1
|
Fang P, Lin J. Soliton in Bose-Einstein condensates with helicoidal spin-orbit coupling under a Zeeman lattice. Phys Rev E 2024; 109:064219. [PMID: 39020925 DOI: 10.1103/physreve.109.064219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024]
Abstract
We investigate the existence and stability of higher-order bright solitons, stripe solitons, and bright-dark solitons in a Bose-Einstein condensate with helicoidal spin-orbit coupling under a Zeeman lattice using numerical methods. The higher-order bright solitons that exist in the first-finite energy gap are stable except near the edge. The stripe solitons with parity-time symmetry and pseudospin-parity symmetry have partially overlapping norm curves; they are stable in the lower edge of the first-finite energy gap. Additionally, the bright-dark solitons discovered in the system not only exist within energy gaps but also embed within energy bands as they have periodic backgrounds. These findings offer insights into the diversity and behavior of solitons within energy bands and contribute to a deeper understanding of their distribution and dynamics.
Collapse
|
2
|
Luo M, Chen NM, Liu M, Zhang ZX, Liu JH, Wu DX, Luo AP, Xu WC, Luo ZC. Impact of third-order dispersion on the dynamics of dissipative solitons in an ultrafast fiber laser. OPTICS EXPRESS 2024; 32:10059-10067. [PMID: 38571226 DOI: 10.1364/oe.518650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/24/2024] [Indexed: 04/05/2024]
Abstract
Dissipative solitons (DSs), due to the complex interplay among dispersion, nonlinear, gain and loss, illustrate abundant nonlinear dynamics behaviors. Especially, dispersion plays an important role in the research of DS dynamics in ultrafast fiber lasers. Previous studies have mainly focused on the effect of even-order dispersion, i.e., group velocity dispersion (GVD) and fourth-order dispersion. In fact, odd-order dispersions, such as third-order dispersion (TOD), also significantly influences the dynamics of DSs. However, due to the lack of dispersion engineering tools, few experimental researches in this domain have been reported. In this work, by employing a pulse shaper in ultrafast fiber laser, an in-depth exploration of the DS dynamics influenced by TOD was conducted. With the increase of TOD value, the stable single DS undergoes a splitting into two solitons and then enters explosion state, and ultimately evolves into a chaotic state. The laser operation state is correlated to dispersion profile, which could be controlled by TOD. Here, the positive dispersion at long-wavelength side will be gradually shifted to negative dispersion by increasing the TOD, where soliton effect will drive the transitions. These findings offer valuable insights into the nonlinear dynamics of ultrafast lasers and may also foster applications involving higher-order dispersion.
Collapse
|
3
|
Tabi CB, Wamba E, Nare E, Kofané TC. Interplay between spin-orbit couplings and residual interatomic interactions in the modulational instability of two-component Bose-Einstein condensates. Phys Rev E 2023; 107:044206. [PMID: 37198763 DOI: 10.1103/physreve.107.044206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/21/2023] [Indexed: 05/19/2023]
Abstract
The nonlinear dynamics induced by the modulation instability (MI) of a binary mixture in an atomic Bose-Einstein condensate (BEC) is investigated theoretically under the joint effects of higher-order residual nonlinearities and helicoidal spin-orbit (SO) coupling in a regime of unbalanced chemical potential. The analysis relies on a system of modified coupled Gross-Pitaevskii equations on which the linear stability analysis of plane-wave solutions is performed, from which an expression of the MI gain is obtained. A parametric analysis of regions of instability is carried out, where effects originating from the higher-order interactions and the helicoidal spin-orbit coupling are confronted under different combinations of the signs of the intra- and intercomponent interaction strengths. Direct numerical calculations on the generic model support our analytical predictions and show that the higher-order interspecies interaction and the SO coupling can balance each other suitably for stability to take place. Mainly, it is found that the residual nonlinearity preserves and reinforces the stability of miscible pairs of condensates with SO coupling. Additionally, when a miscible binary mixture of condensates with SO coupling is modulationally unstable, the presence of residual nonlinearity may help soften such instability. Our results finally suggest that MI-induced formation of stable solitons in mixtures of BECs with two-body attraction may be preserved by the residual nonlinearity even though the latter enhances the instability.
Collapse
Affiliation(s)
- Conrad Bertrand Tabi
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Etienne Wamba
- Faculty of Engineering and Technology, University of Buea, P.O. Box 63, Buea, Cameroon
- STIAS, Wallenberg Research Centre, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Emmanual Nare
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Timoléon Crépin Kofané
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Centre d'Excellence Africain en Technologies de l'Information et de la Communication, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
4
|
Mao N, Zhao LC. Exact analytical soliton solutions of N-component coupled nonlinear Schrödinger equations with arbitrary nonlinear parameters. Phys Rev E 2022; 106:064206. [PMID: 36671142 DOI: 10.1103/physreve.106.064206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022]
Abstract
Exact analytical soliton solutions play an important role in soliton fields. Soliton solutions were obtained with some special constraints on the nonlinear parameters in nonlinear coupled systems, but they usually do not hold in real physical systems. We successfully release all usual constrain conditions on nonlinear parameters for exact analytical vector soliton solutions in N-component coupled nonlinear Schrödinger equations. The exact soliton solutions and their existence condition are given explicitly. Applications of these results are discussed in several present experimental parameter regimes. The results would motivate experiments to observe more novel vector solitons in nonlinear optical fibers, Bose-Einstein condensates, and other nonlinear coupled systems.
Collapse
Affiliation(s)
- Ning Mao
- School of Physics, Northwest University, Xi'an, 710127, China; Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China; and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| | - Li-Chen Zhao
- School of Physics, Northwest University, Xi'an, 710127, China; Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China; and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710127, China
| |
Collapse
|
5
|
Li XX, Cheng RJ, Ma JL, Zhang AX, Xue JK. Solitary matter wave in spin-orbit-coupled Bose-Einstein condensates with helicoidal gauge potential. Phys Rev E 2021; 104:034214. [PMID: 34654141 DOI: 10.1103/physreve.104.034214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/13/2021] [Indexed: 11/07/2022]
Abstract
We analytically and numerically study the different types of solitary wave in the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). Adopting the multiscale perturbation method, we derive the analytical bright and dark solitary wave solutions of the system, and the stationary and moving bright (dark) solitary waves are obtained. The effects of spin-orbit coupling, the helicoidal gauge potential, the momentum, the Zeeman splitting, and the atomic interactions on the solitary wave types are discussed, and it is found that the coupling of these physical parameters can manipulate different types of solitary waves in the system. The results indicate that the helicoidal gauge potential breaks the symmetric properties of the energy band of the system and adjusts the energy band structure, thus further effecting the solitary wave properties, i.e., stationary or moving solitary wave, bright, or dark solitary wave. Correspondingly, the analytical predictions for exciting stationary or moving bright (dark) solitary wave in parameter space are obtained. In particular, the helicoidal gauge potential changes the solitary wave types drastically for the weak spin-orbit coupling, i.e., in the absence of the helicoidal gauge potential, only dark (bright) solitary wave solutions exist in the system with repulsive (attractive) atomic interaction; however, in the presence of the helicoidal gauge potential, both dark and bright solitary waves can exist in the system regardless of whether the atomic interaction is repulsive or attractive. In addition, we investigate the stability of solitary waves and obtain the stability regions of different types of solitary waves by applying the linear stability analysis. The dynamic evolution results of the solitary waves by the direct numerical simulation not only validate the linear stability analysis but also confirm the analytical prediction of the solitary waves. Finally, the collision effects between solitary waves are also presented by the numerical simulation. It is shown that the interactions between solitary waves in the system have both elastic and inelastic collisions, which are closely related to the position of solitary wave states in the linear energy band. Our results provide a potential way to adjust the types of solitary waves in BECs with helicoidal gauge potential.
Collapse
Affiliation(s)
- Xiao-Xun Li
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rui-Jin Cheng
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ji-Li Ma
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ai-Xia Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
6
|
Otlaadisa P, Tabi CB, Kofané TC. Modulation instability in helicoidal spin-orbit coupled open Bose-Einstein condensates. Phys Rev E 2021; 103:052206. [PMID: 34134292 DOI: 10.1103/physreve.103.052206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We introduce a vector form of the cubic complex Ginzburg-Landau equation describing the dynamics of dissipative solitons in the two-component helicoidal spin-orbit coupled open Bose-Einstein condensates (BECs), where the addition of dissipative interactions is done through coupled rate equations. Furthermore, the standard linear stability analysis is used to investigate theoretically the stability of continuous-wave (cw) solutions and to obtain an expression for the modulational instability gain spectrum. Using direct simulations of the Fourier space, we numerically investigate the dynamics of the modulational instability in the presence of helicoidal spin-orbit coupling. Our numerical simulations confirm the theoretical predictions of the linear theory as well as the threshold for amplitude perturbations.
Collapse
Affiliation(s)
- Phelo Otlaadisa
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Conrad Bertrand Tabi
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
| | - Timoléon Crépin Kofané
- Department of Physics and Astronomy, Botswana International University of Science and Technology, Private Mail Bag 16, Palapye, Botswana
- Laboratory of Mechanics, Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
- Centre d'Excellence Africain en Technologies de l'Information et de la Communication, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
7
|
Kartashov YV, Konotop VV. Stable Nonlinear Modes Sustained by Gauge Fields. PHYSICAL REVIEW LETTERS 2020; 125:054101. [PMID: 32794855 DOI: 10.1103/physrevlett.125.054101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
We reveal the universal effect of gauge fields on the existence, evolution, and stability of solitons in the spinor multidimensional nonlinear Schrödinger equation. Focusing on the two-dimensional case, we show that when gauge field can be split in a pure gauge and a nonpure gauge generating effective potential, the roles of these components in soliton dynamics are different: the localization characteristics of emerging states are determined by the curvature, while pure gauge affects the stability of the modes. Respectively the solutions can be exactly represented as the envelopes which may depend on the pure gauge implicitly through the effective potential, and modulating stationary carrier-mode states, which are independent of the curvature. Our central finding is that nonzero curvature can lead to the existence of unusual modes, in particular, enabling stable localized self-trapped fundamental and vortex-carrying states in media with constant repulsive interactions without additional external confining potentials and even in the expulsive external traps.
Collapse
Affiliation(s)
- Yaroslav V Kartashov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - Vladimir V Konotop
- Departamento de Física, Faculdade de Ciências, and Centro de Física Teórica e Computacional, Universidade de Lisboa, Campo Grande, Edifício C8, Lisboa 1749-016, Portugal
| |
Collapse
|
8
|
Fritsch AR, Lu M, Reid GH, Piñeiro AM, Spielman IB. Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates. PHYSICAL REVIEW. A 2020; 101:10.1103/PhysRevA.101.053629. [PMID: 34136731 PMCID: PMC8204714 DOI: 10.1103/physreva.101.053629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Established techniques for deterministically creating dark solitons in repulsively interacting atomic Bose-Einstein condensates (BECs) can only access a narrow range of soliton velocities. Because velocity affects the stability of individual solitons and the properties of soliton-soliton interactions, this technical limitation has hindered experimental progress. Here we create dark solitons in highly anisotropic cigar-shaped BECs with arbitrary position and velocity by simultaneously engineering the amplitude and phase of the condensate wave function, improving upon previous techniques which explicitly manipulated only the condensate phase. The single dark soliton solution present in true one-dimensional (1D) systems corresponds to the kink soliton in anisotropic three-dimensional systems and is joined by a host of additional dark solitons, including vortex ring and solitonic vortex solutions. We readily create dark solitons with speeds from zero to half the sound speed. The observed soliton oscillation frequency suggests that we imprinted solitonic vortices, which for our cigar-shaped system are the only stable solitons expected for these velocities. Our numerical simulations of 1D BECs show this technique to be equally effective for creating kink solitons when they are stable. We demonstrate the utility of this technique by deterministically colliding dark solitons with domain walls in two-component spinor BECs.
Collapse
|
9
|
Li XX, Cheng RJ, Zhang AX, Xue JK. Modulational instability of Bose-Einstein condensates with helicoidal spin-orbit coupling. Phys Rev E 2019; 100:032220. [PMID: 31639894 DOI: 10.1103/physreve.100.032220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Indexed: 06/10/2023]
Abstract
We theoretically study the modulation instability (MI) of the two-component helicoidal spin-orbit coupled Bose-Einstein condensates (BECs). The effects of spin-orbit coupling, the helicoidal gauge potential, and atomic interactions on MI are investigated. The results indicate that the presence of the helicoidal gauge potential breaks the symmetric properties of MI, strongly modifies the distribution of the MI region and the MI gain in parameters space, and the MI can be excited even when the miscibility condition for the atomic interactions is satisfied. Furthermore, the effect of the helicoidal gauge potential on MI is strongly coupled with the intra and intercomponent atomic interactions. Particularly, with the increase of the helical gauge potential, the MI gain increases for the repulsive atomic interaction case, however, the MI gain decreases for the attractive atomic interaction case. The direct numerical simulations are performed to support the analytical predictions, and a good agreement is found. Our results provide a potential way to manipulate the MI in BECs with helicoidal gauge potential.
Collapse
Affiliation(s)
- Xiao-Xun Li
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Rui-Jin Cheng
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ai-Xia Zhang
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
10
|
Abstract
We consider possibilities to control dynamics of solitons of two types, maintained by the combination of cubic attraction and spin-orbit coupling (SOC) in a two-component system, namely, semi-dipoles (SDs) and mixed modes (MMs), by making the relative strength of the cross-attraction, γ , a function of time periodically oscillating around the critical value, γ = 1 , which is an SD/MM stability boundary in the static system. The structure of SDs is represented by the combination of a fundamental soliton in one component and localized dipole mode in the other, while MMs combine fundamental and dipole terms in each component. Systematic numerical analysis reveals a finite bistability region for the SDs and MMs around γ = 1 , which does not exist in the absence of the periodic temporal modulation (“management”), as well as emergence of specific instability troughs and stability tongues for the solitons of both types, which may be explained as manifestations of resonances between the time-periodic modulation and intrinsic modes of the solitons. The system can be implemented in Bose-Einstein condensates (BECs), and emulated in nonlinear optical waveguides.
Collapse
|
11
|
Kartashov YV, Konotop VV, Modugno M, Sherman EY. Solitons in Inhomogeneous Gauge Potentials: Integrable and Nonintegrable Dynamics. PHYSICAL REVIEW LETTERS 2019; 122:064101. [PMID: 30822068 DOI: 10.1103/physrevlett.122.064101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
We introduce an exactly integrable nonlinear model describing the dynamics of spinor solitons in space-dependent matrix gauge potentials of rather general types. The model is shown to be gauge equivalent to the integrable system of vector nonlinear Schrödinger equations known as the Manakov model. As an example we consider a self-attractive Bose-Einstein condensate with random spin-orbit coupling (SOC). If Zeeman splitting is also included, the system becomes nonintegrable. We illustrate this by considering the random walk of a soliton in a disordered SOC landscape. While at zero Zeeman splitting the soliton moves without scattering along linear trajectories in the random SOC landscape; at nonzero splitting it exhibits strong scattering by the SOC inhomogeneities. For a large Zeeman splitting, the integrability is restored. In this sense, the Zeeman splitting serves as a parameter controlling the crossover between two different integrable limits.
Collapse
Affiliation(s)
- Y V Kartashov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow 108840, Russia
| | - V V Konotop
- Departamento de Física and Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C8, Lisboa 1749-016, Portugal
| | - M Modugno
- Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - E Ya Sherman
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
- Department of Physical Chemistry, The University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
| |
Collapse
|
12
|
Two-Dimensional Vortex Solitons in Spin-Orbit-Coupled Dipolar Bose–Einstein Condensates. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8101771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Solitons are self-trapped modes existing in various nonlinear systems. Creating stable solitons in two- and three-dimensional settings is a challenging goal in various branches of physics. Several methods have been developed theoretically and experimentally to achieve this, but few of them can support stable multi-dimensional solitons in free space. Recently, a new scheme using spin-orbit-coupling (SOC) has been proposed to create stable 2D solitons in Bose–Einstein condensates (BECs). This paper reviews recent theoretical progress on creating stable 2D solitons in spinor dipolar BEC with SOC, combined with long-range dipole-dipole interaction (DDI), Zeeman splitting (ZS) and contact nonlinearity, in free space. The continuous family of stable symmetric vortex solitons (SVS), asymmetric vortex solitons (AVS), as well as gap solitons (GS) is found via different settings. Their existence and stability conditions are summarized and discussed in detail. The mobility properties of these types of solitons are also addressed. For SVS, a potential method to manipulate its shape and mobility is investigated. These results are supposed to enrich our understanding of 2D solitons and help create multi-dimensional solitons in experiments.
Collapse
|
13
|
Zhao LC. Beating effects of vector solitons in Bose-Einstein condensates. Phys Rev E 2018; 97:062201. [PMID: 30011505 DOI: 10.1103/physreve.97.062201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 06/08/2023]
Abstract
We study the beating effects of solitons in multicomponent coupled Bose-Einstein condensate systems. Our analysis indicates that the period of beating behavior is determined by the energy eigenvalue difference in the effective quantum well induced by solitons, and the beating pattern is determined by the eigenstates of a quantum well, which are involved in the beating behavior. We show that the beating solitons correspond to linear superpositions of eigenstates in some quantum wells, and the correspondence relations are identical for solitons in both an attractive interaction and a repulsive interaction condensate. This provides a possible way to understand the beating effects of solitons for attractive and repulsive interaction cases in a unified way, based on the knowledge of quantum eigenstates. Moreover, our results demonstrate many different beating patterns for solitons in multicomponent coupled condensates, in sharp contrast to the beating dark soliton reported before. The beating behavior can be used to test the eigenvalue differences in certain quantum wells, and more abundant beating patterns are expected to exist in more component-coupled systems.
Collapse
Affiliation(s)
- Li-Chen Zhao
- School of Physics, Northwest University, Xi'an 710069, China and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China
| |
Collapse
|
14
|
Albares P, Díaz E, Cerveró JM, Domínguez-Adame F, Diez E, Estévez PG. Solitons in a nonlinear model of spin transport in helical molecules. Phys Rev E 2018; 97:022210. [PMID: 29548090 DOI: 10.1103/physreve.97.022210] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 11/07/2022]
Abstract
We study an effective integrable nonlinear model describing an electron moving along the axis of a deformable helical molecule. The helical conformation of dipoles in the molecular backbone induces an unconventional Rashba-like interaction that couples the electron spin with its linear momentum. In addition, a focusing nonlinearity arises from the electron-lattice interaction, enabling the formation of a variety of stable solitons such as bright solitons, breathers, and rogue waves. A thorough study of the soliton solutions for both focusing and defocusing nonlinear interaction is presented and discussed.
Collapse
Affiliation(s)
- P Albares
- NANOLAB, Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - E Díaz
- GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
| | - Jose M Cerveró
- NANOLAB, Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - F Domínguez-Adame
- GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
| | - E Diez
- NANOLAB, Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
| | - P G Estévez
- NANOLAB, Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
| |
Collapse
|
15
|
Tunable band-gap structure and gap solitons in the generalized Gross-Pitaevskii equation with a periodic potential. Sci Rep 2018; 8:1374. [PMID: 29358596 PMCID: PMC5778046 DOI: 10.1038/s41598-018-19756-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/08/2018] [Indexed: 11/08/2022] Open
Abstract
The tunable band-gap structure is fundamentally important in the dynamics of both linear and nonlinear modes trapped in a lattice because Bloch modes can only exist in the bands of the periodic system and nonlinear modes associating with them are usually confined to the gaps. We reveal that when a momentum operator is introduced into the Gross-Pitaevskii equation (GPE), the bandgap spectra of the periodic system can be shifted upward parabolically by the growth of the constant momentum coefficient. During this process, the band edges become asymmetric, in sharp contrast to the standard GPE with an external periodic potential. Extended complex Bloch modes with asymmetric profiles can be derived by applying a phase transformation to the symmetric profiles. We find that the inherent parity-time symmetry of the complex system is never broken with increasing momentum coefficient. Under repulsive interactions, solitons with different numbers of peaks bifurcating from the band edges are found in finite gaps. We also address the existence of embedded solitons in the generalized two-dimensional GPE. Linear stability analysis corroborated by direct evolution simulations demonstrates that multi-peaked solitons are almost completely stable in their entire existence domains.
Collapse
|
16
|
Yu ZF, Xue JK. The phase diagram and stability of trapped D-dimensional spin-orbit coupled Bose-Einstein condensate. Sci Rep 2017; 7:15635. [PMID: 29142281 PMCID: PMC5688179 DOI: 10.1038/s41598-017-15900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/05/2017] [Indexed: 11/08/2022] Open
Abstract
By variational analysis and direct numerical simulation, we study the phase transition and stability of a trapped D-dimensional Bose-Einstein condensate with spin-orbit coupling. The complete phase and stability diagrams of the system are presented in full parameter space, while the collapse dynamics induced by the mean-filed attraction and the mechanism for stabilizing the collapse by spin-orbit coupling are illustrated explicitly. Particularly, a full and deep understanding of the dependence of phase transition and stability mechanism on geometric dimensionality and external trap potential is revealed. It is shown that the spin-orbit coupling can modify the dispersion relations, which can balance the mean-filed attractive interaction and result in a spin polarized or overlapped state to stabilize the collapse, then changes the collapsing threshold dependent on the geometric dimensionality and external trap potential. Moreover, from 2D to 3D system, the mean-field attraction for inducing the collapse is reduced and the collapse speed is enhanced, namely, the collapse can be more easily stabilized in 2D system. That is, the collapse can be manipulated by adjusting the spin-orbit coupling, Raman coupling, geometric dimensionality and the external trap potential, which can provide a possible way for elaborating the collapse dynamics experimentally.
Collapse
Affiliation(s)
- Zi-Fa Yu
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China
| | - Ju-Kui Xue
- College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|