector of a confined spin chain and show that the problem can be regarded as a dynamical localization transition in Fock space. Fast and suppressed string breaking dynamics are identified with delocalized and localized behavior, respectively. We then provide a further reduction of the dynamical string breaking problem onto a quantum impurity model, where the string is represented as an "impurity" immersed in a meson bath. It is shown that this model features a localization-delocalization transition, giving a general and simple physical basis to understand the qualitatively distinct string breaking regimes. These findings are directly relevant for a wider class of confining lattice models in any dimension and could be realized on present-day Rydberg quantum simulators.
Collapse
Affiliation(s)
- Roberto Verdel
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Guo-Yi Zhu
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Institute for Theoretical Physics, University of Cologne, Zülpicher Straße 77, 50937 Cologne, Germany
| | - Markus Heyl
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
- Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
9
|
Zhao L, Lee MDK, Aliyu MM, Loh H. Floquet-tailored Rydberg interactions. Nat Commun 2023; 14:7128. [PMID: 37932268 PMCID: PMC10628180 DOI: 10.1038/s41467-023-42899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
The Rydberg blockade is a key ingredient for entangling atoms in arrays. However, it requires atoms to be spaced well within the blockade radius, which limits the range of local quantum gates. Here we break this constraint using Floquet frequency modulation, with which we demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius and show how the enlarged entanglement range improves qubit connectivity in a neutral atom array. Further, we find that the coherence of entangled states can be extended under Floquet frequency modulation. Finally, we realize Rydberg anti-blockade states for two sodium Rydberg atoms within the blockade radius. Such Rydberg anti-blockade states for atoms at close range enables the robust preparation of strongly-interacting, long-lived Rydberg states, yet their steady-state population cannot be achieved with only the conventional static drive. Our work transforms between the paradigmatic regimes of Rydberg blockade versus anti-blockade and paves the way for realizing more connected, coherent, and tunable neutral atom quantum processors with a single approach.
Collapse
Affiliation(s)
- Luheng Zhao
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Michael Dao Kang Lee
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Mohammad Mujahid Aliyu
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Huanqian Loh
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore.
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore.
| |
Collapse
|
10
|
Magoni M, Joshi R, Lesanovsky I. Molecular Dynamics in Rydberg Tweezer Arrays: Spin-Phonon Entanglement and Jahn-Teller Effect. PHYSICAL REVIEW LETTERS 2023; 131:093002. [PMID: 37721842 DOI: 10.1103/physrevlett.131.093002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/20/2023]
Abstract
Atoms confined in optical tweezer arrays constitute a platform for the implementation of quantum computers and simulators. State-dependent operations are realized by exploiting electrostatic dipolar interactions that emerge, when two atoms are simultaneously excited to high-lying electronic states, so-called Rydberg states. These interactions also lead to state-dependent mechanical forces, which couple the electronic dynamics of the atoms to their vibrational motion. We explore these vibronic couplings within an artificial molecular system in which Rydberg states are excited under so-called facilitation conditions. This system, which is not necessarily self-bound, undergoes a structural transition between an equilateral triangle and an equal-weighted superposition of distorted triangular states (Jahn-Teller regime) exhibiting spin-phonon entanglement on a micrometer distance. This highlights the potential of Rydberg tweezer arrays for the study of molecular phenomena at exaggerated length scales.
Collapse
Affiliation(s)
- Matteo Magoni
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Radhika Joshi
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
11
|
Sauerwein N, Orsi F, Uhrich P, Bandyopadhyay S, Mattiotti F, Cantat-Moltrecht T, Pupillo G, Hauke P, Brantut JP. Engineering random spin models with atoms in a high-finesse cavity. NATURE PHYSICS 2023; 19:1128-1134. [PMID: 37575364 PMCID: PMC10415180 DOI: 10.1038/s41567-023-02033-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 03/23/2023] [Indexed: 08/15/2023]
Abstract
All-to-all interacting, disordered quantum many-body models have a wide range of applications across disciplines, from spin glasses in condensed-matter physics over holographic duality in high-energy physics to annealing algorithms in quantum computing. Typically, these models are abstractions that do not find unambiguous physical realizations in nature. Here we realize an all-to-all interacting, disordered spin system by subjecting an atomic cloud in a cavity to a controllable light shift. Adjusting the detuning between atom resonance and cavity mode, we can tune between disordered versions of a central-mode model and a Lipkin-Meshkov-Glick model. By spectroscopically probing the low-energy excitations of the system, we explore the competition of interactions with disorder across a broad parameter range. We show how disorder in the central-mode model breaks the strong collective coupling, making the dark-state manifold cross over to a random distribution of weakly mixed light-matter, 'grey', states. In the Lipkin-Meshkov-Glick model, the ferromagnetic finite-sized ground state evolves towards a paramagnet as disorder is increased. In that regime, semi-localized eigenstates emerge, as we observe by extracting bounds on the participation ratio. These results present substantial steps towards freely programmable cavity-mediated interactions for the design of arbitrary spin Hamiltonians.
Collapse
Affiliation(s)
- Nick Sauerwein
- Institute of Physics and Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Francesca Orsi
- Institute of Physics and Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Philipp Uhrich
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Soumik Bandyopadhyay
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Francesco Mattiotti
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, Strasbourg, France
| | - Tigrane Cantat-Moltrecht
- Institute of Physics and Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Guido Pupillo
- University of Strasbourg and CNRS, CESQ and ISIS (UMR 7006), aQCess, Strasbourg, France
| | - Philipp Hauke
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, Trento, Italy
- INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Trento, Italy
| | - Jean-Philippe Brantut
- Institute of Physics and Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
12
|
Carollo F, Lesanovsky I. Nonequilibrium Dark Space Phase Transition. PHYSICAL REVIEW LETTERS 2022; 128:040603. [PMID: 35148125 DOI: 10.1103/physrevlett.128.040603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We introduce the concept of dark space phase transition, which may occur in open many-body quantum systems where irreversible decay, interactions, and quantum interference compete. Our study is based on a quantum many-body model that is inspired by classical nonequilibrium processes which feature phase transitions into an absorbing state, such as epidemic spreading. The possibility for different dynamical paths to interfere quantum mechanically results in collective dynamical behavior without classical counterpart. We identify two competing dark states, a trivial one corresponding to a classical absorbing state and an emergent one which is quantum coherent. We establish a nonequilibrium phase transition within this dark space that features a phenomenology which cannot be encountered in classical systems. Such emergent two-dimensional dark space may find technological applications, e.g., for the collective encoding of a quantum information.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
13
|
Liu F, Yang ZC, Bienias P, Iadecola T, Gorshkov AV. Localization and Criticality in Antiblockaded Two-Dimensional Rydberg Atom Arrays. PHYSICAL REVIEW LETTERS 2022; 128:013603. [PMID: 35061449 DOI: 10.1103/physrevlett.128.013603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/30/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Controllable Rydberg atom arrays have provided new insights into fundamental properties of quantum matter both in and out of equilibrium. In this work, we study the effect of experimentally relevant positional disorder on Rydberg atoms trapped in a 2D square lattice under antiblockade (facilitation) conditions. We show that the facilitation conditions lead the connectivity graph of a particular subspace of the full Hilbert space to form a 2D Lieb lattice, which features a singular flat band. Remarkably, we find three distinct regimes as the disorder strength is varied: a critical regime, a delocalized but nonergodic regime, and a regime with a disorder-induced flat band. The critical regime's existence depends crucially upon the singular flat band in our model, and is absent in any 1D array or ladder system. We propose to use quench dynamics to probe the three different regimes experimentally.
Collapse
Affiliation(s)
- Fangli Liu
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Zhi-Cheng Yang
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Przemyslaw Bienias
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Thomas Iadecola
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
14
|
Lippe C, Klas T, Bender J, Mischke P, Niederprüm T, Ott H. Experimental realization of a 3D random hopping model. Nat Commun 2021; 12:6976. [PMID: 34848721 PMCID: PMC8632899 DOI: 10.1038/s41467-021-27243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Scientific advance is often driven by identifying conceptually simple models underlying complex phenomena. This process commonly ignores imperfections which, however, might give rise to non-trivial collective behavior. For example, already a small amount of disorder can dramatically change the transport properties of a system compared to the underlying simple model. While systems with disordered potentials were already studied in detail, experimental investigations on systems with disordered hopping are still in its infancy. To this end, we experimentally study a dipole-dipole-interacting three-dimensional Rydberg system and map it onto a simple XY model with random couplings by spectroscopic evidence. We discuss the localization-delocalization crossover emerging in the model and present experimental signatures of it. Our results demonstrate that Rydberg systems are a useful platform to study random hopping models with the ability to access the microscopic degrees of freedom. This will allow to study transport processes and localization phenomena in random hopping models with a high level of control.
Collapse
Affiliation(s)
- Carsten Lippe
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tanita Klas
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Jana Bender
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Patrick Mischke
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Thomas Niederprüm
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Herwig Ott
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
15
|
Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms. Nature 2021; 595:233-238. [PMID: 34234335 DOI: 10.1038/s41586-021-03585-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/27/2021] [Indexed: 11/08/2022]
Abstract
Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail1. Many platforms are being developed towards this goal, in particular based on trapped ions2-4, superconducting circuits5-7, neutral atoms8-11 or molecules12,13. All of these platforms face two key challenges: scaling up the ensemble size while retaining high-quality control over the parameters, and validating the outputs for these large systems. Here we use programmable arrays of individual atoms trapped in optical tweezers, with interactions controlled by laser excitation to Rydberg states11, to implement an iconic many-body problem-the antiferromagnetic two-dimensional transverse-field Ising model. We push this platform to a regime with up to 196 atoms manipulated with high fidelity and probe the antiferromagnetic order by dynamically tuning the parameters of the Hamiltonian. We illustrate the versatility of our platform by exploring various system sizes on two qualitatively different geometries-square and triangular arrays. We obtain good agreement with numerical calculations up to a computationally feasible size (approximately 100 particles). This work demonstrates that our platform can be readily used to address open questions in many-body physics.
Collapse
|
16
|
Magoni M, Mazza PP, Lesanovsky I. Emergent Bloch Oscillations in a Kinetically Constrained Rydberg Spin Lattice. PHYSICAL REVIEW LETTERS 2021; 126:103002. [PMID: 33784114 DOI: 10.1103/physrevlett.126.103002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
We explore the relaxation dynamics of elementary spin clusters in a kinetically constrained spin system. Inspired by experiments with Rydberg lattice gases, we focus on the situation in which an excited spin leads to a "facilitated" excitation of a neighboring spin. We show that even weak interactions that extend beyond nearest neighbors can have a dramatic impact on the relaxation behavior: they generate a linear potential, which under certain conditions leads to the onset of Bloch oscillations of spin clusters. These hinder the expansion of a cluster and, more generally, the relaxation of many-body states toward equilibrium. This shows that nonergodic behavior in kinetically constrained systems may occur as a consequence of the interplay between reduced connectivity of many-body states and weak interparticle interactions. We furthermore show that the emergent Bloch oscillations identified here can be detected in experiment through measurements of the Rydberg atom density and discuss how spin-orbit coupling between internal and external degrees of freedom of spin clusters can be used to control their relaxation behavior.
Collapse
Affiliation(s)
- Matteo Magoni
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Paolo P Mazza
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
17
|
Epidemic growth and Griffiths effects on an emergent network of excited atoms. Nat Commun 2021; 12:103. [PMID: 33397997 PMCID: PMC7782709 DOI: 10.1038/s41467-020-20333-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/04/2022] Open
Abstract
Whether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems. The emergent excitation dynamics of an ultracold gas of Rydberg atoms exhibits features analogous to epidemic spreading on networks. Wintermantel et al. propose a controllable experimental system for studying network dynamics at the interface of mathematical models and real-world complex systems.
Collapse
|
18
|
Causer L, Lesanovsky I, Bañuls MC, Garrahan JP. Dynamics and large deviation transitions of the XOR-Fredrickson-Andersen kinetically constrained model. Phys Rev E 2020; 102:052132. [PMID: 33327088 DOI: 10.1103/physreve.102.052132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/09/2020] [Indexed: 11/07/2022]
Abstract
We study a one-dimensional classical stochastic kinetically constrained model (KCM) inspired by Rydberg atoms in their "facilitated" regime, where sites can flip only if a single of their nearest neighbors is excited. We call this model "XOR-FA" to distinguish it from the standard Fredrickson-Andersen (FA) model. We describe the dynamics of the XOR-FA model, including its relation to simple exclusion processes in its domain wall representation. The interesting relaxation dynamics of the XOR-FA is related to the prominence of large dynamical fluctuations that lead to phase transitions between active and inactive dynamical phases as in other KCMs. By means of numerical tensor network methods we study in detail such transitions in the dynamical large deviation regime.
Collapse
Affiliation(s)
- Luke Causer
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Mari Carmen Bañuls
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Juan P Garrahan
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.,Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
19
|
Pant R, Wüster S. Excitation transport in molecular aggregates with thermal motion. Phys Chem Chem Phys 2020; 22:21169-21184. [PMID: 32929422 DOI: 10.1039/d0cp01211d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular aggregates can under certain conditions transport electronic excitation energy over large distances due to dipole-dipole interactions. Here, we explore to what extent thermal motion of entire monomers can guide or enhance this excitation transport. The motion induces changes of aggregate geometry and hence modifies exciton states. Under certain conditions, excitation energy can thus be transported by the aggregate adiabatically, following a certain exciton eigenstate. While such transport is always slower than direct migration through dipole-dipole interactions, we show that transport through motion can yield higher transport efficiencies in the presence of on-site energy disorder than the static counterpart. For this we consider two simple models of molecular motion: (i) longitudinal vibrations of the monomers along the aggregation direction within their inter-molecular binding potential and (ii) torsional motion of planar monomers in a plane orthogonal to the aggregation direction. The parameters and potential shapes used are relevant to dye-molecule aggregates. We employ a quantum-classical method, in which molecules move through simplified classical molecular dynamics, while the excitation transport is treated quantum mechanically using Schrödinger's equation. For both models we find parameter regimes in which the motion enhances excitation transport, however these are more realistic for the torsional scenario, due to the limited motional range in a typical Morse type inter-molecular potential. We finally show that the transport enhancement can be linked to adiabatic quantum dynamics. This transport enhancement through adiabatic motion appears a useful resource to combat exciton trapping by disorder.
Collapse
Affiliation(s)
- Ritesh Pant
- Department of Physics, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal By-pass Road, Bhauri, Bhopal-462066, MP, India.
| | | |
Collapse
|
20
|
Gambetta FM, Zhang C, Hennrich M, Lesanovsky I, Li W. Long-Range Multibody Interactions and Three-Body Antiblockade in a Trapped Rydberg Ion Chain. PHYSICAL REVIEW LETTERS 2020; 125:133602. [PMID: 33034467 DOI: 10.1103/physrevlett.125.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing that combines a high degree of control over electronic and vibrational degrees of freedom. The possibility to individually excite ions to high-lying Rydberg levels provides a system where strong interactions between pairs of excited ions can be engineered and tuned via external laser fields. We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range and multibody interactions consisting of two, three, and four-body terms. Their shape, strength, and range can be controlled via the ion trap parameters and strongly depends on both the equilibrium configuration and vibrational modes of the ion crystal. By focusing on an experimentally feasible quasi one-dimensional setup of ^{88}Sr^{+} Rydberg ions, we demonstrate that multibody interactions are enhanced by the emergence of soft modes associated with, e.g., a structural phase transition. This has a striking impact on many-body electronic states and results-for example-in a three-body antiblockade effect that can be employed as a sensitive probe to detect structural phase transitions in Rydberg ion chains. Our study unveils the possibilities offered by trapped Rydberg ions for studying exotic phases of matter and quantum dynamics driven by enhanced multibody interactions.
Collapse
Affiliation(s)
- Filippo M Gambetta
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Chi Zhang
- Department of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Markus Hennrich
- Department of Physics, Stockholm University, 10691 Stockholm, Sweden
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Institut für Theoretische Physik, University of Tübingen, 72076 Tübingen, Germany
| | - Weibin Li
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
21
|
Mazza PP, Schmidt R, Lesanovsky I. Vibrational Dressing in Kinetically Constrained Rydberg Spin Systems. PHYSICAL REVIEW LETTERS 2020; 125:033602. [PMID: 32745411 DOI: 10.1103/physrevlett.125.033602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Quantum spin systems with kinetic constraints have become paradigmatic for exploring collective dynamical behavior in many-body systems. Here we discuss a facilitated spin system which is inspired by recent progress in the realization of Rydberg quantum simulators. This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations. Developing a minimal model, we show that this leads to the formation of polaronic quasiparticle excitations which are formed by many-body spin states dressed by phonons. We investigate in detail the properties of these quasiparticles, such as their dispersion relation, effective mass, and the quasiparticle weight. Rydberg lattice quantum simulators are particularly suited for studying this phonon-dressed kinetically constrained dynamics as their exaggerated length scales permit the site-resolved monitoring of spin and phonon degrees of freedom.
Collapse
Affiliation(s)
- Paolo P Mazza
- Institut für Theoretische Physik, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Richard Schmidt
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse, 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| | - Igor Lesanovsky
- Institut für Theoretische Physik, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Carollo F, Gambetta FM, Brandner K, Garrahan JP, Lesanovsky I. Nonequilibrium Quantum Many-Body Rydberg Atom Engine. PHYSICAL REVIEW LETTERS 2020; 124:170602. [PMID: 32412298 DOI: 10.1103/physrevlett.124.170602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The standard approach to quantum engines is based on equilibrium systems and on thermodynamic transformations between Gibbs states. However, nonequilibrium quantum systems offer enhanced experimental flexibility in the control of their parameters and, if used as engines, a more direct interpretation of the type of work they deliver. Here we introduce an out-of-equilibrium quantum engine inspired by recent experiments with cold atoms. Our system is connected to a single environment and produces mechanical work from many-body interparticle interactions arising between atoms in highly excited Rydberg states. As such, it is not a heat engine but an isothermal one. We perform many-body simulations to show that this system can produce work. The setup we introduce and investigate represents a promising platform for devising new types of microscopic machines and for exploring quantum effects in thermodynamic processes.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Filippo M Gambetta
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kay Brandner
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Juan P Garrahan
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
23
|
Menu R, Roscilde T. Anomalous Diffusion and Localization in a Positionally Disordered Quantum Spin Array. PHYSICAL REVIEW LETTERS 2020; 124:130604. [PMID: 32302157 DOI: 10.1103/physrevlett.124.130604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Disorder in quantum systems can lead to the disruption of long-range order in the ground state and to the localization of the elementary excitations. Here we exhibit an alternative paradigm, by which disorder preserves long-range order in the ground state, while it localizes the elementary excitations above it, introducing a stark dichotomy between static properties-mostly sensitive to the density of states of excitations-and nonequilibrium dynamical properties-sensitive to the spatial structure of excitations. We exemplify this paradigm with a positionally disordered 2d quantum Ising model with r^{-6} interactions, capturing the internal-state physics of Rydberg-atom arrays. Disorder is found to lead to multifractality and localization of the spin-wave excitations above a ferromagnetic ground state; as a result, the spreading of entanglement and correlations starting from a factorized state exhibits anomalous diffusion with a continuously varying dynamical exponent, interpolating between ballistic and arrested transport. Our findings are directly relevant for the low-energy dynamics in quantum simulators of quantum Ising models with power-law decaying interactions.
Collapse
Affiliation(s)
- Raphaël Menu
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Tommaso Roscilde
- Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
24
|
Gambetta FM, Li W, Schmidt-Kaler F, Lesanovsky I. Engineering NonBinary Rydberg Interactions via Phonons in an Optical Lattice. PHYSICAL REVIEW LETTERS 2020; 124:043402. [PMID: 32058736 DOI: 10.1103/physrevlett.124.043402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Coupling electronic and vibrational degrees of freedom of Rydberg atoms held in optical tweezer arrays offers a flexible mechanism for creating and controlling atom-atom interactions. We find that the state-dependent coupling between Rydberg atoms and local oscillator modes gives rise to two- and three-body interactions which are controllable through the strength of the local confinement. This approach even permits the cancellation of two-body terms such that three-body interactions become dominant. We analyze the structure of these interactions on two-dimensional bipartite lattice geometries and explore the impact of three-body interactions on system ground state on a square lattice. Focusing specifically on a system of ^{87}Rb atoms, we show that the effects of the multibody interactions can be maximized via a tailored dressed potential within a trapping frequency range of the order of a few hundred kilohertz and for temperatures corresponding to a >90% occupation of the atomic vibrational ground state. These parameters, as well as the multibody induced timescales, are compatible with state-of-the-art arrays of optical tweezers. Our work shows a highly versatile handle for engineering multibody interactions of quantum many-body systems in most recent manifestations on Rydberg lattice quantum simulators.
Collapse
Affiliation(s)
- F M Gambetta
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - W Li
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - F Schmidt-Kaler
- QUANTUM, Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
- Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - I Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
25
|
Verdel R, Liu F, Whitsitt S, Gorshkov AV, Heyl M. Real-time dynamics of string breaking in quantum spin chains. PHYSICAL REVIEW. B 2020; 102:10.1103/physrevb.102.014308. [PMID: 34131609 PMCID: PMC8201416 DOI: 10.1103/physrevb.102.014308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
String breaking is a central dynamical process in theories featuring confinement, where a string connecting two charges decays at the expense of the creation of new particle-antiparticle pairs. Here, we show that this process can also be observed in quantum Ising chains where domain walls get confined either by a symmetry-breaking field or by long-range interactions. We find that string breaking occurs, in general, as a two-stage process. First, the initial charges remain essentially static and stable. The connecting string, however, can become a dynamical object. We develop an effective description of this motion, which we find is strongly constrained. In the second stage, which can be severely delayed due to these dynamical constraints, the string finally breaks. We observe that the associated timescale can depend crucially on the initial separation between domain walls and can grow by orders of magnitude by changing the distance by just a few lattice sites. We discuss how our results generalize to one-dimensional confining gauge theories and how they can be made accessible in quantum simulator experiments such as Rydberg atoms or trapped ions.
Collapse
Affiliation(s)
- Roberto Verdel
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187-Dresden, Germany
| | - Fangli Liu
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Seth Whitsitt
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Markus Heyl
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187-Dresden, Germany
| |
Collapse
|
26
|
Yang F, Yang S, You L. Quantum Transport of Rydberg Excitons with Synthetic Spin-Exchange Interactions. PHYSICAL REVIEW LETTERS 2019; 123:063001. [PMID: 31491153 DOI: 10.1103/physrevlett.123.063001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/16/2019] [Indexed: 06/10/2023]
Abstract
We present a scheme for engineering quantum transport dynamics of spin excitations in a chain of laser-dressed Rydberg atoms, mediated by synthetic spin exchange arising from diagonal van der Waals interaction. The dynamic tunability and long-range interaction feature of our scheme allows for the exploration of transport physics unattainable in conventional spin systems. As two concrete examples, we first demonstrate a topological exciton pumping protocol that facilitates quantized entanglement transfer, and second we discuss a highly nonlocal correlated transport phenomenon which persists even in the presence of dephasing. Unlike previous schemes, our proposal requires neither resonant dipole-dipole interaction nor off-diagonal van der Waals interaction. It can be readily implemented in existing experimental systems.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shuo Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Li You
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Kim H, Park Y, Kim K, Sim HS, Ahn J. Detailed Balance of Thermalization Dynamics in Rydberg-Atom Quantum Simulators. PHYSICAL REVIEW LETTERS 2018; 120:180502. [PMID: 29775353 DOI: 10.1103/physrevlett.120.180502] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Dynamics of large complex systems, such as relaxation towards equilibrium in classical statistical mechanics, often obeys a master equation that captures essential information from the complexities. Here, we find that thermalization of an isolated many-body quantum state can be described by a master equation. We observe sudden quench dynamics of quantum Ising-like models implemented in our quantum simulator, defect-free single-atom tweezers in conjunction with Rydberg-atom interaction. Saturation of their local observables, a thermalization signature, obeys a master equation experimentally constructed by monitoring the occupation probabilities of prequench states and imposing the principle of the detailed balance. Our experiment agrees with theories and demonstrates the detailed balance in a thermalization dynamics that does not require coupling to baths or postulated randomness.
Collapse
Affiliation(s)
- Hyosub Kim
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - YeJe Park
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - Kyungtae Kim
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - H-S Sim
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - Jaewook Ahn
- Department of Physics, KAIST, Daejeon 34141, Korea
| |
Collapse
|
28
|
Basak S, Chougale Y, Nath R. Periodically Driven Array of Single Rydberg Atoms. PHYSICAL REVIEW LETTERS 2018; 120:123204. [PMID: 29694067 DOI: 10.1103/physrevlett.120.123204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Indexed: 06/08/2023]
Abstract
An array of single Rydberg atoms driven by a temporally modulated atom-field detuning is studied. The periodic modulation effectively modifies the Rabi coupling, leading to unprecedented dynamics in the presence of Rydberg-Rydberg interactions, in particular, blockade enhancement, antiblockades, and state-dependent population trapping. Interestingly, the Schrieffer-Wolf transformation reveals a fundamental process in Rydberg gases, correlated Rabi coupling, which stems from the extended nature of the Rydberg-Rydberg interactions. Also, the correlated coupling provides an alternative depiction for the Rydberg blockade, exhibiting a nontrivial behavior in the presence of periodic modulation. The dynamical localization of a many-body configuration in a driven Rydberg lattice is discussed.
Collapse
Affiliation(s)
- Sagarika Basak
- Indian Institute of Science Education and Research, Pune 411 008, India
| | - Yashwant Chougale
- Indian Institute of Science Education and Research, Pune 411 008, India
| | - Rejish Nath
- Indian Institute of Science Education and Research, Pune 411 008, India
| |
Collapse
|
29
|
Orioli AP, Signoles A, Wildhagen H, Günter G, Berges J, Whitlock S, Weidemüller M. Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System. PHYSICAL REVIEW LETTERS 2018; 120:063601. [PMID: 29481238 DOI: 10.1103/physrevlett.120.063601] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 06/08/2023]
Abstract
How do isolated quantum systems approach an equilibrium state? We experimentally and theoretically address this question for a prototypical spin system formed by ultracold atoms prepared in two Rydberg states with different orbital angular momenta. By coupling these states with a resonant microwave driving, we realize a dipolar XY spin-1/2 model in an external field. Starting from a spin-polarized state, we suddenly switch on the external field and monitor the subsequent many-body dynamics. Our key observation is density dependent relaxation of the total magnetization much faster than typical decoherence rates. To determine the processes governing this relaxation, we employ different theoretical approaches that treat quantum effects on initial conditions and dynamical laws separately. This allows us to identify an intrinsically quantum component to the relaxation attributed to primordial quantum fluctuations.
Collapse
Affiliation(s)
- A Piñeiro Orioli
- Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
| | - A Signoles
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - H Wildhagen
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - G Günter
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
| | - J Berges
- Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
- ExtreMe Matter Institute EMMI, Planckstraße 1, 64291 Darmstadt, Germany
| | - S Whitlock
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg, France
| | - M Weidemüller
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, and CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Pérez-Espigares C, Marcuzzi M, Gutiérrez R, Lesanovsky I. Epidemic Dynamics in Open Quantum Spin Systems. PHYSICAL REVIEW LETTERS 2017; 119:140401. [PMID: 29053308 DOI: 10.1103/physrevlett.119.140401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 06/07/2023]
Abstract
We explore the nonequilibrium evolution and stationary states of an open many-body system that displays epidemic spreading dynamics in a classical and a quantum regime. Our study is motivated by recent experiments conducted in strongly interacting gases of highly excited Rydberg atoms where the facilitated excitation of Rydberg states competes with radiative decay. These systems approximately implement open quantum versions of models for population dynamics or disease spreading where species can be in a healthy, infected or immune state. We show that in a two-dimensional lattice, depending on the dominance of either classical or quantum effects, the system may display a different kind of nonequilibrium phase transition. We moreover discuss the observability of our findings in laser driven Rydberg gases with particular focus on the role of long-range interactions.
Collapse
Affiliation(s)
- Carlos Pérez-Espigares
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Matteo Marcuzzi
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Ricardo Gutiérrez
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Complex Systems Group, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
| | - Igor Lesanovsky
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom and Centre for the Mathematics and Theoretical Physics of Quantum Non-equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
31
|
de Léséleuc S, Barredo D, Lienhard V, Browaeys A, Lahaye T. Optical Control of the Resonant Dipole-Dipole Interaction between Rydberg Atoms. PHYSICAL REVIEW LETTERS 2017; 119:053202. [PMID: 28949733 DOI: 10.1103/physrevlett.119.053202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Indexed: 06/07/2023]
Abstract
We report on the local control of the transition frequency of a spin 1/2 encoded in two Rydberg levels of an individual atom by applying a state-selective light shift using an addressing beam. With this tool, we first study the spectrum of an elementary system of two spins, tuning it from a nonresonant to a resonant regime, where "bright" (super-radiant) and "dark" (subradiant) states emerge. We observe the collective enhancement of the microwave coupling to the bright state. We then show that after preparing an initial single spin excitation and letting it hop due to the spin-exchange interaction, we can freeze the dynamics at will with the addressing laser, while preserving the coherence of the system. In the context of quantum simulation, this scheme opens exciting prospects for engineering inhomogeneous XY spin Hamiltonians or preparing spin-imbalanced initial states.
Collapse
Affiliation(s)
- Sylvain de Léséleuc
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Daniel Barredo
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Vincent Lienhard
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Antoine Browaeys
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Thierry Lahaye
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Univ Paris Sud 11, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| |
Collapse
|