1
|
Sakai I, Akimoto T. Unexpected effects of disorder on current fluctuations in the symmetric simple exclusion process. Phys Rev E 2025; 111:014134. [PMID: 39972920 DOI: 10.1103/physreve.111.014134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/02/2025] [Indexed: 02/21/2025]
Abstract
We explore how the disorder impacts the current fluctuations in the symmetric simple exclusion process (SSEP) within a heterogeneous environment. First, we analyze the SSEP with a defect site under the periodic boundary conditions. We derive the exact expression for the second moment of the current and observe deviations from that of the homogeneous system. Notably, the second moment of the current shows asymmetric density dependence around a density of 1/2 and surpassing that of the homogeneous system in the low-density region. Furthermore, based on the finding from the SSEP with a defect site, we present an approximate derivation of the second moment of the current in the SSEP on a quenched random energy landscape using a partial-mean-field approach. The second moment of the current is heavily influenced by the energy landscape, revealing unique effects arising from the interplay between the heterogeneous environment and the many-body system. Our findings provide valuable insights that can be applied to control current fluctuations in systems involving the interactions of many particles, such as biological transport.
Collapse
Affiliation(s)
- Issei Sakai
- Department of Physics and Astronomy, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuma Akimoto
- Department of Physics and Astronomy, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Grabsch A, Moriya H, Mallick K, Sasamoto T, Bénichou O. Semi-infinite Simple Exclusion Process: From Current Fluctuations to Target Survival. PHYSICAL REVIEW LETTERS 2024; 133:117102. [PMID: 39331991 DOI: 10.1103/physrevlett.133.117102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/31/2024] [Indexed: 09/29/2024]
Abstract
The symmetric simple exclusion process (SEP), where diffusive particles cannot overtake each other, is a paradigmatic model of transport in the single-file geometry. In this model, the study of currents has attracted a lot of attention, but so far most results are restricted to two geometries: (i) a finite system between two reservoirs, which does not conserve the number of particles but reaches a nonequilibrium steady state, and (ii) an infinite system which conserves the number of particles but never reaches a steady state. Here, we obtain an expression for the full cumulant generating function of the integrated current in the important intermediate situation of a semi-infinite system connected to a reservoir, which does not conserve the number of particles and never reaches a steady state. This results from the determination of the full spatial structure of the correlations, which we infer to obey the very same closed equation recently obtained in the infinite geometry and argue to be exact. Besides their intrinsic interest, these results allow us to solve two open problems: the survival probability of a fixed target in the SEP, and the statistics of the number of particles injected by a localized source.
Collapse
|
3
|
Bettelheim E, Meerson B. Complete integrability of the problem of full statistics of nonstationary mass transfer in the simple inclusion process. Phys Rev E 2024; 110:014101. [PMID: 39160915 DOI: 10.1103/physreve.110.014101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/11/2024] [Indexed: 08/21/2024]
Abstract
The simple inclusion process (SIP) interpolates between two well-known lattice gas models: the independent random walkers and the Kipnis-Marchioro-Presutti model. Here we study large deviations of nonstationary mass transfer in the SIP at long times in one dimension. We suppose that N≫1 particles start from a single lattice site at the origin, and we are interested in the probability P(M,N,T) of observing M of the particles, 0≤M≤N, to the right of the origin at a specified time T≫1. At large times, the corresponding full probability distribution has a large-deviation behavior, -lnP(M,N,T)≃sqrt[T]s(M/N,N/sqrt[T]). We determine the rate function s exactly by uncovering and utilizing complete integrability, by the inverse scattering method, of the underlying equations of the macroscopic fluctuation theory. We also analyze different asymptotic limits of the rate function s.
Collapse
|
4
|
Grabsch A, Bénichou O. Tracer Diffusion beyond Gaussian Behavior: Explicit Results for General Single-File Systems. PHYSICAL REVIEW LETTERS 2024; 132:217101. [PMID: 38856256 DOI: 10.1103/physrevlett.132.217101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
Single-file systems, in which particles diffuse in narrow channels while not overtaking each other, is a fundamental model for the tracer subdiffusion observed in confined geometries, such as in zeolites or carbon nanotubes. Twenty years ago, the mean squared displacement of a tracer was determined at large times, for any diffusive single-file system. Since then, for a general single-file system, even the determination of the fourth cumulant, which probes the deviation from Gaussianity, has remained an open question. Here, we fill this gap and provide an explicit formula for the fourth cumulant of an arbitrary single-file system. Our approach also allows us to quantify the perturbation induced by the tracer on its environment, encoded in the correlation profiles. These explicit results constitute a first step towards obtaining a closed equation for the correlation profiles for arbitrary single-file systems.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Grabsch A, Berlioz T, Rizkallah P, Illien P, Bénichou O. From Particle Currents to Tracer Diffusion: Universal Correlation Profiles in Single-File Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:037102. [PMID: 38307067 DOI: 10.1103/physrevlett.132.037102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 11/27/2023] [Indexed: 02/04/2024]
Abstract
Single-file transport refers to the motion of particles in a narrow channel, such that they cannot bypass each other. This constraint leads to strong correlations between the particles, described by correlation profiles, which measure the correlation between a generic observable and the density of particles at a given position and time. They have recently been shown to play a central role in single-file systems. Up to now, these correlations have only been determined for diffusive systems in the hydrodynamic limit. Here, we consider a model of reflecting point particles on the infinite line, with a general individual stochastic dynamics. We show that the correlation profiles take a simple universal form, at arbitrary time. We illustrate our approach by the study of the integrated current of particles through the origin, and apply our results to representative models such as Brownian particles, run-and-tumble particles and Lévy flights. We further emphasise the generality of our results by showing that they also apply beyond the 1D case, and to other observables.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Théotim Berlioz
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
Sakai I, Akimoto T. Non-self-averaging of current in a totally asymmetric simple exclusion process with quenched disorder. Phys Rev E 2023; 107:L052103. [PMID: 37329050 DOI: 10.1103/physreve.107.l052103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 05/01/2023] [Indexed: 06/18/2023]
Abstract
We investigate the current properties in the totally asymmetric simple exclusion process (TASEP) on a quenched random energy landscape. In low- and high-density regimes, the properties are characterized by single-particle dynamics. In the intermediate one, the current becomes constant and is maximized. Based on the renewal theory, we derive accurate results for the maximum current. The maximum current significantly depends on a disorder realization, i.e., non-self-averaging (SA). We demonstrate that the disorder average of the maximum current decreases with the system size, and the sample-to-sample fluctuations of the maximum current exceed those of current in the low- and high-density regimes. We find a significant difference between single-particle dynamics and the TASEP. In particular, the non-SA behavior of the maximum current is always observed, whereas the transition from non-SA to SA for current in single-particle dynamics exists.
Collapse
Affiliation(s)
- Issei Sakai
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuma Akimoto
- Department of Physics, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Grabsch A, Rizkallah P, Poncet A, Illien P, Bénichou O. Exact spatial correlations in single-file diffusion. Phys Rev E 2023; 107:044131. [PMID: 37198815 DOI: 10.1103/physreve.107.044131] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023]
Abstract
Single-file diffusion refers to the motion of diffusive particles in narrow channels, so that they cannot bypass each other. This constraint leads to the subdiffusion of a tagged particle, called the tracer. This anomalous behavior results from the strong correlations that arise in this geometry between the tracer and the surrounding bath particles. Despite their importance, these bath-tracer correlations have long remained elusive, because their determination is a complex many-body problem. Recently, we have shown that, for several paradigmatic models of single-file diffusion such as the simple exclusion process, these bath-tracer correlations obey a simple exact closed equation. In this paper, we provide the full derivation of this equation, as well as an extension to another model of single-file transport: the double exclusion process. We also make the connection between our results and the ones obtained very recently by several other groups and which rely on the exact solution of different models obtained by the inverse scattering method.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Alexis Poncet
- Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
8
|
Grabsch A, Rizkallah P, Illien P, Bénichou O. Driven Tracer in the Symmetric Exclusion Process: Linear Response and Beyond. PHYSICAL REVIEW LETTERS 2023; 130:020402. [PMID: 36706397 DOI: 10.1103/physrevlett.130.020402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
Tracer dynamics in the symmetric exclusion process (SEP), where hard-core particles diffuse on an infinite one-dimensional lattice, is a paradigmatic model of anomalous diffusion. While the equilibrium situation has received a lot of attention, the case where the tracer is driven by an external force, which provides a minimal model of nonequilibrium transport in confined crowded environments, remains largely unexplored. Indeed, the only available analytical results concern the means of both the position of the tracer and the lattice occupation numbers in its frame of reference and higher-order moments but only in the high-density limit. Here, we provide a general hydrodynamic framework that allows us to determine the first cumulants of the bath-tracer correlations and of the tracer's position in function of the driving force, up to quadratic order (beyond linear response). This result constitutes the first determination of the bias dependence of the variance of a driven tracer in the SEP for an arbitrary density. The framework presented here can be applied, beyond the SEP, to more general configurations of a driven tracer in interaction with obstacles in one dimension.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Rana J, Sadhu T. Large deviations of a tracer position in the dense and the dilute limits of single-file diffusion. Phys Rev E 2023; 107:L012101. [PMID: 36797963 DOI: 10.1103/physreve.107.l012101] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
We apply the macroscopic fluctuation theory to analyze the long-time statistics of the position of a tracer in the dense and the dilute limits of diffusive single-file systems. Our explicit results are about the corresponding large deviation functions for an initial step density profile with the fluctuating (annealed) and the fixed (quenched) initial conditions. These hydrodynamic results are applicable for a general single-file system and they agree with recent exact results obtained by microscopic solutions for specific model systems.
Collapse
Affiliation(s)
- Jagannath Rana
- Department of Theoretical Physics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| | - Tridib Sadhu
- Department of Theoretical Physics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400005, India
| |
Collapse
|
10
|
Banerjee T, Jack RL, Cates ME. Role of initial conditions in one-dimensional diffusive systems: Compressibility, hyperuniformity, and long-term memory. Phys Rev E 2022; 106:L062101. [PMID: 36671167 DOI: 10.1103/physreve.106.l062101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
We analyze the long-lasting effects of initial conditions on dynamical fluctuations in one-dimensional diffusive systems. We consider the mean-squared displacement of tracers in homogeneous systems with single-file diffusion, and current fluctuations for noninteracting diffusive particles. In each case we show analytically that the long-term memory of initial conditions is mediated by a single static quantity: a generalized compressibility that quantifies the density fluctuations of the initial state. We thereby identify a universality class of hyperuniform initial states whose dynamical variances coincide with the quenched cases studied previously, alongside a continuous family of other classes among which equilibrated (or annealed) initial conditions are but one member. We verify our predictions through extensive Monte Carlo simulations.
Collapse
Affiliation(s)
- Tirthankar Banerjee
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Robert L Jack
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
11
|
Wellnitz D, Preisser G, Alba V, Dubail J, Schachenmayer J. Rise and Fall, and Slow Rise Again, of Operator Entanglement under Dephasing. PHYSICAL REVIEW LETTERS 2022; 129:170401. [PMID: 36332243 DOI: 10.1103/physrevlett.129.170401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The operator space entanglement entropy, or simply "operator entanglement" (OE), is an indicator of the complexity of quantum operators and of their approximability by matrix product operators (MPOs). We study the OE of the density matrix of 1D many-body models undergoing dissipative evolution. It is expected that, after an initial linear growth reminiscent of unitary quench dynamics, the OE should be suppressed by dissipative processes as the system evolves to a simple stationary state. Surprisingly, we find that this scenario breaks down for one of the most fundamental dissipative mechanisms: dephasing. Under dephasing, after the initial "rise and fall," the OE can rise again, increasing logarithmically at long times. Using a combination of MPO simulations for chains of infinite length and analytical arguments valid for strong dephasing, we demonstrate that this growth is inherent to a U(1) conservation law. We argue that in an XXZ spin model and a Bose-Hubbard model the OE grows universally as 1/4log_{2}t at long times and as 1/2log_{2}t for a Fermi-Hubbard model. We trace this behavior back to anomalous classical diffusion processes.
Collapse
Affiliation(s)
- D Wellnitz
- ISIS (UMR 7006) and CESQ, CNRS and Université de Strasbourg, 67000 Strasbourg, France
- IPCMS (UMR 7504), CNRS, 67000 Strasbourg, France
| | - G Preisser
- ISIS (UMR 7006) and CESQ, CNRS and Université de Strasbourg, 67000 Strasbourg, France
| | - V Alba
- Dipartimento di Fisica, Università di Pisa, and INFN Sezione di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - J Dubail
- ISIS (UMR 7006) and CESQ, CNRS and Université de Strasbourg, 67000 Strasbourg, France
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - J Schachenmayer
- ISIS (UMR 7006) and CESQ, CNRS and Université de Strasbourg, 67000 Strasbourg, France
- IPCMS (UMR 7504), CNRS, 67000 Strasbourg, France
| |
Collapse
|
12
|
Mallick K, Moriya H, Sasamoto T. Exact Solution of the Macroscopic Fluctuation Theory for the Symmetric Exclusion Process. PHYSICAL REVIEW LETTERS 2022; 129:040601. [PMID: 35939019 DOI: 10.1103/physrevlett.129.040601] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
We present the first exact solution for the time-dependent equations of the macroscopic fluctuation theory (MFT) for the symmetric simple exclusion process by combining a generalization of the canonical Cole-Hopf transformation with the inverse scattering method. For the step initial condition with two densities, we obtain exact and compact formulas for the optimal density profile and the response field that produce a required fluctuation, both at initial and final times. The large deviation function of the current is derived and coincides with the formula obtained previously by microscopic calculations. This provides the first analytic confirmation of the validity of the MFT for an interacting model in the time-dependent regime.
Collapse
Affiliation(s)
- Kirone Mallick
- Institut de Physique Théorique, CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette cedex, France
| | - Hiroki Moriya
- Department of physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Tomohiro Sasamoto
- Department of physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| |
Collapse
|
13
|
Nickelsen D, Touchette H. Noise correction of large deviations with anomalous scaling. Phys Rev E 2022; 105:064102. [PMID: 35854542 DOI: 10.1103/physreve.105.064102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
We present a path integral calculation of the probability distribution associated with the time-integrated moments of the Ornstein-Uhlenbeck process that includes the Gaussian prefactor in addition to the dominant path or instanton term obtained in the low-noise limit. The instanton term was obtained recently [D. Nickelsen and H. Touchette, Phys. Rev. Lett. 121, 090602 (2018)0031-900710.1103/PhysRevLett.121.090602] and shows that the large deviations of the time-integrated moments are anomalous in the sense that the logarithm of their distribution scales nonlinearly with the integration time. The Gaussian prefactor gives a correction to the low-noise approximation and leads us to define an instanton variance giving some insights as to how anomalous large deviations are created in time. The results are compared with simulations based on importance sampling, extending our previous results based on direct Monte Carlo simulations. We conclude by explaining why many of the standard analytical and numerical methods of large deviation theory fail in the case of anomalous large deviations.
Collapse
Affiliation(s)
- Daniel Nickelsen
- African Institute for Mathematical Sciences (AIMS), Muizenberg 7950, South Africa
| | - Hugo Touchette
- Department of Mathematical Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
14
|
Poncet A, Grabsch A, Bénichou O, Illien P. Exact time dependence of the cumulants of a tracer position in a dense lattice gas. Phys Rev E 2022; 105:054139. [PMID: 35706275 DOI: 10.1103/physreve.105.054139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
We develop a general method to calculate the exact time dependence of the cumulants of the position of a tracer particle in a dense lattice gas of hardcore particles. More precisely, we calculate the cumulant-generating function associated with the position of a tagged particle at arbitrary time, and at leading order in the density of vacancies on the lattice. In particular, our approach gives access to the short-time dynamics of the cumulants of the tracer position, a regime in which few results are known. The generality of our approach is demonstrated by showing that it goes beyond the case of a symmetric 1D random walk and covers the important situations of (1) a biased tracer, (2) comblike structures, and (3) d-dimensional situations.
Collapse
Affiliation(s)
- Alexis Poncet
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, 69342 Lyon, France
| | - Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Grabsch A, Poncet A, Rizkallah P, Illien P, Bénichou O. Exact closure and solution for spatial correlations in single-file diffusion. SCIENCE ADVANCES 2022; 8:eabm5043. [PMID: 35333581 PMCID: PMC8956262 DOI: 10.1126/sciadv.abm5043] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/02/2022] [Indexed: 05/29/2023]
Abstract
In single-file transport particles diffuse in narrow channels while not overtaking each other. it is a fundamental model for the tracer subdiffusion observed in confined systems, such as zeolites or carbon nanotubes. This anomalous behavior originates from strong bath-tracer correlations in one dimension. Despite extensive effort, these remained elusive, because they involve an infinite hierarchy of equations. For the symmetric exclusion process, a paradigmatic model of single-file diffusion, we break the hierarchy to unveil and solve a closed exact equation satisfied by these correlations. Beyond quantifying the correlations, the role of this key equation as a tool for interacting particle systems is further demonstrated by its application to out-of-equilibrium situations, other observables, and other representative single-file systems.
Collapse
Affiliation(s)
- Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Alexis Poncet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
- Université Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
16
|
Poncet A, Grabsch A, Illien P, Bénichou O. Generalized Correlation Profiles in Single-File Systems. PHYSICAL REVIEW LETTERS 2021; 127:220601. [PMID: 34889628 DOI: 10.1103/physrevlett.127.220601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Single-file diffusion refers to the motion in narrow channels of particles which cannot bypass each other, and leads to tracer subdiffusion. Most approaches to this celebrated many-body problem were restricted to the description of the tracer only. Here, we go beyond this standard description by introducing and providing analytical results for generalized correlation profiles (GCPs) in the frame of the tracer. In addition to controlling the statistical properties of the tracer, these quantities fully characterize the correlations between the tracer position and the bath particles density. Considering the hydrodynamic limit of the problem, we determine the scaling form of the GCPs with space and time, and unveil a nonmonotonic dependence with the distance to the tracer despite the absence of any asymmetry. Our analytical approach provides several exact results for the GCPs for paradigmatic models of single-file diffusion, such as Brownian particles with hardcore repulsion, the symmetric exclusion process and the random average process. The range of applicability of our approach is further illustrated by considering (i) extensions to general interactions between particles, (ii) the out-of-equilibrium situation of an initial step of density, and (iii) beyond the hydrodynamic limit, the GCPs at arbitrary time in the dense limit.
Collapse
Affiliation(s)
- Alexis Poncet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
- Univ. Lyon, ENS de Lyon, Univ. Claude Bernard, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Aurélien Grabsch
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
17
|
Farrell S, Rutenberg AD. Non-Fickian single-file pore transport. Phys Rev E 2021; 104:L032102. [PMID: 34654154 DOI: 10.1103/physreve.104.l032102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 11/07/2022]
Abstract
Single-file diffusion exhibits anomalously slow collective transport when particles are able to immobilize by binding and unbinding to the one-dimensional channel within which the particles diffuse. We have explored this system for short porelike channels using a symmetric exclusion process with fully stochastic dynamics. We find that for shorter channels, a non-Fickian regime emerges for slow binding kinetics. In this regime the average flux 〈Φ〉∼1/L^{3}, where L is the channel length in units of the particle size. We find that a two-state model describes this behavior well for sufficiently slow binding rates, where the binding rates determine the switching time between high-flux bursts of directed transport and low-flux leaky states. Each high-flux burst is Fickian with 〈Φ〉∼1/L. Longer systems are more often in a low-flux state, leading to the non-Fickian behavior.
Collapse
Affiliation(s)
- Spencer Farrell
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Andrew D Rutenberg
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
18
|
Poncet A, Bénichou O, Illien P. Cumulant generating functions of a tracer in quenched dense symmetric exclusion processes. Phys Rev E 2021; 103:L040103. [PMID: 34005907 DOI: 10.1103/physreve.103.l040103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/02/2021] [Indexed: 11/07/2022]
Abstract
The symmetric exclusion process (SEP), where particles hop on a one-dimensional lattice with the restriction that there can only be one particle per site, is a paradigmatic model of interacting particle systems. Recently, it has been shown that the nature of the initial conditions-annealed or quenched-has a quantitative impact on the long-time properties of tracer diffusion. However, so far, the cumulant generating function in the quenched case was only determined in the low-density limit and for the specific case of a half-filled system. Here, we derive it in the opposite dense limit with quenched initial conditions. Importantly, our approach also allows us to consider the nonequilibrium situations of (i) a biased tracer in the SEP and (ii) a symmetric tracer in a step of density. In the former situation, we show that the initial conditions have a striking impact, and change the very dependence of the cumulants on the bias.
Collapse
Affiliation(s)
- Alexis Poncet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
19
|
Bénichou O, Illien P, Oshanin G, Sarracino A, Voituriez R. Tracer diffusion in crowded narrow channels. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:443001. [PMID: 30211693 DOI: 10.1088/1361-648x/aae13a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We summarise different results on the diffusion of a tracer particle in lattice gases of hard-core particles with stochastic dynamics, which are confined to narrow channels-single-files, comb-like structures and quasi-one-dimensional channels with the width equal to several particle diameters. We show that in such geometries a surprisingly rich, sometimes even counter-intuitive, behaviour emerges, which is absent in unbounded systems. This is well-documented for the anomalous diffusion in single-files. Less known is the anomalous dynamics of a tracer particle in crowded branching single-files-comb-like structures, where several kinds of anomalous regimes take place. In narrow channels, which are broader than single-files, one encounters a wealth of anomalous behaviours in the case where the tracer particle is subject to a regular external bias: here, one observes an anomaly in the temporal evolution of the tracer particle velocity, super-diffusive at transient stages, and ultimately a giant diffusive broadening of fluctuations in the position of the tracer particle, as well as spectacular multi-tracer effects of self-clogging of narrow channels. Interactions between a biased tracer particle and a confined crowded environment also produce peculiar patterns in the out-of-equilibrium distribution of the environment particles, very different from the ones appearing in unbounded systems. For moderately dense systems, a surprising effect of a negative differential mobility takes place, such that the velocity of a biased tracer particle can be a non-monotonic function of the force. In some parameter ranges, both the velocity and the diffusion coefficient of a biased tracer particle can be non-monotonic functions of the density. We also survey different results obtained for a tracer particle diffusion in unbounded systems, which will permit a reader to have an exhaustively broad picture of the tracer diffusion in crowded environments.
Collapse
Affiliation(s)
- O Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (UMR 7600), 4 Place Jussieu, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
20
|
Nickelsen D, Touchette H. Anomalous Scaling of Dynamical Large Deviations. PHYSICAL REVIEW LETTERS 2018; 121:090602. [PMID: 30230852 DOI: 10.1103/physrevlett.121.090602] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/18/2018] [Indexed: 06/08/2023]
Abstract
The typical values and fluctuations of time-integrated observables of nonequilibrium processes driven in steady states are known to be characterized by large deviation functions, generalizing the entropy and free energy to nonequilibrium systems. The definition of these functions involves a scaling limit, similar to the thermodynamic limit, in which the integration time τ appears linearly, unless the process considered has long-range correlations, in which case τ is generally replaced by τ^{ξ} with ξ≠1. Here, we show that such an anomalous power-law scaling in time of large deviations can also arise without long-range correlations in Markovian processes as simple as the Langevin equation. We describe the mechanism underlying this scaling using path integrals and discuss its physical consequences for more general processes.
Collapse
Affiliation(s)
- Daniel Nickelsen
- National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa and Institute of Theoretical Physics, Department of Physics, University of Stellenbosch, Stellenbosch 7600, South Africa
| | - Hugo Touchette
- National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa and Institute of Theoretical Physics, Department of Physics, University of Stellenbosch, Stellenbosch 7600, South Africa
| |
Collapse
|
21
|
Wilson DB, Baker RE, Woodhouse FG. Topology-dependent density optima for efficient simultaneous network exploration. Phys Rev E 2018; 97:062301. [PMID: 30011429 DOI: 10.1103/physreve.97.062301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Indexed: 11/07/2022]
Abstract
A random search process in a networked environment is governed by the time it takes to visit every node, termed the cover time. Often, a networked process does not proceed in isolation but competes with many instances of itself within the same environment. A key unanswered question is how to optimize this process: How many concurrent searchers can a topology support before the benefits of parallelism are outweighed by competition for space? Here, we introduce the searcher-averaged parallel cover time (APCT) to quantify these economies of scale. We show that the APCT of the networked symmetric exclusion process is optimized at a searcher density that is well predicted by the spectral gap. Furthermore, we find that nonequilibrium processes, realized through the addition of bias, can support significantly increased density optima. Our results suggest alternative hybrid strategies of serial and parallel search for efficient information gathering in social interaction and biological transport networks.
Collapse
Affiliation(s)
- Daniel B Wilson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, United Kingdom
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcliffe Observatory Quarter, Oxford OX2 6GG, United Kingdom
| | - Francis G Woodhouse
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
22
|
Poncet A, Bénichou O, Démery V, Oshanin G. N-tag probability law of the symmetric exclusion process. Phys Rev E 2018; 97:062119. [PMID: 30011439 DOI: 10.1103/physreve.97.062119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/07/2022]
Abstract
The symmetric exclusion process (SEP), in which particles hop symmetrically on a discrete line with hard-core constraints, is a paradigmatic model of subdiffusion in confined systems. This anomalous behavior is a direct consequence of strong spatial correlations induced by the requirement that the particles cannot overtake each other. Even if this fact has been recognized qualitatively for a long time, up to now there has been no full quantitative determination of these correlations. Here we study the joint probability distribution of an arbitrary number of tagged particles in the SEP. We determine analytically its large-time limit for an arbitrary density of particles, and its full dynamics in the high-density limit. In this limit, we obtain the time-dependent large deviation function of the problem and unveil a universal scaling form shared by the cumulants.
Collapse
Affiliation(s)
- Alexis Poncet
- LPTMC, CNRS/Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Olivier Bénichou
- LPTMC, CNRS/Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| | - Vincent Démery
- Gulliver, CNRS, ESPCI Paris, PSL Research University, 10 rue Vauquelin, Paris, France.,Univ Lyon, ENS de Lyon, Univ Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Gleb Oshanin
- LPTMC, CNRS/Sorbonne Université, 4 Place Jussieu, F-75005 Paris, France
| |
Collapse
|