1
|
Geier KT, Martone GI, Hauke P, Ketterle W, Stringari S. Dynamics of Stripe Patterns in Supersolid Spin-Orbit-Coupled Bose Gases. PHYSICAL REVIEW LETTERS 2023; 130:156001. [PMID: 37115886 DOI: 10.1103/physrevlett.130.156001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Despite ground-breaking observations of supersolidity in spin-orbit-coupled Bose-Einstein condensates, until now the dynamics of the emerging spatially periodic density modulations has been vastly unexplored. Here, we demonstrate the nonrigidity of the density stripes in such a supersolid condensate and explore their dynamic behavior subject to spin perturbations. We show both analytically in infinite systems and numerically in the presence of a harmonic trap how spin waves affect the supersolid's density profile in the form of crystal waves, inducing oscillations of the periodicity as well as the orientation of the fringes. Both these features are well within reach of present-day experiments. Our results show that this system is a paradigmatic supersolid, featuring superfluidity in conjunction with a fully dynamic crystalline structure.
Collapse
Affiliation(s)
- Kevin T Geier
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
- Institute for Theoretical Physics, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany
| | - Giovanni I Martone
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 Place Jussieu, 75005 Paris, France
- CNR NANOTEC, Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
- INFN, Sezione di Lecce, 73100 Lecce, Italy
| | - Philipp Hauke
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
| | - Wolfgang Ketterle
- MIT-Harvard Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sandro Stringari
- Pitaevskii BEC Center, CNR-INO and Dipartimento di Fisica, Università di Trento, 38123 Trento, Italy
- Trento Institute for Fundamental Physics and Applications, INFN, 38123 Trento, Italy
| |
Collapse
|
2
|
Dong B, Zhang Y. Raman laser induced self-organization with topology in a dipolar condensate. OPTICS EXPRESS 2023; 31:7523-7534. [PMID: 36859881 DOI: 10.1364/oe.479091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
We investigate the ground states of a dipolar Bose-Einstein condensate (BEC) subject to Raman laser induced spin-orbit coupling with mean-field theory. Owing to the interplay between spin-orbit coupling and atom-atom interactions, the BEC presents remarkable self-organization behavior and thus hosts various exotic phases including vortex with discrete rotational symmetry, stripe with spin helix, and chiral lattices with C4 symmetry. The peculiar chiral self-organized array of square lattice, which spontaneously breaks both U(1) and rotational symmetries, is observed when the contact interaction is considerable in comparison with the spin-orbit coupling. Moreover, we show that the Raman-induced spin-orbit coupling plays a crucial role in forming rich topological spin textures of the chiral self-organized phases by introducing a channel for atoms to turn on spin flipping between two components. The self-organization phenomena predicted here feature topology owing to spin-orbit coupling. In addition, we find long-lived metastable self-organized arrays with C6 symmetry in the case of strong spin-orbit coupling. We also present a proposal to observe these predicted phases in ultracold atomic dipolar gases with laser-induced spin-orbit coupling, which may stimulate broad theoretical as well as experimental interest.
Collapse
|
3
|
Spin current generation and relaxation in a quenched spin-orbit-coupled Bose-Einstein condensate. Nat Commun 2019; 10:375. [PMID: 30670693 PMCID: PMC6343014 DOI: 10.1038/s41467-018-08119-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/14/2018] [Indexed: 11/27/2022] Open
Abstract
Understanding the effects of spin-orbit coupling (SOC) and many-body interactions on spin transport is important in condensed matter physics and spintronics. This topic has been intensively studied for spin carriers such as electrons but barely explored for charge-neutral bosonic quasiparticles (including their condensates), which hold promises for coherent spin transport over macroscopic distances. Here, we explore the effects of synthetic SOC (induced by optical Raman coupling) and atomic interactions on the spin transport in an atomic Bose-Einstein condensate (BEC), where the spin-dipole mode (SDM, actuated by quenching the Raman coupling) of two interacting spin components constitutes an alternating spin current. We experimentally observe that SOC significantly enhances the SDM damping while reducing the thermalization (the reduction of the condensate fraction). We also observe generation of BEC collective excitations such as shape oscillations. Our theory reveals that the SOC-modified interference, immiscibility, and interaction between the spin components can play crucial roles in spin transport. Spin-orbit coupling is interesting for fundamental understanding of spin transport and quench dynamics. Here the authors demonstrate spin-current generation and its relaxation in spin-orbit-coupled Bose-Einstein condensates of Rb atoms in different spin states.
Collapse
|
4
|
Tang WH, Zhang S. Quantum Spin Dynamics in a Normal Bose Gas with Spin-Orbit Coupling. PHYSICAL REVIEW LETTERS 2018; 121:120403. [PMID: 30296115 DOI: 10.1103/physrevlett.121.120403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Indexed: 06/08/2023]
Abstract
In this Letter, we investigate spin dynamics of a two-component Bose gas with spin-orbit coupling realized in cold atom experiments. We derive coupled hydrodynamic equations for number and spin densities as well as their associated currents. Specializing to the quasi-one-dimensional situation, we obtain analytic solutions of the spin helix structure and its dynamics in both adiabatic and diabatic regimes. In the adiabatic regime, the transverse spin decays parabolically in the short-time limit and exponentially in the long-time limit, depending on initial polarization. In contrast, in the diabatic regime, transverse spin density and current oscillate in a way similar to the charge-current oscillation in an undamped LC circuit. The effects of Rabi coupling on the short-time spin dynamics is also discussed. Finally, using realistic experimental parameters for ^{87}Rb, we show that the timescales for spin dynamics is of the order of milliseconds to a few seconds and can be observed experimentally.
Collapse
Affiliation(s)
- Wai Ho Tang
- Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
| | - Shizhong Zhang
- Department of Physics and Center of Theoretical and Computational Physics, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Qu C, Stringari S. Angular Momentum of a Bose-Einstein Condensate in a Synthetic Rotational Field. PHYSICAL REVIEW LETTERS 2018; 120:183202. [PMID: 29775336 DOI: 10.1103/physrevlett.120.183202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Indexed: 06/08/2023]
Abstract
By applying a position-dependent detuning to a spin-orbit-coupled Hamiltonian with equal Rashba and Dresselhaus coupling, we exploit the behavior of the angular momentum of a harmonically trapped Bose-Einstein condensed atomic gas and discuss the distinctive role of its canonical and spin components. By developing the formalism of spinor hydrodynamics, we predict the precession of the dipole oscillation caused by the synthetic rotational field, in analogy with the precession of the Foucault pendulum, the excitation of the scissors mode, following the sudden switching off of the detuning, and the occurrence of Hall-like effects. When the detuning exceeds a critical value, we observe a transition from a vortex free, rigidly rotating quantum gas to a gas containing vortices with negative circulation which results in a significant reduction of the total angular momentum.
Collapse
Affiliation(s)
- Chunlei Qu
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
- JILA and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Sandro Stringari
- INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, 38123 Povo, Italy
| |
Collapse
|