1
|
Mandal M, Ghadai A, Mandal R, Majumdar S. Kovacs-like memory effect in a sheared colloidal glass: role of non-affine flows. SOFT MATTER 2025; 21:2958-2966. [PMID: 40152073 DOI: 10.1039/d4sm01514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Memory effect reflects a system's ability to encode, retain and retrieve information about its past. Such effects are essentially an out-of-equilibrium phenomenon providing insight into the complex structural and dynamical behavior of the system. Kovacs effect is one such memory effect that is traditionally associated with thermal history. Although studies on the Kovacs-like memory effect have been extended to mechanical perturbations such as compression-decompression, whether such effects can also be observed under volume-conserving perturbations like shear, remains unclear. Combining experiments, simulations and linear response theory we demonstrate Kovacs-like memory effect in a sheared colloidal glass. Moreover, we explore the influence of non-linear perturbations and establish a correlation between the deviation from linear response prediction and microscopic non-affine flows generated due to such large deformations in affecting the memory effect. Our study not only extends Kovacs-like memory effect in the domain of volume-conserving mechanical perturbations, it also highlights the importance of the nature of underlying microscopic flows in controlling the bulk stress relaxation, affecting the Kovacs-like memory effect in amorphous materials.
Collapse
Affiliation(s)
- Maitri Mandal
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
| | - Abhishek Ghadai
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
| | - Rituparno Mandal
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
- James Franck Institute, The University of Chicago, IL 60637, Chicago, USA
| | - Sayantan Majumdar
- Soft Condensed Matter Group, Raman Research Institute, Bengaluru 560080, Karnataka, India.
| |
Collapse
|
2
|
Tapias D, Marteau C, Aguirre-López F, Sollich P. Bringing Together Two Paradigms of Nonequilibrium: Fragile versus Robust Aging in Driven Glassy Systems. PHYSICAL REVIEW LETTERS 2024; 133:197101. [PMID: 39576890 DOI: 10.1103/physrevlett.133.197101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/20/2024] [Accepted: 09/18/2024] [Indexed: 11/24/2024]
Abstract
There are two key paradigms for nonequilibrium dynamics: on the one hand, aging toward an equilibrium state that cannot be reached on reasonable timescales; on the other, external driving that can lead to nonequilibrium steady states. We explore how these two mechanisms interact by studying the behavior of trap models, which are paradigmatic descriptions of slow glassy dynamics, when driven by trajectory bias toward high or low activity. To diagnose whether the driven systems continue to age, we establish a framework for mapping the biased dynamics to a Markovian time evolution with time-dependent transition rates. We find that the original aging dynamics reacts in two qualitatively distinct ways to the driving: it can be destroyed by the driving of any nonzero strength ("fragile" aging), whereby the dynamics either reaches an active steady state or effectively freezes, or it can persist within a finite range of driving strengths around the undriven case ("robust" aging). This classification into fragile and robust aging could form the basis for distinguishing different universality classes of aging dynamics.
Collapse
|
3
|
Tresset G, Li S, Gargowitsch L, Matthews L, Pérez J, Zandi R. Glass-like Relaxation Dynamics during the Disorder-to-Order Transition of Viral Nucleocapsids. J Phys Chem Lett 2024; 15:10210-10218. [PMID: 39356145 DOI: 10.1021/acs.jpclett.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Nucleocapsid self-assembly is an essential yet elusive step in virus replication. Using time-resolved small-angle X-ray scattering on a model icosahedral ssRNA virus, we reveal a previously unreported kinetic pathway. Initially, RNA-bound capsid subunits rapidly accumulate beyond the stoichiometry of native virions. This is followed by a disorder-to-order transition characterized by glass-like relaxation dynamics and the release of excess subunits. Our molecular dynamics simulations, employing a coarse-grained elastic model, confirm the physical feasibility of self-ordering accompanied by subunit release. The relaxation can be modeled by an exponential integral decay on the mean squared radius of gyration, with relaxation times varying within the second range depending on RNA type and subunit concentration. A nanogel model suggests that the initially disordered nucleoprotein complexes quickly reach an equilibrium size, while their mass fractal dimension continues to evolve. Understanding virus self-assembly is not only crucial for combating viral infections, but also for designing synthetic virus-inspired nanocages for drug delivery applications.
Collapse
Affiliation(s)
- Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Siyu Li
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| | - Laetitia Gargowitsch
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | | | - Javier Pérez
- SOLEIL Synchrotron, 91192 Gif-sur-Yvette, France
| | - Roya Zandi
- Department of Physics and Astronomy, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Wang JQ, Song LJ, Huo JT, Gao M, Zhang Y. Designing Advanced Amorphous/Nanocrystalline Alloys by Controlling the Energy State. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311406. [PMID: 38811026 DOI: 10.1002/adma.202311406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/11/2024] [Indexed: 05/31/2024]
Abstract
Amorphous alloys, also known as metallic glasses, exhibit many advanced mechanical, physical, and chemical properties. Owing to the nonequilibrium nature, their energy states can vary over a wide range. However, the energy relaxation kinetics are very complex and composed of various types that are coupled with each other. This makes it challenging to control the energy state precisely and to study the energy-properties relationship. This brief review introduces the recent progresses on studying the enthalpy relaxation kinetics during isothermal annealing, for example, the observation of two-step relaxation phenomenon, the detection of relaxation unit (relaxun), the key role of large activation entropy in triggering memory effect, the influence of glass energy state on nanocrystallization. Based on the above knowledge, a new strategy is proposed to design a series of amorphous alloys and their composites consisting of nanocrystals and glass matrix with superior functional properties by precisely controlling the nonequilibrium energy states. As the typical examples, Fe-based amorphous alloys with both advanced soft magnetism and good plasticity, Gd-based amorphous/nanocrystalline composites with large magnetocaloric effect, and Fe-based amorphous alloys with high catalytic performance are specifically described.
Collapse
Affiliation(s)
- Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Jian Song
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Tao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Sirote-Katz C, Shohat D, Merrigan C, Lahini Y, Nisoli C, Shokef Y. Emergent disorder and mechanical memory in periodic metamaterials. Nat Commun 2024; 15:4008. [PMID: 38773062 PMCID: PMC11109184 DOI: 10.1038/s41467-024-47780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Ordered mechanical systems typically have one or only a few stable rest configurations, and hence are not considered useful for encoding memory. Multistable and history-dependent responses usually emerge from quenched disorder, for example in amorphous solids or crumpled sheets. In contrast, due to geometric frustration, periodic magnetic systems can create their own disorder and espouse an extensive manifold of quasi-degenerate configurations. Inspired by the topological structure of frustrated artificial spin ices, we introduce an approach to design ordered, periodic mechanical metamaterials that exhibit an extensive set of spatially disordered states. While our design exploits the correspondence between frustration in magnetism and incompatibility in meta-mechanics, our mechanical systems encompass continuous degrees of freedom, and thus generalize their magnetic counterparts. We show how such systems exhibit non-Abelian and history-dependent responses, as their state can depend on the order in which external manipulations were applied. We demonstrate how this richness of the dynamics enables to recognize, from a static measurement of the final state, the sequence of operations that an extended system underwent. Thus, multistability and potential to perform computation emerge from geometric frustration in ordered mechanical lattices that create their own disorder.
Collapse
Affiliation(s)
- Chaviva Sirote-Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dor Shohat
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Carl Merrigan
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yoav Lahini
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yair Shokef
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel.
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
6
|
Álvarez P, Pittilini D, Miserocchi F, Raamamurthy S, Margiani G, Ameye O, Del Pino J, Zilberberg O, Eichler A. Biased Ising Model Using Two Coupled Kerr Parametric Oscillators with External Force. PHYSICAL REVIEW LETTERS 2024; 132:207401. [PMID: 38829099 DOI: 10.1103/physrevlett.132.207401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 04/09/2024] [Indexed: 06/05/2024]
Abstract
Networks of coupled Kerr parametric oscillators (KPOs) are a leading physical platform for analog solving of complex optimization problems. These systems are colloquially known as "Ising machines." We experimentally and theoretically study such a network under the influence of an external force. The force breaks the collective phase-parity symmetry of the system and competes with the intrinsic coupling in ordering the network configuration, similar to how a magnetic field biases an interacting spin ensemble. Specifically, we demonstrate how the force can be used to control the system, and highlight the crucial role of the phase and symmetry of the force. Our Letter thereby provides a method to create Ising machines with arbitrary bias, extending even to exotic cases that are impossible to engineer in real spin systems.
Collapse
Affiliation(s)
- Pablo Álvarez
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Davide Pittilini
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Filippo Miserocchi
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | - Gabriel Margiani
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Orjan Ameye
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Javier Del Pino
- Institute for Theoretical Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Oded Zilberberg
- Department of Physics, University of Konstanz, D-78457 Konstanz, Germany
| | - Alexander Eichler
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
7
|
Santos A. Mpemba meets Newton: Exploring the Mpemba and Kovacs effects in the time-delayed cooling law. Phys Rev E 2024; 109:044149. [PMID: 38755857 DOI: 10.1103/physreve.109.044149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Despite extensive research, the fundamental physical mechanisms underlying the Mpemba effect, a phenomenon where a substance cools faster after initially being heated, remain elusive. Although historically linked with water, the Mpemba effect manifests across diverse systems, sparking heightened interest in Mpemba-like phenomena. Concurrently, the Kovacs effect, a memory phenomenon observed in materials such as polymers, involves rapid quenching and subsequent temperature changes, resulting in nonmonotonic relaxation behavior. This paper probes the intricacies of the Mpemba and Kovacs effects within the framework of the time-delayed Newton's law of cooling, recognized as a simplistic yet effective phenomenological model accommodating memory phenomena. This law allows for a nuanced comprehension of temperature variations, introducing a delay time (τ) and incorporating specific protocols for the thermal bath temperature, contingent on a defined waiting time (t_{w}). Remarkably, the relevant parameter space is two-dimensional (τ and t_{w}), with bath temperatures exerting no influence on the presence or absence of the Mpemba effect or on the relative strength of the Kovacs effect. The findings enhance our understanding of these memory phenomena, providing valuable insights applicable to researchers across diverse fields, ranging from physics to materials science.
Collapse
Affiliation(s)
- Andrés Santos
- Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
8
|
El Elmi A, Pasini D. Tunable sequential pathways through spatial partitioning and frustration tuning in soft metamaterials. SOFT MATTER 2024; 20:1186-1198. [PMID: 38197440 DOI: 10.1039/d3sm01174g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Elastic instabilities have been leveraged in soft metamaterials to attain novel functionalities such as mechanical memory and sequential pathways. Pathways have been realized in complex media or within a collection of hysteretic elements. However, much less has been explored in frustrated and partitioned soft metamaterials. In this work, we introduce spatial partitioning as a method to localize deformation in sub-regions of a large and soft metamaterial. The partitioning is achieved through the strategic arrangement of soft inclusions in a soft lattice, which form distinct regions behaving as mechanical units. We examine two partitions: an equally spaced layer partition with mechanical units connected in series, and a cross partition, represented by interconnected series of mechanical units in parallel. Sequential pathways are obtained by frustrating the partitioned metamaterial post-manufacture and are characterized by tracking the polarization change in each partition region. Through a combination of experiments and simulations, we demonstrate that partitioning enables tuning the pathway from longitudinal with weak interactions to a pathway exhibiting strong interactions rising from geometric incompatibility and central domain rotation. We show that tuning the level of uniform lateral pre-strain provides a wide range of tunability from disabling to modifying the sequential pathway. We also show that imposing a nonuniform confinement and altering the tilting of one or two of the domain edges enables to program the pathway, access a larger set of states, and tune the level of interaction between the regions.
Collapse
Affiliation(s)
- Asma El Elmi
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. West, H3A 0C3 Montréal, Québec, Canada.
| | - Damiano Pasini
- Department of Mechanical Engineering, McGill University, 817 Sherbrooke St. West, H3A 0C3 Montréal, Québec, Canada.
| |
Collapse
|
9
|
Duan YJ, Nabahat M, Tong Y, Ortiz-Membrado L, Jiménez-Piqué E, Zhao K, Wang YJ, Yang Y, Wada T, Kato H, Pelletier JM, Qiao JC, Pineda E. Connection between Mechanical Relaxation and Equilibration Kinetics in a High-Entropy Metallic Glass. PHYSICAL REVIEW LETTERS 2024; 132:056101. [PMID: 38364152 DOI: 10.1103/physrevlett.132.056101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 02/18/2024]
Abstract
The slow transition from an out-of-equilibrium glass towards a supercooled liquid is a complex relaxation phenomenon. In this Letter, we study the correlation between mechanical relaxation and equilibration kinetics in a Pd_{20}Pt_{20}Cu_{20}Ni_{20}P_{20} high-entropy metallic glass. The evolution of stress relaxation with aging time was obtained with an unprecedented detail, allowing us to pinpoint new interesting features. The long structural relaxation towards equilibrium contains a wide distribution of activation energies, instead of being just associated to the β relaxation as commonly accepted. The stress relaxation time can be correlated with the equilibration rate and we observe a decrease of microstructural heterogeneity which contrasts with an increase of dynamic heterogeneity. These results significantly enhance our insight of the interplay between relaxation dynamics and thermodynamics in metallic glasses.
Collapse
Affiliation(s)
- Y J Duan
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - M Nabahat
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - Yu Tong
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - L Ortiz-Membrado
- Department of Materials Science, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - E Jiménez-Piqué
- Department of Materials Science, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - Kun Zhao
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Jiang Wang
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Y Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - T Wada
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - H Kato
- Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - J M Pelletier
- Université de Lyon, MATEIS, UMR CNRS5510, Bâtiment Blaise Pascal, INSA-Lyon, F-69621 Villeurbanne Cedex, France
| | - J C Qiao
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
| | - E Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| |
Collapse
|
10
|
Saporta-Katz O, Moriel A. Self-driven configurational dynamics in frustrated spring-mass systems. Phys Rev E 2024; 109:024219. [PMID: 38491674 DOI: 10.1103/physreve.109.024219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/29/2024] [Indexed: 03/18/2024]
Abstract
Various physical systems relax mechanical frustration through configurational rearrangements. We examine such rearrangements via Hamiltonian dynamics of simple internally stressed harmonic four-mass systems. We demonstrate theoretically and numerically how mechanical frustration controls the underlying potential energy landscape. Then, we examine the harmonic four-mass systems' Hamiltonian dynamics and relate the onset of chaotic motion to self-driven rearrangements. We show such configurational dynamics may occur without strong precursors, rendering such dynamics seemingly spontaneous.
Collapse
Affiliation(s)
- Ori Saporta-Katz
- Computer Science and Applied Mathematics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Avraham Moriel
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Tong Y, Song L, Gao Y, Fan L, Li F, Yang Y, Mo G, Liu Y, Shui X, Zhang Y, Gao M, Huo J, Qiao J, Pineda E, Wang JQ. Strain-driven Kovacs-like memory effect in glasses. Nat Commun 2023; 14:8407. [PMID: 38110399 PMCID: PMC10728148 DOI: 10.1038/s41467-023-44187-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Studying complex relaxation behaviors is of critical importance for understanding the nature of glasses. Here we report a Kovacs-like memory effect in glasses, manifested by non-monotonic stress relaxation during two-step high-to-low strains stimulations. During the stress relaxation process, if the strain jumps from a higher state to a lower state, the stress does not continue to decrease, but increases first and then decreases. The memory effect becomes stronger when the atomic motions become highly collective with a large activation energy, e.g. the strain in the first stage is larger, the temperature is higher, and the stimulation is longer. The physical origin of the stress memory effect is studied based on the relaxation kinetics and the in-situ synchrotron X-ray experiments. The stress memory effect is probably a universal phenomenon in different types of glasses.
Collapse
Affiliation(s)
- Yu Tong
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Lijian Song
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| | - Yurong Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Longlong Fan
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fucheng Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yiming Yang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Guang Mo
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yanhui Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoxue Shui
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yan Zhang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Meng Gao
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jichao Qiao
- School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an, China
| | - Eloi Pineda
- Department of Physics, Institute of Energy Technologies, Universitat Politècnica de Catalunya, Barcelona, Spain.
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Candela D. Complex Memory Formation in Frictional Granular Media. PHYSICAL REVIEW LETTERS 2023; 130:268202. [PMID: 37450807 DOI: 10.1103/physrevlett.130.268202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 07/18/2023]
Abstract
Using numerical simulations it is shown that a jammed, random pack of soft frictional grains can store an arbitrary waveform that is applied as a small time-dependent shear while the system is slowly compressed. When the system is decompressed at a later time, an approximation of the input waveform is recalled in time-reversed order as shear stresses on the system boundaries. This effect depends on friction between the grains, and is independent of some aspects of the friction model. This type of memory could potentially be observable in other types of random media that form internal contacts when compressed.
Collapse
Affiliation(s)
- D Candela
- Physics Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| |
Collapse
|
13
|
Lahini Y, Rubinstein SM, Amir A. Crackling Noise during Slow Relaxations in Crumpled Sheets. PHYSICAL REVIEW LETTERS 2023; 130:258201. [PMID: 37418710 DOI: 10.1103/physrevlett.130.258201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/23/2023] [Accepted: 05/25/2023] [Indexed: 07/09/2023]
Abstract
The statistics of noise emitted by ultrathin crumpled sheets is measured while they exhibit logarithmic relaxations under load. We find that the logarithmic relaxation advanced via a series of discrete, audible, micromechanical events that are log-Poisson distributed (i.e., the process becomes a Poisson process when time stamps are replaced by their logarithms). The analysis places constraints on the possible mechanisms underlying the glasslike slow relaxation and memory retention in these systems.
Collapse
Affiliation(s)
- Yoav Lahini
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shmuel M Rubinstein
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Complex Systems, Faculty of Physics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
14
|
Farain K, Bonn D. Predicting frictional aging from bulk relaxation measurements. Nat Commun 2023; 14:3606. [PMID: 37330517 DOI: 10.1038/s41467-023-39350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023] Open
Abstract
The coefficient of static friction between solids normally increases with the time they have remained in static contact before the measurement. This phenomenon, known as frictional aging, is at the origin of the difference between static and dynamic friction coefficients but has remained difficult to understand. It is usually attributed to a slow expansion of the area of atomic contact as the interface changes under pressure. This is however challenging to quantify as surfaces have roughness at all length scales. In addition, friction is not always proportional to the contact area. Here we show that the normalized stress relaxation of the surface asperities during frictional contact with a hard substrate is the same as that of the bulk material, regardless of the asperities' size or degree of compression. This result enables us to predict the frictional aging of rough interfaces based on the bulk material properties of two typical polymers: polypropylene and polytetrafluoroethylene.
Collapse
Affiliation(s)
- Kasra Farain
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, Netherlands.
| |
Collapse
|
15
|
Farain K, Bonn D. Quantitative Understanding of the Onset of Dense Granular Flows. PHYSICAL REVIEW LETTERS 2023; 130:108201. [PMID: 36962056 DOI: 10.1103/physrevlett.130.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/23/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
The question of when and how dense granular materials start to flow under stress, despite many industrial and geophysical applications, remains largely unresolved. We develop and test a simple equation for the onset of quasistatic flows of granular materials which is based on the frictional aging of the granular packing. The result is a nonmonotonic stress-strain relation which-akin to classical friction-is independent of the shear rate. This relation suffices to understand the quasistatic deformations of aging granular media, and its solid-to-liquid transition. Our results also elucidate the (flow) history dependence of the mechanical properties, and the sensitivity to the initial preparation of granular media.
Collapse
Affiliation(s)
- Kasra Farain
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands
| | - Daniel Bonn
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, Netherlands
| |
Collapse
|
16
|
Steinbock C, Katzav E. Dynamics of fluctuating thin sheets under random forcing. Phys Rev E 2023; 107:025002. [PMID: 36932563 DOI: 10.1103/physreve.107.025002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
We study the dynamic structure factor of fluctuating elastic thin sheets subject to conservative (athermal) random forcing. In Steinbock et al. [Phys. Rev. Res. 4, 033096 (2022)2643-156410.1103/PhysRevResearch.4.033096] the static structure factor of such a sheet was studied. In this paper we recap the model developed there and investigate its dynamic properties. Using the self-consistent expansion, the time-dependent two-point function of the height profile is determined and found to decay exponentially in time. Despite strong nonlinear coupling, the decay rate of the dynamic structure factor is found to coincide with the effective coupling constant for the static properties, which suggests that the model under investigation exhibits certain quasilinear behavior. Confirmation of these results by numerical simulations is also presented.
Collapse
Affiliation(s)
- Chanania Steinbock
- Racah Institute of Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Eytan Katzav
- Racah Institute of Physics, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
17
|
Chen Y, Zhang Q, Ramakrishnan S, Leheny RL. Memory in aging colloidal gels with time-varying attraction. J Chem Phys 2023; 158:024906. [PMID: 36641382 DOI: 10.1063/5.0126432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We report a combined rheology, x-ray photon correlation spectroscopy, and modeling study of gel formation and aging in suspensions of nanocolloidal spheres with volume fractions of 0.20 and 0.43 and with a short-range attraction whose strength is tuned by changing temperature. Following a quench from high temperature, where the colloids are essentially hard spheres, to a temperature below the gel point, the suspensions form gels that undergo aging characterized by a steadily increasing elastic shear modulus and slowing, increasingly constrained microscopic dynamics. The aging proceeds at a faster rate for stronger attraction strength. When the attraction strength is suddenly lowered during aging, the gel properties evolve non-monotonically in a manner resembling the Kovacs effect in glasses, in which the modulus decreases and the microscopic dynamics become less constrained for a period before more conventional aging resumes. Eventually, the properties of the gel following the decrease in attraction strength converge to those of a gel that has undergone aging at the lower attraction strength throughout. The time scale of this convergence increases as a power law with the age at which the attraction strength is decreased and decreases exponentially with the magnitude of the change in attraction. A model for gel aging in which particles attach and detach from the gel at rates that depend on their contact number reproduces these trends and reveals that the non-monotonic behavior results from the dispersion in the rates that the populations of particles with different contact number adjust to the new attraction strength.
Collapse
Affiliation(s)
- Yihao Chen
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Qingteng Zhang
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Subramanian Ramakrishnan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida 32310, USA
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
18
|
Shohat D, Hexner D, Lahini Y. Memory from coupled instabilities in unfolded crumpled sheets. Proc Natl Acad Sci U S A 2022; 119:e2200028119. [PMID: 35867743 PMCID: PMC9282240 DOI: 10.1073/pnas.2200028119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/30/2022] [Indexed: 11/18/2022] Open
Abstract
Crumpling an ordinary thin sheet transforms it into a structure with unusual mechanical behaviors, such as enhanced rigidity, emission of crackling noise, slow relaxations, and memory retention. A central challenge in explaining these behaviors lies in understanding the contribution of the complex geometry of the sheet. Here we combine cyclic driving protocols and three-dimensional (3D) imaging to correlate the global mechanical response and the underlying geometric transformations in unfolded crumpled sheets. We find that their response to cyclic strain is intermittent, hysteretic, and encodes a memory of the largest applied compression. Using 3D imaging we show that these behaviors emerge due to an interplay between localized and interacting geometric instabilities in the sheet. A simple model confirms that these minimal ingredients are sufficient to explain the observed behaviors. Finally, we show that after training, multiple memories can be encoded, a phenomenon known as return point memory. Our study lays the foundation for understanding the complex mechanics of crumpled sheets and presents an experimental and theoretical framework for the study of memory formation in systems of interacting instabilities.
Collapse
Affiliation(s)
- Dor Shohat
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Daniel Hexner
- Faculty of Mechanical Engineering, Technion, Haifa 32000, Israel
| | - Yoav Lahini
- Department of Condensed Matter, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Ding J, van Hecke M. Sequential snapping and pathways in a mechanical metamaterial. J Chem Phys 2022; 156:204902. [DOI: 10.1063/5.0087863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Materials that feature bistable elements, hysterons, exhibit memory effects. Often, these hysterons are difficult to observe or control directly. Here, we introduce a mechanical metamaterial in which slender elements, interacting with pushers, act as mechanical hysterons. We show how we can tune the hysteron properties and pathways under cyclic compression by the geometric design of these elements and how we can tune the pathways of a given sample by tilting one of the boundaries. Furthermore, we investigate the effect of the coupling of a global shear mode to the hysterons as an example of the interactions between hysteron and non-hysteron degrees of freedom. We hope our work will inspire further studies on designer matter with targeted pathways.
Collapse
Affiliation(s)
- Jiangnan Ding
- Huygens-Kamerlingh Onnes Lab, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Martin van Hecke
- Huygens-Kamerlingh Onnes Lab, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands and AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
20
|
Farain K, Bonn D. Non-monotonic Dynamics in the Onset of Frictional Slip. TRIBOLOGY LETTERS 2022; 70:57. [PMID: 35535326 PMCID: PMC9035418 DOI: 10.1007/s11249-022-01598-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The transition from static to dynamic friction is often described as a fracture instability. However, studies on slow sliding processes aimed at understanding frictional instabilities and earthquakes report slow friction transients that are usually explained by empirical rate-and-state formulations. We perform very slow ( ∼ nm/s) macroscopic-scale sliding experiments and show that the onset of frictional slip is governed by continuous non-monotonic dynamics originating from a competition between contact aging and shear-induced rejuvenation. This allows to describe both our non-monotonic dynamics and the simpler rate-and-state transients with a single evolution equation.
Collapse
Affiliation(s)
- Kasra Farain
- Van der Waals–Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Daniel Bonn
- Van der Waals–Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
21
|
Robin C, Robertson CG. Glass-like Signatures in the Dynamic Rheology of Particle-Filled Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clément Robin
- Hutchinson Research and Innovation Center, Châlette-sur-Loing 45120, Centre-Val de Loire, France
| | | |
Collapse
|
22
|
Patrón A, Sánchez-Rey B, Prados A. Strong nonexponential relaxation and memory effects in a fluid with nonlinear drag. Phys Rev E 2022; 104:064127. [PMID: 35030916 DOI: 10.1103/physreve.104.064127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
We analyze the dynamical evolution of a fluid with nonlinear drag, for which binary collisions are elastic, described at the kinetic level by the Enskog-Fokker-Planck equation. This model system, rooted in the theory of nonlinear Brownian motion, displays a really complex behavior when quenched to low temperatures. Its glassy response is controlled by a long-lived nonequilibrium state, independent of the degree of nonlinearity and also of the Brownian-Brownian collisions rate. The latter property entails that this behavior persists in the collisionless case, where the fluid is described by the nonlinear Fokker-Planck equation. The observed response, which includes nonexponential, algebraic, relaxation, and strong memory effects, presents scaling properties: the time evolution of the temperature-for both relaxation and memory effects-falls onto a master curve, regardless of the details of the experiment. To account for the observed behavior in simulations, it is necessary to develop an extended Sonine approximation for the kinetic equation-which considers not only the fourth cumulant but also the sixth one.
Collapse
Affiliation(s)
- A Patrón
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - B Sánchez-Rey
- Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, E-41011 Sevilla, Spain
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
23
|
van Hecke M. Profusion of transition pathways for interacting hysterons. Phys Rev E 2021; 104:054608. [PMID: 34942848 DOI: 10.1103/physreve.104.054608] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/14/2021] [Indexed: 11/07/2022]
Abstract
The response, pathways, and memory effects of cyclically driven complex media can be captured by hysteretic elements called hysterons. Here we demonstrate the profound impact of hysteron interactions on pathways and memory. Specifically, while the Preisach model of independent hysterons features a restricted class of pathways which always satisfy return point memory, we show that three interacting hysterons generate more than 15 000 transition graphs, with most violating return point memory and having features completely distinct from the Preisach model. Exploring these opens a route to designer pathways and information processing in complex matter.
Collapse
Affiliation(s)
- Martin van Hecke
- AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands and Huygens-Kamerlingh Onnes Lab, Universiteit Leiden, P.O. Box 9504, NL-2300 RA Leiden, Netherlands
| |
Collapse
|
24
|
Bense H, van Hecke M. Complex pathways and memory in compressed corrugated sheets. Proc Natl Acad Sci U S A 2021; 118:e2111436118. [PMID: 34876523 PMCID: PMC8685682 DOI: 10.1073/pnas.2111436118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 01/19/2023] Open
Abstract
The nonlinear response of driven complex materials-disordered magnets, amorphous media, and crumpled sheets-features intricate transition pathways where the system repeatedly hops between metastable states. Such pathways encode memory effects and may allow information processing, yet tools are lacking to experimentally observe and control these pathways, and their full breadth has not been explored. Here we introduce compression of corrugated elastic sheets to precisely observe and manipulate their full, multistep pathways, which are reproducible, robust, and controlled by geometry. We show how manipulation of the boundaries allows us to elicit multiple targeted pathways from a single sample. In all cases, each state in the pathway can be encoded by the binary state of material bits called hysterons, and the strength of their interactions plays a crucial role. In particular, as function of increasing interaction strength, we observe Preisach pathways, expected in systems of independently switching hysterons; scrambled pathways that evidence hitherto unexplored interactions between these material bits; and accumulator pathways which leverage these interactions to perform an elementary computation. Our work opens a route to probe, manipulate, and understand complex pathways, impacting future applications in soft robotics and information processing in materials.
Collapse
Affiliation(s)
| | - Martin van Hecke
- AMOLF, 1098 XG Amsterdam, The Netherlands
- Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
25
|
Hayase Y, Aonuma H, Takahara S, Sakaue T, Kaneko S, Nakanishi H. Fold analysis of crumpled sheets using microcomputed tomography. Phys Rev E 2021; 104:025005. [PMID: 34525670 DOI: 10.1103/physreve.104.025005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
Hand-crumpled paper balls involve intricate structure with a network of creases and vertices, yet show simple scaling properties, which suggests self-similarity of the structure. We investigate the internal structure of crumpled papers by the microcomputed tomography (micro-CT) without destroying or unfolding them. From the reconstructed three-dimensional (3D) data, we examine several power laws for the crumpled square sheets of paper of the sizes L=50-300 mm and obtain the mass fractal dimension D_{M}=2.7±0.1 by the relation between the mass and the radius of gyration of the balls and the fractal dimension 2.5≲d_{f}≲2.8 for the internal structure of each crumpled paper ball by the box counting method in the real space and the structure factors in the Fourier space. The data for the paper sheets are consistent with D_{M}=d_{f}, suggesting that the self-similarity in the structure of each crumpled ball gives rise to the similarity among the balls with different sizes. We also examine the cellophane sheets and the aluminium foils of the size L=200 mm and obtain 2.6≲d_{f}≲2.8 for both of them. The micro-CT also allows us to reconstruct 3D structure of a line drawn on the crumpled sheets of paper. The Hurst exponent for the root-mean-square displacement along the line is estimated as H≈0.9 for the length scale shorter than the scale of the radius of gyration, beyond which the line structure becomes more random with H∼0.5.
Collapse
Affiliation(s)
- Yumino Hayase
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| | - Hitoshi Aonuma
- Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Takahara
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0812, Japan
| | - Takahiro Sakaue
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Shun'ichi Kaneko
- Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiizu Nakanishi
- Department of Physics, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
26
|
Sánchez-Rey B, Prados A. Linear response in the uniformly heated granular gas. Phys Rev E 2021; 104:024903. [PMID: 34525635 DOI: 10.1103/physreve.104.024903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/29/2021] [Indexed: 11/07/2022]
Abstract
We analyze the linear response properties of the uniformly heated granular gas. The intensity of the stochastic driving fixes the value of the granular temperature in the nonequilibrium steady state reached by the system. Here, we investigate two specific situations. First, we look into the "direct" relaxation of the system after a single (small) jump of the driving intensity. This study is carried out by two different methods. Not only do we linearize the evolution equations around the steady state, but we also derive generalized out-of-equilibrium fluctuation-dissipation relations for the relevant response functions. Second, we investigate the behavior of the system in a more complex experiment, specifically a Kovacs-like protocol with two jumps in the driving. The emergence of an anomalous Kovacs response is explained in terms of the properties of the direct relaxation function: it is the second mode changing sign at the critical value of the inelasticity that demarcates anomalous from normal behavior. The analytical results are compared with numerical simulations of the kinetic equation, and a good agreement is found.
Collapse
Affiliation(s)
- Bernardo Sánchez-Rey
- Departamento de Física Aplicada I, E.P.S., Universidad de Sevilla, Virgen de África 7, E-41011 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
27
|
Hem J, Crauste-Thibierge C, Clément F, Long DR, Ciliberto S. Simultaneous memory effects in the stress and in the dielectric susceptibility of a stretched polymer glass. Phys Rev E 2021; 103:L040502. [PMID: 34005906 DOI: 10.1103/physreve.103.l040502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
We report experimental evidence that a polymer stretched at constant strain rate λ[over ̇] presents complex memory effects after λ[over ̇] is set to zero at a specific strain λ_{w} for a duration t_{w}, ranging from 100s to 2.2×10^{5}s. When the strain rate is resumed, both the stress and the dielectric constant relax to the unperturbed state nonmonotonically. The relaxations depend on the observable, on λ_{w} and on t_{w}. Relaxation master curves are obtained by scaling the time and the amplitudes by ln(t_{w}). The dielectric evolution also captures the distribution of the relaxation times, so the results impose strong constraints on the relaxation models of polymers under stress and they can be useful for a better understanding of memory effects in other disorder materials.
Collapse
Affiliation(s)
- J Hem
- Univ of Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France
| | - C Crauste-Thibierge
- Univ of Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France
| | - F Clément
- Laboratoire Polymères et Matériaux Avancés, CNRS/Solvay, UMR 5268, 69192 Saint Fons Cedex, France
| | - D R Long
- Laboratoire Polymères et Matériaux Avancés, CNRS/Solvay, UMR 5268, 69192 Saint Fons Cedex, France
| | - S Ciliberto
- Univ of Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, UMR 5672, F-69342 Lyon, France
| |
Collapse
|
28
|
Andrejevic J, Lee LM, Rubinstein SM, Rycroft CH. A model for the fragmentation kinetics of crumpled thin sheets. Nat Commun 2021; 12:1470. [PMID: 33674565 PMCID: PMC7935925 DOI: 10.1038/s41467-021-21625-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
As a confined thin sheet crumples, it spontaneously segments into flat facets delimited by a network of ridges. Despite the apparent disorder of this process, statistical properties of crumpled sheets exhibit striking reproducibility. Experiments have shown that the total crease length accrues logarithmically when repeatedly compacting and unfolding a sheet of paper. Here, we offer insight to this unexpected result by exploring the correspondence between crumpling and fragmentation processes. We identify a physical model for the evolution of facet area and ridge length distributions of crumpled sheets, and propose a mechanism for re-fragmentation driven by geometric frustration. This mechanism establishes a feedback loop in which the facet size distribution informs the subsequent rate of fragmentation under repeated confinement, thereby producing a new size distribution. We then demonstrate the capacity of this model to reproduce the characteristic logarithmic scaling of total crease length, thereby supplying a missing physical basis for the observed phenomenon.
Collapse
Affiliation(s)
- Jovana Andrejevic
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Lisa M Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Shmuel M Rubinstein
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Chris H Rycroft
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Computational Research Division, Lawrence Berkeley Laboratory, Berkeley, CA, USA.
| |
Collapse
|
29
|
Jules T, Lechenault F, Adda-Bedia M. Plasticity and aging of folded elastic sheets. Phys Rev E 2020; 102:033005. [PMID: 33075954 DOI: 10.1103/physreve.102.033005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/31/2020] [Indexed: 11/07/2022]
Abstract
We investigate the dissipative mechanisms exhibited by creased material sheets when subjected to mechanical loading, which comes in the form of plasticity and relaxation phenomena within the creases. After demonstrating that plasticity mostly affects the rest angle of the creases, we devise a mapping between this quantity and the macroscopic state of the system that allows us to track its reference configuration along an arbitrary loading path, resulting in a powerful monitoring and design tool for crease-based metamaterials. Furthermore, we show that complex relaxation phenomena, in particular memory effects, can give rise to a nonmonotonic response at the crease level, possibly relating to the similar behavior reported for crumpled sheets. We describe our observations through a classical double-logarithmic time evolution and obtain a constitutive behavior compatible with that of the underlying material. Thus the lever effect provided by the crease allows magnified access to the material's rheology.
Collapse
Affiliation(s)
- T Jules
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France.,Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne University, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - F Lechenault
- Laboratoire de Physique de l'École Normale Supérieure, ENS, PSL Research University, CNRS, Sorbonne University, Université Paris Diderot, Sorbonne Paris Cité, 75005 Paris, France
| | - M Adda-Bedia
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
30
|
Song L, Xu W, Huo J, Li F, Wang LM, Ediger MD, Wang JQ. Activation Entropy as a Key Factor Controlling the Memory Effect in Glasses. PHYSICAL REVIEW LETTERS 2020; 125:135501. [PMID: 33034495 DOI: 10.1103/physrevlett.125.135501] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
As opposed to the common monotonic relaxation process of glasses, the Kovacs memory effect describes an isothermal annealing experiment, in which the enthalpy and volume of a preannealed glass first increases before finally decreasing toward equilibrium. This interesting behavior has been observed for many materials and is generally explained in terms of heterogeneous dynamics. In this Letter, the memory effect in a model Au-based metallic glass is studied using a high-precision high-rate calorimeter. The activation entropy (S^{*}) during isothermal annealing is determined according to the absolute reaction rate theory. We observe that the memory effect appears only when the second-annealing process has a large S^{*}. These results indicate that a large value of S^{*} is a key requirement for observation of the memory effect and this may provide a useful perspective for understanding the memory effect in both thermal and athermal systems.
Collapse
Affiliation(s)
- Lijian Song
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Huo
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fushan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Li-Min Wang
- State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - M D Ediger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jun-Qiang Wang
- CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Urbach EY, Efrati E. Predicting delayed instabilities in viscoelastic solids. SCIENCE ADVANCES 2020; 6:6/36/eabb2948. [PMID: 32917615 PMCID: PMC7473665 DOI: 10.1126/sciadv.abb2948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Determining the stability of a viscoelastic structure is a difficult task. Seemingly stable conformations of viscoelastic structures may gradually creep until their stability is lost, while a discernible creeping in viscoelastic solids does not necessarily lead to instability. In lieu of theoretical predictive tools for viscoelastic instabilities, we are presently limited to numerical simulation to predict future stability. In this work, we describe viscoelastic solids through a temporally evolving instantaneous reference metric with respect to which elastic strains are measured. We show that for incompressible viscoelastic solids, this transparent and intuitive description allows to reduce the question of future stability to static calculations. We demonstrate the predictive power of the approach by elucidating the subtle mechanism of delayed instability in thin elastomeric shells, showing quantitative agreement with experiments.
Collapse
Affiliation(s)
- Erez Y Urbach
- Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
32
|
Morgan IL, Avinery R, Rahamim G, Beck R, Saleh OA. Glassy Dynamics and Memory Effects in an Intrinsically Disordered Protein Construct. PHYSICAL REVIEW LETTERS 2020; 125:058001. [PMID: 32794838 DOI: 10.1103/physrevlett.125.058001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Glassy, nonexponential relaxations in globular proteins are typically attributed to conformational behaviors that are missing from intrinsically disordered proteins. Yet, we show that single molecules of a disordered-protein construct display two signatures of glassy dynamics, logarithmic relaxations and a Kovacs memory effect, in response to changes in applied tension. We attribute this to the presence of multiple independent local structures in the chain, which we corroborate with a model that correctly predicts the force dependence of the relaxation. The mechanism established here likely applies to other disordered proteins.
Collapse
Affiliation(s)
- Ian L Morgan
- BMSE Program, University of California, Santa Barbara, California 93106, USA
| | - Ram Avinery
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gil Rahamim
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roy Beck
- The Raymond and Beverly Sackler School of Physics and Astronomy and The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv 69978, Israel
| | - Omar A Saleh
- BMSE Program, University of California, Santa Barbara, California 93106, USA
- Materials Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
33
|
Murphy KA, Kruppe JW, Jaeger HM. Memory in Nonmonotonic Stress Relaxation of a Granular System. PHYSICAL REVIEW LETTERS 2020; 124:168002. [PMID: 32383904 DOI: 10.1103/physrevlett.124.168002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/21/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate experimentally that a granular packing of glass spheres is capable of storing memory of multiple strain states in the dynamic process of stress relaxation. Modeling the system as a noninteracting population of relaxing elements, we find that the functional form of the predicted relaxation requires a quantitative correction which grows in severity with each additional memory and is suggestive of interactions between elements. Our findings have implications for the broad class of soft matter systems that display memory and anomalous relaxation.
Collapse
Affiliation(s)
- Kieran A Murphy
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jonathon W Kruppe
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Heinrich M Jaeger
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
34
|
Dillavou S, Rubinstein SM. Shear Controls Frictional Aging by Erasing Memory. PHYSICAL REVIEW LETTERS 2020; 124:085502. [PMID: 32167345 DOI: 10.1103/physrevlett.124.085502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
We simultaneously measure the static friction and the real area of contact between two solid bodies. These quantities are traditionally considered equivalent, and under static conditions both increase logarithmically in time, a phenomenon coined aging. Here we show that the frictional aging rate is determined by the combination of the aging rate of the real area of contact and two memory-erasure effects that occur when shear is changed (e.g., to measure static friction.) The application of a static shear load accelerates frictional aging while the aging rate of the real area of contact is unaffected. Moreover, a negative static shear-pulling instead of pushing-slows frictional aging, but similarly does not affect the aging of contacts. The origin of this shear effect on aging is geometrical. When shear load is increased, minute relative tilts between the two blocks prematurely erase interfacial memory prior to sliding, negating the effect of aging. Modifying the loading point of the interface eliminates these tilts and as a result frictional aging rate becomes insensitive to shear. We also identify a secondary memory-erasure effect that remains even when all tilts are eliminated and show that this effect can be leveraged to accelerate aging by cycling between two static shear loads.
Collapse
Affiliation(s)
- Sam Dillavou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shmuel M Rubinstein
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
35
|
Petrova D, Sharma DK, Vacha M, Bonn D, Brouwer AM, Weber B. Ageing of Polymer Frictional Interfaces: The Role of Quantity and Quality of Contact. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9890-9895. [PMID: 32024365 PMCID: PMC7049987 DOI: 10.1021/acsami.9b19125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 05/06/2023]
Abstract
When two objects are in contact, the force necessary for one to start sliding over the other is larger than the force necessary to keep the sliding motion going. This difference between static and dynamic friction is thought to result from a reduction in the area of real contact upon the onset of slip. Here, we resolve the structure in the area of contact on the molecular scale by means of environment-sensitive molecular rotors using (super-resolution) fluorescence microscopy and fluorescence lifetime imaging. We demonstrate that the macroscopic friction force is not only controlled by the area of real contact but also controlled by the "quality" of that area of real contact, which determines the friction per unit contact area. We show that the latter is affected by the local density of the contacting surfaces, a parameter that can be expected to change in time at any interface that involves glassy, amorphous materials.
Collapse
Affiliation(s)
- D. Petrova
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - D. K. Sharma
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, 152-8552 Tokyo, Japan
| | - M. Vacha
- Department
of Materials Science and Engineering, Tokyo
Institute of Technology, Ookayama 2-12-1-S8-44, Meguro-ku, 152-8552 Tokyo, Japan
| | - D. Bonn
- Van
der Waals-Zeeman Institute, IoP, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - A. M. Brouwer
- van
‘t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - B. Weber
- Van
der Waals-Zeeman Institute, IoP, University
of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
- Advanced
Research Center for Nanolithography (ARCNL), Science Park 110, 1098 XG Amsterdam, Netherlands
| |
Collapse
|
36
|
Majka M, Góra PF. Effective one-component model of binary mixture: molecular arrest induced by the spatially correlated stochastic dynamics. Sci Rep 2019; 9:19661. [PMID: 31873077 PMCID: PMC6927984 DOI: 10.1038/s41598-019-54321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Spatially correlated noise (SCN), i.e. the thermal noise that affects neighbouring particles in a similar manner, is ubiquitous in soft matter systems. In this work, we apply the over-damped SCN-driven Langevin equations as an effective, one-component model of the dynamics in dense binary mixtures. We derive the thermodynamically consistent fluctuation-dissipation relation for SCN to show that it predicts the molecular arrest resembling the glass transition, i.e. the critical slow-down of dynamics in the disordered phases. We show that the mechanism of singular dissipation is embedded in the dissipation matrix, accompanying SCN. We are also able to identify the characteristic length of collective dissipation, which diverges at critical packing. This novel physical quantity conveniently describes the difference between the ergodic and non-ergodic dynamics. The model is fully analytically solvable, one-dimensional and admits arbitrary interactions between the particles. It qualitatively reproduces several different modes of arrested disorder encountered in binary mixtures, including e.g. the re-entrant arrest. The model can be effectively compared to the mode coupling theory.
Collapse
Affiliation(s)
- M Majka
- Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. prof. Stanisława Łojasiewicza 11, 30-348, Kraków, Poland.
| | - P F Góra
- Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. prof. Stanisława Łojasiewicza 11, 30-348, Kraków, Poland
| |
Collapse
|
37
|
Yllanes D, Nelson DR, Bowick MJ. Folding pathways to crumpling in thermalized elastic frames. Phys Rev E 2019; 100:042112. [PMID: 31770969 DOI: 10.1103/physreve.100.042112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Indexed: 11/07/2022]
Abstract
The mechanical properties of thermally excited two-dimensional crystalline membranes can depend dramatically on their geometry and topology. A particularly relevant example is the effect on the crumpling transition of holes in the membrane. Here we use molecular dynamics simulations to study the case of elastic frames (sheets with a single large hole in the center) and find that the system approaches the crumpled phase through a sequence of origami-like folds at decreasing length scales when temperature is increased. We use normal-normal correlation functions to quantify the temperature-dependent number of folds.
Collapse
Affiliation(s)
- D Yllanes
- Department of Physics and Soft Matter Program, Syracuse University, Syracuse, New York 13244, USA.,Chan Zuckerberg Biohub, San Francisco, California 94158, USA.,Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA.,Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50009 Zaragoza, Spain
| | - D R Nelson
- Department of Physics, Department of Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M J Bowick
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
38
|
Sun Y, Peng SX, Yang Q, Zhang F, Yang MH, Wang CZ, Ho KM, Yu HB. Predicting Complex Relaxation Processes in Metallic Glass. PHYSICAL REVIEW LETTERS 2019; 123:105701. [PMID: 31573294 DOI: 10.1103/physrevlett.123.105701] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Indexed: 06/10/2023]
Abstract
Relaxation processes significantly influence the properties of glass materials. However, understanding their specific origins is difficult; even more challenging is to forecast them theoretically. In this study, using microseconds molecular dynamics simulations together with an accurate many-body interaction potential, we predict that an Al_{90}Sm_{10} metallic glass would have complex relaxation behaviors: In addition to the main (α) relaxation, the glass (i) shows a pronounced secondary (β) relaxation at cryogenic temperatures and (ii) exhibits an anomalous relaxation process (α_{2}) accompanying α relaxation. Both of the predictions are verified by experiments. Computational simulations reveal the microscopic origins of relaxation processes: while the pronounced β relaxation is attributed to the abundance of stringlike cooperative atomic rearrangements, the anomalous α_{2} process is found to correlate with the decoupling of the faster motions of Al with slower Sm atoms. The combination of simulations and experiments represents a first glimpse of what may become a predictive routine and integral step for glass physics.
Collapse
Affiliation(s)
- Yang Sun
- Ames Laboratory, U.S. Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011, USA
| | - Si-Xu Peng
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qun Yang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Feng Zhang
- Ames Laboratory, U.S. Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011, USA
| | - Meng-Hao Yang
- Ames Laboratory, U.S. Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011, USA
| | - Cai-Zhuang Wang
- Ames Laboratory, U.S. Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011, USA
| | - Kai-Ming Ho
- Ames Laboratory, U.S. Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011, USA
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
39
|
Okaly JB, Ndzana FI, Woulaché RL, Tabi CB, Kofané TC. Base pairs opening and bubble transport in damped DNA dynamics with transport memory effects. CHAOS (WOODBURY, N.Y.) 2019; 29:093103. [PMID: 31575125 DOI: 10.1063/1.5098341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Transport memory effects on nonlinear wave propagation are addressed in a damped Peyrard-Bishop-Dauxois model of DNA dynamics. Under the continuum and overdamped limits, the multiple-scale expansion method is employed to show that an open-state configuration of the DNA molecule is described by a complex nonlinear Schrödinger equation. For the latter, solutions are proposed as bright solitons, which suitably represent the open-state configuration that takes place along the DNA molecule in the form of bubbles. A good agreement between numerical experiments and analytical predictions on the impact of memory effects on the angular frequency, velocity, width, and amplitude of the moving bubble is obtained. It also appears that memory effects can modify qualitatively and quantitatively the nonlinear dynamics of DNA, including the energy brought by enzymes for the initiation of the processes of replication and transcription.
Collapse
Affiliation(s)
- Joseph Brizar Okaly
- Laboratory of Biophysics, Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Fabien Ii Ndzana
- African Center of Excellence in Information and Communication Technologies, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Rosalie Laure Woulaché
- African Center of Excellence in Information and Communication Technologies, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| | - Conrad Bertrand Tabi
- Botswana International University of Science and Technology, Private Bag 16, Palapye, Botswana
| | - Timoléon Crépin Kofané
- African Center of Excellence in Information and Communication Technologies, University of Yaounde I, P.O. Box 812, Yaounde, Cameroon
| |
Collapse
|
40
|
Gijón A, Lasanta A, Hernández ER. Paths towards equilibrium in molecular systems: The case of water. Phys Rev E 2019; 100:032103. [PMID: 31639902 DOI: 10.1103/physreve.100.032103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Indexed: 06/10/2023]
Abstract
We consider the problem of how a condensed molecular system approaches equilibrium, focusing on the particular case of water. We show, by means of extensive molecular dynamics simulations, that the existence of different types of degrees of freedom affects the dynamics of equilibration, and this influence is made most obvious in the system's temperature. When equipartition of energy does not hold in the initial, nonequilibrium state, the instantaneous temperature can be up to a few degrees lower than that observed under equipartition conditions, resulting in a Mpemba-like effect. Though our study considers water in particular, our findings apply more generally to condensed molecular systems.
Collapse
Affiliation(s)
- A Gijón
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| | - A Lasanta
- G. Millán Institute, Fluid Dynamics, Nanoscience and Industrial Mathematics, Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Leganés, Spain
| | - E R Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Campus de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
41
|
Abstract
The Mpemba effect occurs when a hot system cools faster than an initially colder one, when both are refrigerated in the same thermal reservoir. Using the custom-built supercomputer Janus II, we study the Mpemba effect in spin glasses and show that it is a nonequilibrium process, governed by the coherence length ξ of the system. The effect occurs when the bath temperature lies in the glassy phase, but it is not necessary for the thermal protocol to cross the critical temperature. In fact, the Mpemba effect follows from a strong relationship between the internal energy and ξ that turns out to be a sure-tell sign of being in the glassy phase. Thus, the Mpemba effect presents itself as an intriguing avenue for the experimental study of the coherence length in supercooled liquids and other glass formers.
Collapse
|
42
|
Paulsen JD, Keim NC. Minimal descriptions of cyclic memories. Proc Math Phys Eng Sci 2019; 475:20180874. [PMID: 31293356 PMCID: PMC6598062 DOI: 10.1098/rspa.2018.0874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/07/2019] [Indexed: 11/25/2022] Open
Abstract
Many materials that are out of equilibrium can ‘learn’ one or more inputs that are repeatedly applied. Yet, a common framework for understanding such memories is lacking. Here, we construct minimal representations of cyclic memory behaviours as directed graphs, and we construct simple physically motivated models that produce the same graph structures. We show how a model of worn grass between park benches can produce multiple transient memories—a behaviour previously observed in dilute suspensions of particles and charge-density-wave conductors—and the Mullins effect. Isolating these behaviours in our simple model allows us to assess the necessary ingredients for these kinds of memory, and to quantify memory capacity. We contrast these behaviours with a simple Preisach model that produces return-point memory. Our analysis provides a unified method for comparing and diagnosing cyclic memory behaviours across different materials.
Collapse
Affiliation(s)
- Joseph D Paulsen
- Department of Physics and Soft and Living Matter Program, Syracuse University, Syracuse, NY 13244, USA.,Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106, USA
| | - Nathan C Keim
- Kavli Institute for Theoretical Physics, Santa Barbara, CA 93106, USA.,Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|
43
|
Scalliet C, Berthier L. Rejuvenation and Memory Effects in a Structural Glass. PHYSICAL REVIEW LETTERS 2019; 122:255502. [PMID: 31347855 DOI: 10.1103/physrevlett.122.255502] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/10/2023]
Abstract
We show numerically that a three-dimensional model for structural glass displays aging, rejuvenation, and memory effects when subjected to a temperature cycle. These effects indicate that the free energy landscape of structural glasses may possess the complex hierarchical structure that characterizes materials such as spin and polymer glasses. We use the theoretical concept of marginal stability to interpret our results, and explain in which physical conditions a complex aging dynamics can emerge in dense supercooled liquids, paving the way for future experimental studies of complex aging dynamics in colloidal and granular glasses.
Collapse
Affiliation(s)
- Camille Scalliet
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier, CNRS, 34095 Montpellier, France
| |
Collapse
|
44
|
van Bruggen E, van der Linden E, Habibi M. Tailoring relaxation dynamics and mechanical memory of crumpled materials by friction and ductility. SOFT MATTER 2019; 15:1633-1639. [PMID: 30672957 PMCID: PMC8612726 DOI: 10.1039/c8sm01951g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/15/2019] [Indexed: 05/22/2023]
Abstract
Crumpled sheets show slow mechanical relaxation and long lasting memory of previous mechanical states. By using uniaxial compression tests, the role of friction and ductility on the stress relaxation dynamics of crumpled systems is investigated. We find a material dependent relaxation constant that can be tuned by changing ductility and adhesive properties of the sheet. After a two-step compression protocol, nonmonotonic aging is reported for polymeric, elastomeric and metal sheets, with relaxation dynamics that are dependent on the material's properties. These findings can contribute to tailoring and programming of crumpled materials to get desirable mechanical properties.
Collapse
Affiliation(s)
- Eric van Bruggen
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands.
| | - Erik van der Linden
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands.
| | - Mehdi Habibi
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
45
|
Jules T, Lechenault F, Adda-Bedia M. Local mechanical description of an elastic fold. SOFT MATTER 2019; 15:1619-1626. [PMID: 30672558 DOI: 10.1039/c8sm01791c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To go beyond the simple model for the fold as two flexible surfaces or faces linked by a crease that behaves as an elastic hinge, we carefully shape and anneal a crease within a polymer sheet and study its mechanical response. First, we carry out an experimental study that involves recording both the shape of the fold in various loading configurations and the associated force needed to deform it. Then, an elastic model of the fold is built upon a continuous description of both the faces and the crease as a thin sheet with a non-flat reference configuration. The comparison between the model and experiments yields the local fold properties and explains the significant differences we observe between tensile and compression regimes. Furthermore, an asymptotic study of the fold deformation enables us to determine the local shape of the crease and identify the origin of its mechanical behaviour.
Collapse
Affiliation(s)
- T Jules
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, PSL Research University, Sorbonne University, CNRS, F-75231 Paris, France.
| | | | | |
Collapse
|
46
|
Adhikari M, Sastry S. Memory formation in cyclically deformed amorphous solids and sphere assemblies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:105. [PMID: 30206724 DOI: 10.1140/epje/i2018-11717-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/22/2018] [Indexed: 06/08/2023]
Abstract
We study a model amorphous solid that is subjected to repeated athermal cyclic shear deformation. It has previously been demonstrated that the memory of the amplitudes of shear deformation the system is subjected to (or trained at) is encoded, and can be retrieved by subsequent deformation cycles that serve as read operations. Here we consider different read protocols and measurements and show that single and multiple memories can be robustly retrieved through these different protocols. We also show that shear deformation by a larger amplitude always erases the stored memories. These observations are similar to those in experiments with non-Brownian colloidal suspensions and corresponding models, but differ in the possibility of storing multiple memories non-transiently. Such a possibility has been associated with the presence of cycles of transitions that take place in the model amorphous solids, between local energy minima. Here, we also study low-density sphere assemblies which serve as models for non-Brownian colloidal suspensions, under athermal deformation, and identify a regime where the signatures of memory encoding are similar to the model glass, even when transition between local energy minima are absent. We show that such a regime corresponds to the presence of loop reversibility, rather than point reversibility of configurations under cyclic deformation.
Collapse
Affiliation(s)
- Monoj Adhikari
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| | - Srikanth Sastry
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India.
| |
Collapse
|
47
|
Boettcher S, Robe DM, Sibani P. Aging is a log-Poisson process, not a renewal process. Phys Rev E 2018; 98:020602. [PMID: 30253586 DOI: 10.1103/physreve.98.020602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Aging is a ubiquitous relaxation dynamic in disordered materials. It ensues after a rapid quench from an equilibrium "fluid" state into a nonequilibrium, history-dependent jammed state. We propose a physically motivated description that contrasts sharply with a continuous-time random walk (CTRW) with broadly distributed trapping times commonly used to fit aging data. A renewal process such as CTRW proves irreconcilable with the log-Poisson statistic exhibited, for example, by jammed colloids as well as by disordered magnets. A log-Poisson process is characteristic of the intermittent and decelerating dynamics of jammed matter usually activated by record-breaking fluctuations ("quakes"). We show that such a record dynamics provides a universal model for aging, physically grounded in generic features of free-energy landscapes of disordered systems.
Collapse
Affiliation(s)
- Stefan Boettcher
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Dominic M Robe
- Department of Physics, Emory University, Atlanta, Georgia 30322, USA
| | - Paolo Sibani
- Institut for Fysik Kemi og Farmaci, Syddansk Universitet, DK-5230 Odense M, Denmark
| |
Collapse
|
48
|
Dillavou S, Rubinstein SM. Nonmonotonic Aging and Memory in a Frictional Interface. PHYSICAL REVIEW LETTERS 2018; 120:224101. [PMID: 29906177 DOI: 10.1103/physrevlett.120.224101] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 05/22/2023]
Abstract
We measure the static frictional resistance and the real area of contact between two solid blocks subjected to a normal load. We show that following a two-step change in the normal load the system exhibits nonmonotonic aging and memory effects, two hallmarks of glassy dynamics. These dynamics are strongly influenced by the discrete geometry of the frictional interface, characterized by the attachment and detachment of unique microcontacts. The results are in good agreement with a theoretical model we propose that incorporates this geometry into the framework recently used to describe Kovacs-like relaxation in glasses as well as thermal disordered systems. These results indicate that a frictional interface is a glassy system and strengthen the notion that nonmonotonic relaxation behavior is generic in such systems.
Collapse
Affiliation(s)
- Sam Dillavou
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Shmuel M Rubinstein
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
49
|
Kürsten R, Sushkov V, Ihle T. Giant Kovacs-Like Memory Effect for Active Particles. PHYSICAL REVIEW LETTERS 2017; 119:188001. [PMID: 29219569 DOI: 10.1103/physrevlett.119.188001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Dynamical properties of self-propelled particles obeying a bounded confidence rule are investigated by means of kinetic theory and agent-based simulations. While memory effects are observed in disordered systems, we show that they also occur in active matter systems. In particular, we find that the system exhibits a giant Kovacs-like memory effect that is much larger than predicted by a generic linear theory. Based on a separation of time scales we develop a nonlinear theory to explain this effect. We apply this theory to driven granular gases and propose further applications to spin glasses.
Collapse
Affiliation(s)
- Rüdiger Kürsten
- Institut für Physik, Universität Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
| | - Vladimir Sushkov
- Hochschule für angewandte Wissenschaften München, Fakultät für angewandte Naturwissenschaften und Mechatronik, Lothstr. 34, 80335 München, Germany
| | - Thomas Ihle
- Institut für Physik, Universität Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany
| |
Collapse
|
50
|
Kovacs-Like Memory Effect in Athermal Systems: Linear Response Analysis. ENTROPY 2017. [DOI: 10.3390/e19100539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|