1
|
Hu H, Wang J, Liu XJ. Exact Spectral Properties of Fermi Polarons in One-Dimensional Lattices: Anomalous Fermi Singularities and Polaron Quasiparticles. PHYSICAL REVIEW LETTERS 2025; 134:153403. [PMID: 40315500 DOI: 10.1103/physrevlett.134.153403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/20/2025] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
We calculate the exact spectral function of a single impurity repulsively interacting with a bath of fermions in one-dimensional lattices, by deriving the explicit expression of the form factor for both regular Bethe states and the irregular spin-flip state and η-pairing state, based on the exactly solvable one-dimensional Hubbard model. While at low impurity momentum Q∼0 the spectral function is dominated by two power-law Fermi singularities, at large momentum we observe that the two singularities develop into two-sided distributions and eventually become anomalous Fermi singularities at the boundary of the Brillouin zone (i.e., Q=±π), with the power-law tails extending toward low energy. Near the quarter filling of the Fermi bath, we also find two broad polaron peaks at large impurity momentum, collectively contributed by many excited many-body states with non-negligible form factors. Our exact results of those distinct features in one-dimensional Fermi polarons, which have no correspondences in two and three dimensions, could be readily probed in cold-atom laboratories by trapping highly imbalanced two-component fermionic atoms into one-dimensional optical lattices.
Collapse
Affiliation(s)
- Hui Hu
- Swinburne University of Technology, Centre for Quantum Technology Theory, Melbourne 3122, Australia
| | - Jia Wang
- Swinburne University of Technology, Centre for Quantum Technology Theory, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Swinburne University of Technology, Centre for Quantum Technology Theory, Melbourne 3122, Australia
| |
Collapse
|
2
|
Hu H, Wang J, Liu XJ. Theory of the Spectral Function of Fermi Polarons at Finite Temperature. PHYSICAL REVIEW LETTERS 2024; 133:083403. [PMID: 39241723 DOI: 10.1103/physrevlett.133.083403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/23/2024] [Indexed: 09/09/2024]
Abstract
We develop a general theory of Fermi polarons at nonzero temperature, including particle-hole excitations of the Fermi sea shakeup to arbitrarily high orders. The exact set of equations of the spectral function is derived by using both Chevy ansatz and diagrammatic approach, and their equivalence is clarified to hold in free space only, with an unregularized infinitesimal interaction strength. The correction to the polaron spectral function arising from two-particle-hole excitations is explicitly examined for an exemplary case of Fermi polarons in one-dimensional optical lattices. We find quantitative improvements at low temperatures with the inclusion of two-particle-hole excitations, in both polaron energies and decay rates. Our exact theory of Fermi polarons with arbitrary orders of particle-hole excitations might be used to better understand the intriguing polaron dynamical responses in two or three dimensions, whether in free space or within lattices.
Collapse
|
3
|
Wasak T, Sighinolfi M, Lang J, Piazza F, Recati A. Decoherence and Momentum Relaxation in Fermi-Polaron Rabi Dynamics: A Kinetic Equation Approach. PHYSICAL REVIEW LETTERS 2024; 132:183001. [PMID: 38759171 DOI: 10.1103/physrevlett.132.183001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/26/2024] [Indexed: 05/19/2024]
Abstract
Despite the paradigmatic nature of the Fermi-polaron model, the theoretical description of its nonlinear dynamics poses challenges. Here, we apply a quantum kinetic theory of driven polarons to recent experiments with ultracold atoms, where Rabi oscillations between a Fermi-polaron state and a noninteracting level were reported. The resulting equations separate decoherence from momentum relaxation, with the corresponding rates showing a different dependence on microscopic scattering processes and quasiparticle properties. We describe both the polaron ground state and the excited repulsive-polaron state and we find a good quantitative agreement between our predictions and the available experimental data without any fitting parameter. Our approach not only takes into account collisional phenomena, but also it can be used to study the different roles played by decoherence and the collisional integral in the strongly interacting highly imbalanced mixture of Fermi gases.
Collapse
Affiliation(s)
- Tomasz Wasak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Matteo Sighinolfi
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
| | - Johannes Lang
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Institut für Theoretische Physik, Universität zu Köln, Zülpicher Strasse 77, 50937 Cologne, Germany
| | - Francesco Piazza
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - Alessio Recati
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, 38123, Trento, Italy
| |
Collapse
|
4
|
Gievers M, Wagner M, Schmidt R. Probing Polaron Clouds by Rydberg Atom Spectroscopy. PHYSICAL REVIEW LETTERS 2024; 132:053401. [PMID: 38364123 DOI: 10.1103/physrevlett.132.053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
In recent years, Rydberg excitations in atomic quantum gases have become a successful platform to explore quantum impurity problems. A single impurity immersed in a Fermi gas leads to the formation of a polaron, a quasiparticle consisting of the impurity being dressed by the surrounding medium. With a radius of about the Fermi wavelength, the density profile of a polaron cannot be explored using in situ optical imaging techniques. In this Letter, we propose a new experimental measurement technique that enables the in situ imaging of the polaron cloud in ultracold quantum gases. The impurity atom induces the formation of a polaron cloud and is then excited to a Rydberg state. Because of the mesoscopic interaction range of Rydberg excitations, which can be tuned by the principal numbers of the Rydberg state, atoms extracted from the polaron cloud form dimers with the impurity. By performing first principle calculations of the absorption spectrum based on a functional determinant approach, we show how the occupation of the dimer state can be directly observed in spectroscopy experiments and can be mapped onto the density profile of the gas particles, hence providing a direct, real-time, and in situ measure of the polaron cloud.
Collapse
Affiliation(s)
- Marcel Gievers
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Max Planck Institute of Quantum Optics, 85748 Garching, Germany
| | - Marcel Wagner
- Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Richard Schmidt
- Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Colussi VE, Caleffi F, Menotti C, Recati A. Lattice Polarons across the Superfluid to Mott Insulator Transition. PHYSICAL REVIEW LETTERS 2023; 130:173002. [PMID: 37172254 DOI: 10.1103/physrevlett.130.173002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 01/11/2023] [Accepted: 03/17/2023] [Indexed: 05/14/2023]
Abstract
We study the physics of a mobile impurity confined in a two-dimensional lattice, moving within a Bose-Hubbard bath at zero temperature. Exploiting the quantum Gutzwiller formalism, we develop a beyond-Fröhlich model of the bath-impurity interaction to describe the properties of the polaronic quasiparticle formed by the dressing of the impurity by quantum fluctuations of the bath. We find a stable and well-defined polaron throughout the entire phase diagram of the bath, except for the very low tunneling limit of the hard-core superfluid. The polaron properties are highly sensitive to the different universality classes of the quantum phase transition between the superfluid and Mott insulating phases, providing an unambiguous probe of correlations and collective modes in a quantum critical many-body environment.
Collapse
Affiliation(s)
- V E Colussi
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
| | - F Caleffi
- International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136 Trieste, Italy
| | - C Menotti
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
| | - A Recati
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, Via Sommarive 14, 38123 Povo, Trento, Italy
| |
Collapse
|
6
|
Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons. ATOMS 2022. [DOI: 10.3390/atoms11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polarons are quasiparticles relevant across many fields in physics: from condensed matter to atomic physics. Here, we study the quasiparticle properties of two-dimensional strongly interacting Bose polarons in atomic Bose–Einstein condensates and polariton gases. Our studies are based on the non-self consistent T-matrix approximation adapted to these physical systems. For the atomic case, we study the spectral and quasiparticle properties of the polaron in the presence of a magnetic Feshbach resonance. We show the presence of two polaron branches: an attractive polaron, a low-lying state that appears as a well-defined quasiparticle for weak attractive interactions, and a repulsive polaron, a metastable state that becomes the dominant branch at weak repulsive interactions. In addition, we study a polaron arising from the dressing of a single itinerant electron by a quantum fluid of polaritons in a semiconductor microcavity. We demonstrate the persistence of the two polaron branches whose properties can be controlled over a wide range of parameters by tuning the cavity mode.
Collapse
|
7
|
Ji Y, Schumacher GL, Assumpção GGT, Chen J, Mäkinen JT, Vivanco FJ, Navon N. Stability of the Repulsive Fermi Gas with Contact Interactions. PHYSICAL REVIEW LETTERS 2022; 129:203402. [PMID: 36462022 DOI: 10.1103/physrevlett.129.203402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/30/2022] [Indexed: 06/17/2023]
Abstract
We report the creation and the study of the stability of a repulsive quasihomogeneous spin-1/2 Fermi gas with contact interactions. For the range of scattering lengths a explored, the dominant mechanism of decay is a universal three-body recombination toward a Feshbach bound state. We observe that the recombination coefficient K_{3}∝ε_{kin}a^{6}, where the first factor, the average kinetic energy per particle ε_{kin}, arises from a three-body threshold law, and the second one from the universality of recombination. Both scaling laws are consequences of Pauli blocking effects in three-body collisions involving two identical fermions. As a result of the interplay between Fermi statistics and the momentum dependence of the recombination process, the system exhibits nontrivial temperature dynamics during recombination, alternatively heating or cooling depending on its initial quantum degeneracy. The measurement of K_{3} provides an upper bound for the interaction strength achievable in equilibrium for a uniform repulsive Fermi gas.
Collapse
Affiliation(s)
- Yunpeng Ji
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Grant L Schumacher
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | | | - Jianyi Chen
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Jere T Mäkinen
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Franklin J Vivanco
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Nir Navon
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
8
|
Ding S, Drewsen M, Arlt JJ, Bruun GM. Mediated Interaction between Ions in Quantum Degenerate Gases. PHYSICAL REVIEW LETTERS 2022; 129:153401. [PMID: 36269954 DOI: 10.1103/physrevlett.129.153401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We explore the interaction between two trapped ions mediated by a surrounding quantum degenerate Bose or Fermi gas. Using perturbation theory valid for weak atom-ion interaction, we show analytically that the interaction mediated by a Bose gas has a power-law behavior for large distances whereas it has a Yukawa form for intermediate distances. For a Fermi gas, the mediated interaction is given by a power law for large density and by a Ruderman-Kittel-Kasuya-Yosida form for low density. For strong atom-ion interaction, we use a diagrammatic theory to demonstrate that the mediated interaction can be a significant addition to the bare Coulomb interaction between the ions, when an atom-ion bound state is close to threshold. Finally, we show that the induced interaction leads to substantial and observable shifts in the ion phonon frequencies.
Collapse
Affiliation(s)
- Shanshan Ding
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Michael Drewsen
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Jan J Arlt
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - G M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Abstract
Polaron quasiparticles are formed when a mobile impurity is coupled to the elementary excitations of a many-particle background. In the field of ultracold atoms, the study of the associated impurity problem has attracted a growing interest over the last fifteen years. Polaron quasiparticle properties are essential to our understanding of a variety of paradigmatic quantum many-body systems realized in ultracold atomic gases and in the solid state, from imbalanced Bose–Fermi and Fermi–Fermi mixtures to fermionic Hubbard models. In this topical review, we focus on the so-called repulsive polaron branch, which emerges as an excited many-body state in systems with underlying attractive interactions such as ultracold atomic mixtures, and is characterized by an effective repulsion between the impurity and the surrounding medium. We give a brief account of the current theoretical and experimental understanding of repulsive polaron properties, for impurities embedded in both fermionic and bosonic media, and we highlight open issues deserving future investigations.
Collapse
|
10
|
Wang J, Liu XJ, Hu H. Exact Quasiparticle Properties of a Heavy Polaron in BCS Fermi Superfluids. PHYSICAL REVIEW LETTERS 2022; 128:175301. [PMID: 35570441 DOI: 10.1103/physrevlett.128.175301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
We present the Ramsey response and radio-frequency spectroscopy of a heavy impurity immersed in an interacting Fermi superfluid, using the exact functional determinant approach. We describe the Fermi superfluid through the conventional Bardeen-Cooper-Schrieffer theory and investigate the role of the pairing gap on quasiparticle properties revealed by the two spectroscopies. The energy cost for pair breaking prevents Anderson's orthogonality catastrophe that occurs in a noninteracting Fermi gas and allows the existence of polaron quasiparticles in the exactly solvable heavy impurity limit. Hence, we rigorously confirm the remarkable features such as dark continuum, molecule-hole continuum, and repulsive polaron. For a magnetic impurity scattering at finite temperature, we predict additional resonances related to the subgap Yu-Shiba-Rusinov bound state, whose positions can be used to measure the superfluid pairing gap. For a nonmagnetic scattering at zero temperature, we surprisingly find undamped repulsive polarons. These exact results might be readily observed in quantum gas experiments with Bose-Fermi mixtures that have a large-mass ratio.
Collapse
Affiliation(s)
- Jia Wang
- Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia
| | - Hui Hu
- Centre for Quantum Technology Theory, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
11
|
Abstract
We investigate the properties of a dilute gas of impurities embedded in an ultracold gas of bosons that forms a Bose–Einstein condensate (BEC). This work focuses mainly on the equation of state (EoS) of the impurity gas at zero temperature and the induced interaction between impurities mediated by the host bath. We use perturbative field-theory approaches, such as Hugenholtz–Pines formalism, in the weakly interacting regime. In turn, for strong interactions, we aim at non-perturbative techniques such as quantum–Monte Carlo (QMC) methods. Our findings agree with experimental observations for an ultra dilute gas of impurities, modeled in the framework of the single impurity problem; however, as the density of impurities increases, systematic deviations are displayed with respect to the one-body Bose polaron problem.
Collapse
|
12
|
Abstract
Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton for varying impurity momentum and interactions. Following an interspecies interaction quench the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined case. This catastrophe originates from the formation of dispersive shock wave structures associated with the zero-range character of the bath-impurity potential. For initially moving impurities, a momentum transfer process from the impurity to the dispersive shock waves via the exerted drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the one-dimensional Bose polaron.
Collapse
|
13
|
Pascual G, Boronat J. Quasiparticle Nature of the Bose Polaron at Finite Temperature. PHYSICAL REVIEW LETTERS 2021; 127:205301. [PMID: 34860030 DOI: 10.1103/physrevlett.127.205301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
The Bose polaron has attracted theoretical and experimental interest because the mobile impurity is surrounded by a bath that undergoes a superfluid-to-normal phase transition. Although many theoretical works have studied this system in its ground state, only a few analyze its behavior at finite temperature. We have studied the effect of temperature on a Bose polaron system performing ab initio path integral Monte Carlo simulations. This method is able to approach the critical temperature without losing accuracy, in contrast with perturbative approximations. We have calculated the polaron energy for the repulsive and attractive branches and we have observed an asymmetric behavior between the two branches. When the potential is repulsive, the polaron energy decreases when the temperature increases, and contrariwise for the attractive branch. Our results for the effective mass and the dynamical structure factor of the polaron show unambiguously that its quasiparticle nature disappears close to the critical temperature, in agreement with recent experimental findings. Finally, we have also estimated the fraction of bosons in the condensate as well as the superfluid fraction, and we have concluded that the impurity hinders the condensation of the rest of bosons.
Collapse
Affiliation(s)
- Gerard Pascual
- Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain
| | - Jordi Boronat
- Departament de Física, Campus Nord B4-B5, Universitat Politècnica de Catalunya, E-08034 Barcelona, Spain
| |
Collapse
|
14
|
Abstract
Two-dimensional semiconductors inside optical microcavities have emerged as a versatile platform to explore new hybrid light–matter quantum states. A strong light–matter coupling leads to the formation of exciton-polaritons, which in turn interact with the surrounding electron gas to form quasiparticles called polaron-polaritons. Here, we develop a general microscopic framework to calculate the properties of these quasiparticles, such as their energy and the interactions between them. From this, we give microscopic expressions for the parameters entering a Landau theory for the polaron-polaritons, which offers a simple yet powerful way to describe such interacting light–matter many-body systems. As an example of the application of our framework, we then use the ladder approximation to explore the properties of the polaron-polaritons. Furthermore, we show that they can be measured in a non-demolition way via the light transmission/reflection spectrum of the system. Finally, we demonstrate that the Landau effective interaction mediated by electron-hole excitations is attractive leading to red shifts of the polaron-polaritons. Our work provides a systematic framework to study exciton-polaritons in electronically doped two-dimensional materials such as novel van der Waals heterostructures.
Collapse
|
15
|
Will M, Astrakharchik GE, Fleischhauer M. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime. PHYSICAL REVIEW LETTERS 2021; 127:103401. [PMID: 34533353 DOI: 10.1103/physrevlett.127.103401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Bose polarons, quasiparticles composed of mobile impurities surrounded by cold Bose gas, can experience strong interactions mediated by the many-body environment and form bipolaron bound states. Here we present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a nonperturbative theory and complementing it with exact numerical simulations. We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings. Our approach is based on a mean-field theory that accounts for deformations of the superfluid by the impurities and in this way minimizes quantum fluctuations. The mean-field equations are solved exactly in the Born-Oppenheimer approximation, leading to an analytic expression for the interaction potential of heavy polarons, which is found to be in excellent agreement with quantum Monte Carlo (QMC) results. In the strong coupling limit, the potential substantially deviates from the exponential form valid for weak coupling and has a linear shape at short distances. Taking into account the leading-order Born-Huang corrections, we calculate bipolaron binding energies for impurity-boson mass ratios as low as 3 and find excellent agreement with QMC results.
Collapse
Affiliation(s)
- M Will
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - G E Astrakharchik
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain
| | - M Fleischhauer
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
16
|
Abstract
An impurity immersed in a medium constitutes a canonical scenario applicable in a wide range of fields in physics. Though our understanding has advanced significantly in the past decades, quantum impurities in a bosonic environment are still of considerable theoretical and experimental interest. Here, we discuss the initial dynamics of such impurities, which was recently observed in interferometric experiments. Experimental observations from weak to unitary interactions are presented and compared to a theoretical description. In particular, the transition between two initial dynamical regimes dominated by two-body interactions is analyzed, yielding transition times in clear agreement with the theoretical prediction. Additionally, the distinct time dependence of the coherence amplitude in these regimes is obtained by extracting its power-law exponents. This benchmarks our understanding and suggests new ways of probing dynamical properties of quantum impurities.
Collapse
|
17
|
Massignan P, Yegovtsev N, Gurarie V. Universal Aspects of a Strongly Interacting Impurity in a Dilute Bose Condensate. PHYSICAL REVIEW LETTERS 2021; 126:123403. [PMID: 33834819 DOI: 10.1103/physrevlett.126.123403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
We study the properties of an impurity immersed in a weakly interacting Bose gas, i.e., of a Bose polaron. In the perturbatively tractable limit of weak impurity-boson interactions many of its properties are known to depend only on the scattering length. Here we demonstrate that for strong (unitary) impurity-boson interactions all quasiparticle properties of a heavy Bose polaron, such as its energy, its residue, its Tan's contact, and the number of bosons trapped nearby the impurity, depend on the impurity-boson potential via a single parameter characterizing its range.
Collapse
Affiliation(s)
- Pietro Massignan
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain
| | - Nikolay Yegovtsev
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Victor Gurarie
- Department of Physics and Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
18
|
Xiao K, Yan T, Liu Q, Yang S, Kan C, Duan R, Liu Z, Cui X. Many-Body Effect on Optical Properties of Monolayer Molybdenum Diselenide. J Phys Chem Lett 2021; 12:2555-2561. [PMID: 33683894 DOI: 10.1021/acs.jpclett.1c00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excitons in monolayer transition metal dichalcogenides (TMDs) provide a paradigm of composite Boson in a two-dimensional system. This Letter reports a photoluminescence and reflectance study of excitons in monolayer molybdenum diselenide (MoSe2) with electrostatic gating. We observe the repulsive and attractive Fermi polaron modes of the band edge exciton, its excited state, and the spin-off excitons, which the simple three-particle trion model is insufficient to explain. The contrasting energy shift between the exciton and charge-bound excitons (repulsive and attractive polaron modes) and the remarkably different gate dependence of the polaron energy splitting between the ground state and the excited state excitons unambiguously support the Fermi polaron picture for excitons in monolayer TMDs.
Collapse
Affiliation(s)
- Ke Xiao
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Tengfei Yan
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| | - Qiye Liu
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Siyuan Yang
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Chiming Kan
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Xiaodong Cui
- Department of Physics, University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
19
|
Polaron Problems in Ultracold Atoms: Role of a Fermi Sea across Different Spatial Dimensions and Quantum Fluctuations of a Bose Medium. ATOMS 2021. [DOI: 10.3390/atoms9010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The notion of a polaron, originally introduced in the context of electrons in ionic lattices, helps us to understand how a quantum impurity behaves when being immersed in and interacting with a many-body background. We discuss the impact of the impurities on the medium particles by considering feedback effects from polarons that can be realized in ultracold quantum gas experiments. In particular, we exemplify the modifications of the medium in the presence of either Fermi or Bose polarons. Regarding Fermi polarons we present a corresponding many-body diagrammatic approach operating at finite temperatures and discuss how mediated two- and three-body interactions are implemented within this framework. Utilizing this approach, we analyze the behavior of the spectral function of Fermi polarons at finite temperature by varying impurity-medium interactions as well as spatial dimensions from three to one. Interestingly, we reveal that the spectral function of the medium atoms could be a useful quantity for analyzing the transition/crossover from attractive polarons to molecules in three-dimensions. As for the Bose polaron, we showcase the depletion of the background Bose-Einstein condensate in the vicinity of the impurity atom. Such spatial modulations would be important for future investigations regarding the quantification of interpolaron correlations in Bose polaron problems.
Collapse
|
20
|
Pyzh M, Keiler K, Mistakidis SI, Schmelcher P. Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties. ENTROPY (BASEL, SWITZERLAND) 2021; 23:290. [PMID: 33652970 PMCID: PMC7996946 DOI: 10.3390/e23030290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.
Collapse
Affiliation(s)
- Maxim Pyzh
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
| | - Kevin Keiler
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
| | - Simeon I. Mistakidis
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
| | - Peter Schmelcher
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
21
|
Adlong HS, Liu WE, Scazza F, Zaccanti M, Oppong ND, Fölling S, Parish MM, Levinsen J. Quasiparticle Lifetime of the Repulsive Fermi Polaron. PHYSICAL REVIEW LETTERS 2020; 125:133401. [PMID: 33034470 DOI: 10.1103/physrevlett.125.133401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/20/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
We investigate the metastable repulsive branch of a mobile impurity coupled to a degenerate Fermi gas via short-range interactions. We show that the quasiparticle lifetime of this repulsive Fermi polaron can be experimentally probed by driving Rabi oscillations between weakly and strongly interacting impurity states. Using a time-dependent variational approach, we find that we can accurately model the impurity Rabi oscillations that were recently measured for repulsive Fermi polarons in both two and three dimensions. Crucially, our theoretical description does not include relaxation processes to the lower-lying attractive branch. Thus, the theory-experiment agreement demonstrates that the quasiparticle lifetime is dominated by many-body dephasing within the upper repulsive branch rather than by relaxation from the upper branch itself. Our findings shed light on recent experimental observations of persistent repulsive correlations, and have important consequences for the nature and stability of the strongly repulsive Fermi gas.
Collapse
Affiliation(s)
- Haydn S Adlong
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - Weizhe Edward Liu
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Francesco Scazza
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) and European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Matteo Zaccanti
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO) and European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino, Italy
| | - Nelson Darkwah Oppong
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Simon Fölling
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
22
|
Liu WE, Shi ZY, Levinsen J, Parish MM. Radio-Frequency Response and Contact of Impurities in a Quantum Gas. PHYSICAL REVIEW LETTERS 2020; 125:065301. [PMID: 32845677 DOI: 10.1103/physrevlett.125.065301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/04/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the radio-frequency spectroscopy of impurities interacting with a quantum gas at finite temperature. In the limit of a single impurity, we show using Fermi's golden rule that introducing (or injecting) an impurity into the medium is equivalent to ejecting an impurity that is initially interacting with the medium, since the "injection" and "ejection" spectral responses are simply related to each other by an exponential function of frequency. Thus, the full spectral information for the quantum impurity is contained in the injection spectral response, which can be determined using a range of theoretical methods, including variational approaches. We use this property to compute the finite-temperature equation of state and Tan contact of the Fermi polaron. Our results for the contact of a mobile impurity are in excellent agreement with recent experiments and we find that the finite-temperature behavior is qualitatively different compared to the case of infinite impurity mass.
Collapse
Affiliation(s)
- Weizhe Edward Liu
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Zhe-Yu Shi
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
23
|
Sun Y, Li ZQ, Wang ZW. Infrared optical absorption of magnetopolaron resonance states in graphene on the polar substrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:425005. [PMID: 32619995 DOI: 10.1088/1361-648x/aba293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
We study the infrared optical absorption of magnetopolaron resonance states in graphene in the strong magnetic field based on the Huybrechts's model, in which polaron states are formed due to the strong coupling between electrons and surface optical (SO) phonons induced by the polar substrate. We propose the special magnetopolaron states1/2(|1〉e±|1〉ph), namely, the superposition states between one SO phonon and the first-excited Landau level, which split into two branches of coupling modes and give rise to two optical absorption peaks with different intensities. Moreover, their intensities can be sensitively modulated by the magnetic field, the truncated wave-vector of SO phonon, polarity of substrate and internal distance between graphene and substrate. These results indicate that the structure of graphene laying on the polar substrate provide a good platform for exploring the polaron resonance states and magneto-optical transitions by infrared spectroscopy.
Collapse
Affiliation(s)
- Yong Sun
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
- Institute of Condensed Matter Physics, Inner Mongolia University for Nationalities, Tongliao 028043, People's Republic of China
| | - Zhi-Qing Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| | - Zi-Wu Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Applied Physics, School of Science, Tianjin University, Tianjin 300354, People's Republic of China
| |
Collapse
|
24
|
Dzsotjan D, Schmidt R, Fleischhauer M. Dynamical Variational Approach to Bose Polarons at Finite Temperatures. PHYSICAL REVIEW LETTERS 2020; 124:223401. [PMID: 32567929 DOI: 10.1103/physrevlett.124.223401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We discuss the interaction of a mobile quantum impurity with a Bose-Einstein condensate of atoms at finite temperature. To describe the resulting Bose polaron formation we develop a dynamical variational approach applicable to an initial thermal gas of Bogoliubov phonons. We study the polaron formation after switching on the interaction, e.g., by a radio-frequency (rf) pulse from a noninteracting to an interacting state. To treat also the strongly interacting regime, interaction terms beyond the Fröhlich model are taken into account. We calculate the real-time impurity Green's function and discuss its temperature dependence. Furthermore we determine the rf absorption spectrum and find good agreement with recent experimental observations. We predict temperature-induced shifts and a substantial broadening of spectral lines. The analysis of the real-time Green's function reveals a crossover to a linear temperature dependence of the thermal decay rate of Bose polarons as unitary interactions are approached.
Collapse
Affiliation(s)
- David Dzsotjan
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Wigner Research Center, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary
| | - Richard Schmidt
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| | - Michael Fleischhauer
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
25
|
Yan ZZ, Ni Y, Robens C, Zwierlein MW. Bose polarons near quantum criticality. Science 2020; 368:190-194. [DOI: 10.1126/science.aax5850] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 03/13/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Zoe Z. Yan
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiqi Ni
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Robens
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin W. Zwierlein
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
26
|
Levinsen J, Marchetti FM, Keeling J, Parish MM. Spectroscopic Signatures of Quantum Many-Body Correlations in Polariton Microcavities. PHYSICAL REVIEW LETTERS 2019; 123:266401. [PMID: 31951450 DOI: 10.1103/physrevlett.123.266401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/19/2018] [Indexed: 06/10/2023]
Abstract
We theoretically investigate the many-body states of exciton polaritons that can be observed by pump-probe spectroscopy in high-Q inorganic microcavities. Here, a weak-probe "spin-down" polariton is introduced into a coherent state of "spin-up" polaritons created by a strong pump. We show that the ↓ impurities become dressed by excitations of the ↑ medium, and that they form new polaronic quasiparticles that feature two-point and three-point many-body quantum correlations that, in the low density regime, arise from coupling to the vacuum biexciton and triexciton states, respectively. In particular, we find that these correlations generate additional branches and avoided crossings in the ↓ optical transmission spectrum that have a characteristic dependence on the ↑-polariton density. Our results thus demonstrate a way to directly observe correlated many-body states in an exciton-polariton system that go beyond classical mean-field theories.
Collapse
Affiliation(s)
- Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Francesca Maria Marchetti
- Departamento de Física Teórica de la Materia Condensada & Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St. Andrews KY16 9SS, United Kingdom
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
27
|
Wang J, Liu XJ, Hu H. Roton-Induced Bose Polaron in the Presence of Synthetic Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2019; 123:213401. [PMID: 31809177 DOI: 10.1103/physrevlett.123.213401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 06/10/2023]
Abstract
We predict the existence of a roton-induced Bose polaron for an impurity immersed in a three-dimensional Bose-Einstein condensate with Raman-laser-induced spin-orbit coupling, where the condensate is in a finite-momentum plane-wave state with an intriguing roton minimum in its excitation spectrum. This novel polaron is formed by dressing the impurity with roton excitations, instead of phonon excitations as in a conventional (i.e., phonon-induced) Bose polaron, and acquires a significant center-of-mass momentum and highly anisotropic effective mass. We find that the roton-induced polaron evolves from a phonon-induced polaron, as the interaction between impurity and atoms increases across a Feshbach resonance. The evolution is not smooth, and a first-order phase transition from a phonon- to roton-induced polaron is observed at a critical interaction strength.
Collapse
Affiliation(s)
- Jia Wang
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| | - Xia-Ji Liu
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| | - Hui Hu
- Centre for Quantum and Optical Science, Swinburne University of Technology, Melbourne 3122, Australia
| |
Collapse
|
28
|
Liu WE, Levinsen J, Parish MM. Variational Approach for Impurity Dynamics at Finite Temperature. PHYSICAL REVIEW LETTERS 2019; 122:205301. [PMID: 31172772 DOI: 10.1103/physrevlett.122.205301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Indexed: 06/09/2023]
Abstract
We present a general variational principle for the dynamics of impurity particles immersed in a quantum-mechanical medium. By working within the Heisenberg picture and constructing approximate time-dependent impurity operators, we can take the medium to be in any mixed state, such as a thermal state. Our variational method is consistent with all conservation laws and, in certain cases, it is equivalent to a finite-temperature Green's function approach. As a demonstration of our method, we consider the dynamics of heavy impurities that have suddenly been introduced into a Fermi gas at finite temperature. Using approximate time-dependent impurity operators involving only one particle-hole excitation of the Fermi sea, we find that we can successfully model the results of recent Ramsey interference experiments on ^{40}K atoms in a ^{6}Li Fermi gas. We also show that our approximation agrees well with the exact solution for the Ramsey response of a fixed impurity at finite temperature. Our approach paves the way for the investigation of impurities with dynamical degrees of freedom in arbitrary quantum-mechanical mediums.
Collapse
Affiliation(s)
- Weizhe Edward Liu
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Jesper Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| | - Meera M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Victoria 3800, Australia
| |
Collapse
|
29
|
Darkwah Oppong N, Riegger L, Bettermann O, Höfer M, Levinsen J, Parish MM, Bloch I, Fölling S. Observation of Coherent Multiorbital Polarons in a Two-Dimensional Fermi Gas. PHYSICAL REVIEW LETTERS 2019; 122:193604. [PMID: 31144925 DOI: 10.1103/physrevlett.122.193604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 06/09/2023]
Abstract
We report on the experimental observation of multiorbital polarons in a two-dimensional Fermi gas of ^{173}Yb atoms formed by mobile impurities in the metastable ^{3}P_{0} orbital and a Fermi sea in the ground-state ^{1}S_{0} orbital. We spectroscopically probe the energies of attractive and repulsive polarons close to an orbital Feshbach resonance and characterize their coherence by measuring the quasiparticle residue. For all probed interaction parameters, the repulsive polaron is a long-lived quasiparticle with a decay rate more than 2 orders of magnitude below its energy. We formulate a many-body theory, which accurately treats the interorbital interactions in two dimensions and agrees well with the experimental results. Our work paves the way for the investigation of many-body physics in multiorbital ultracold Fermi gases.
Collapse
Affiliation(s)
- N Darkwah Oppong
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - L Riegger
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - O Bettermann
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - M Höfer
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - J Levinsen
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - M M Parish
- School of Physics and Astronomy, Monash University, Victoria 3800, Australia
| | - I Bloch
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - S Fölling
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| |
Collapse
|
30
|
Mistakidis SI, Katsimiga GC, Koutentakis GM, Busch T, Schmelcher P. Quench Dynamics and Orthogonality Catastrophe of Bose Polarons. PHYSICAL REVIEW LETTERS 2019; 122:183001. [PMID: 31144905 DOI: 10.1103/physrevlett.122.183001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 06/09/2023]
Abstract
We monitor the correlated quench induced dynamical dressing of a spinor impurity repulsively interacting with a Bose-Einstein condensate. Inspecting the temporal evolution of the structure factor, three distinct dynamical regions arise upon increasing the interspecies interaction. These regions are found to be related to the segregated nature of the impurity and to the Ohmic character of the bath. It is shown that the impurity dynamics can be described by an effective potential that deforms from a harmonic to a double-well one when crossing the miscibility-immiscibility threshold. In particular, for miscible components the polaron formation is imprinted on the spectral response of the system. We further illustrate that for increasing interaction an orthogonality catastrophe occurs and the polaron picture breaks down. Then a dissipative motion of the impurity takes place leading to a transfer of energy to its environment. This process signals the presence of entanglement in the many-body system.
Collapse
Affiliation(s)
- S I Mistakidis
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G C Katsimiga
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - G M Koutentakis
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Th Busch
- Quantum Systems Unit, OIST Graduate University, Onna, Okinawa 904-0495, Japan
| | - P Schmelcher
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
31
|
Yan Z, Patel PB, Mukherjee B, Fletcher RJ, Struck J, Zwierlein MW. Boiling a Unitary Fermi Liquid. PHYSICAL REVIEW LETTERS 2019; 122:093401. [PMID: 30932518 DOI: 10.1103/physrevlett.122.093401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Indexed: 06/09/2023]
Abstract
We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range correlations of Fermi polarons at low temperatures T. In this regime, we observe a characteristic T^{2} dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid. At high T, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann gas, ∝T^{-1/2}. In the transition region between the quantum degenerate and classical regime, the spectral width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a harmonic trap directly reveal the majority dressing cloud surrounding the minority spins and yield the compressibility along with the effective mass of Fermi polarons.
Collapse
Affiliation(s)
- Zhenjie Yan
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Parth B Patel
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Biswaroop Mukherjee
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Richard J Fletcher
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Julian Struck
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Département de Physique, Ecole Normale Supérieure/PSL Research University, CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Martin W Zwierlein
- MIT-Harvard Center for Ultracold Atoms, Department of Physics, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
32
|
Amico A, Scazza F, Valtolina G, Tavares PES, Ketterle W, Inguscio M, Roati G, Zaccanti M. Time-Resolved Observation of Competing Attractive and Repulsive Short-Range Correlations in Strongly Interacting Fermi Gases. PHYSICAL REVIEW LETTERS 2018; 121:253602. [PMID: 30608797 DOI: 10.1103/physrevlett.121.253602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 06/09/2023]
Abstract
We exploit a time-resolved pump-probe spectroscopic technique to study the out-of-equilibrium dynamics of an ultracold two-component Fermi gas, selectively quenched to strong repulsion along the upper branch of a broad Feshbach resonance. For critical interactions, we find the rapid growth of short-range anticorrelations between repulsive fermions to initially overcome concurrent pairing processes. At longer evolution times, these two competing mechanisms appear to macroscopically coexist in a short-range correlated state of fermions and pairs, unforeseen thus far. Our work provides fundamental insights into the fate of a repulsive Fermi gas, and offers new perspectives towards the exploration of complex dynamical regimes of fermionic matter.
Collapse
Affiliation(s)
- A Amico
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| | - F Scazza
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| | - G Valtolina
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| | - P E S Tavares
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| | - W Ketterle
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, MIT, Cambridge, Massachusetts 02139, USA
| | - M Inguscio
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| | - G Roati
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| | - M Zaccanti
- LENS and Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
33
|
Camacho-Guardian A, Peña Ardila LA, Pohl T, Bruun GM. Bipolarons in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2018; 121:013401. [PMID: 30028169 DOI: 10.1103/physrevlett.121.013401] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Mobile impurities in a Bose-Einstein condensate form quasiparticles called polarons. Here, we show that two such polarons can bind to form a bound bipolaron state. Its emergence is caused by an induced nonlocal interaction mediated by density oscillations in the condensate, and we derive using field theory an effective Schrödinger equation describing this for an arbitrarily strong impurity-boson interaction. We furthermore compare with quantum Monte Carlo simulations finding remarkable agreement, which underlines the predictive power of the developed theory. It is found that bipolaron formation typically requires strong impurity interactions beyond the validity of more commonly used weak-coupling approaches that lead to local Yukawa-type interactions. We predict that the bipolarons are observable in present experiments, and we describe a procedure to probe their properties.
Collapse
Affiliation(s)
- A Camacho-Guardian
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - L A Peña Ardila
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - T Pohl
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - G M Bruun
- Center for Quantum Optics and Quantum Matter, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| |
Collapse
|
34
|
Płodzień M, Sowiński T, Kokkelmans S. Simulating polaron biophysics with Rydberg atoms. Sci Rep 2018; 8:9247. [PMID: 29915263 PMCID: PMC6006159 DOI: 10.1038/s41598-018-27232-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022] Open
Abstract
Transport of excitations along proteins can be formulated in a quantum physics context, based on the periodicity and vibrational modes of the structures. Numerically exact solutions of the corresponding equations are very challenging to obtain on classical computers. Approximate solutions based on the Davydov ansatz have demonstrated the possibility of stabilized solitonic excitations along the protein, however, experimentally these solutions have never been directly observed. Here we propose an alternative study of biophysical transport phenomena based on a quantum simulator composed of a chain of ultracold dressed Rydberg atoms, which allows for a direct observation of the Davydov phenomena. We show that there is an experimentally accessible range of parameters where the system directly mimics the Davydov equations and their solutions. Moreover, we show that such a quantum simulator has access to the regime in between the small and large polaron regimes, which cannot be described perturbatively.
Collapse
Affiliation(s)
- Marcin Płodzień
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands. .,Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland.
| | - Tomasz Sowiński
- Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, Warsaw, PL-02668, Poland
| | - Servaas Kokkelmans
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|
35
|
Guenther NE, Massignan P, Lewenstein M, Bruun GM. Bose Polarons at Finite Temperature and Strong Coupling. PHYSICAL REVIEW LETTERS 2018; 120:050405. [PMID: 29481182 DOI: 10.1103/physrevlett.120.050405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Indexed: 06/08/2023]
Abstract
A mobile impurity coupled to a weakly interacting Bose gas, a Bose polaron, displays several interesting effects. While a single attractive quasiparticle is known to exist at zero temperature, we show here that the spectrum splits into two quasiparticles at finite temperatures for sufficiently strong impurity-boson interaction. The ground state quasiparticle has minimum energy at T_{c}, the critical temperature for Bose-Einstein condensation, and it becomes overdamped when T≫T_{c}. The quasiparticle with higher energy instead exists only below T_{c}, since it is a strong mixture of the impurity with thermally excited collective Bogoliubov modes. This phenomenology is not restricted to ultracold gases, but should occur whenever a mobile impurity is coupled to a medium featuring a gapless bosonic mode with a large population for finite temperature.
Collapse
Affiliation(s)
- Nils-Eric Guenther
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Pietro Massignan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034 Barcelona, Spain
| | - Maciej Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Georg M Bruun
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| |
Collapse
|
36
|
Schmidt R, Knap M, Ivanov DA, You JS, Cetina M, Demler E. Universal many-body response of heavy impurities coupled to a Fermi sea: a review of recent progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024401. [PMID: 29303118 DOI: 10.1088/1361-6633/aa9593] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report we discuss the dynamical response of heavy quantum impurities immersed in a Fermi gas at zero and at finite temperature. Studying both the frequency and the time domain allows one to identify interaction regimes that are characterized by distinct many-body dynamics. From this theoretical study a picture emerges in which impurity dynamics is universal on essentially all time scales, and where the high-frequency few-body response is related to the long-time dynamics of the Anderson orthogonality catastrophe by Tan relations. Our theoretical description relies on different and complementary approaches: functional determinants give an exact numerical solution for time- and frequency-resolved responses, bosonization provides accurate analytical expressions at low temperatures, and the theory of Toeplitz determinants allows one to analytically predict response up to high temperatures. Using these approaches we predict the thermal decoherence rate of the fermionic system and prove that within the considered model the fastest rate of long-time decoherence is given by [Formula: see text]. We show that Feshbach resonances in cold atomic systems give access to new interaction regimes where quantum effects can prevail even in the thermal regime of many-body dynamics. The key signature of this phenomenon is a crossover between different exponential decay rates of the real-time Ramsey signal. It is shown that the physics of the orthogonality catastrophe is experimentally observable up to temperatures [Formula: see text] where it leaves its fingerprint in a power-law temperature dependence of thermal spectral weight and we review how this phenomenon is related to the physics of heavy ions in liquid [Formula: see text]He and the formation of Fermi polarons. The presented results are in excellent agreement with recent experiments on LiK mixtures, and we predict several new phenomena that can be tested using currently available experimental technology.
Collapse
Affiliation(s)
- Richard Schmidt
- Department of Physics, Harvard University, Cambridge MA 02138, United States of America. ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, United States of America. Institute of Quantum Electronics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
37
|
DeSalvo BJ, Patel K, Johansen J, Chin C. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2017; 119:233401. [PMID: 29286694 DOI: 10.1103/physrevlett.119.233401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/07/2023]
Abstract
We report on the formation of a stable quantum degenerate mixture of fermionic ^{6}Li and bosonic ^{133}Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.
Collapse
Affiliation(s)
- B J DeSalvo
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Krutik Patel
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jacob Johansen
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| | - Cheng Chin
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
38
|
Sun M, Zhai H, Cui X. Visualizing the Efimov Correlation in Bose Polarons. PHYSICAL REVIEW LETTERS 2017; 119:013401. [PMID: 28731773 DOI: 10.1103/physrevlett.119.013401] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 06/07/2023]
Abstract
The Bose polaron is a quasiparticle of an impurity dressed by surrounding bosons. In few-body physics, it is known that two identical bosons and a third distinguishable particle can form a sequence of Efimov bound states in the vicinity of interspecies scattering resonance. On the other hand, in the Bose polaron system with an impurity atom embedded in many bosons, no signature of Efimov physics has been reported in the existing spectroscopy measurements to date. In this Letter, we propose that a large mass imbalance between a light impurity and heavy bosons can help produce visible signatures of Efimov physics in such a spectroscopy measurement. Using the diagrammatic approach in the virial expansion to include three-body effects from pair-wise interactions, we determine the impurity self-energy and its spectral function. Taking the ^{6}Li-^{133}Cs system as a concrete example, we find two visible Efimov branches in the polaron spectrum, as well as their hybridizations with the attractive polaron branch. We also discuss the general scenarios for observing the signature of Efimov physics in polaron systems. This work paves the way for experimentally exploring intriguing few-body correlations in a many-body system in the near future.
Collapse
Affiliation(s)
- Mingyuan Sun
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
| | - Hui Zhai
- Institute for Advanced Study, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Xiaoling Cui
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|