1
|
Travnikova O, Trinter F, Agåker M, Visentin G, Andersson J, Kjellsson L, Ismail I, Velasquez N, Koulentianos D, Harder M, Yin Z, Söderström J, Marchenko T, Guillemin R, McGinnis OD, Ågren H, Fritzsche S, Simon M, Rubensson JE, Nordgren J. Neutral Sulfur Atom Formation in Decay of Deep Core Holes in SF_{6}. PHYSICAL REVIEW LETTERS 2025; 134:063003. [PMID: 40021139 DOI: 10.1103/physrevlett.134.063003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 01/10/2025] [Indexed: 03/03/2025]
Abstract
Dissociation upon sulfur K-shell excitation or ionization of SF_{6} is studied by sulfur L-shell emission spectroscopy using synchrotron radiation and multiconfiguration Dirac-Hartree-Fock calculations of emission energies and transition rates. The decay path involves in particular Auger emission with the ejection of one or more electrons, leading to singly or multiply charged intermediate states. Nevertheless, the results of the study show that the observed photon emission at 151-152 eV following excitation at 2485-2489 eV originates dominantly from transitions in neutral sulfur. This clearly indicates that the central atom retains its electrons in a dissociation process where all fluorine atoms detach before the S 2p decay.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Florian Trinter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Molecular Physics, Faradayweg 4-6, 14195 Berlin, Germany
- Goethe-Universität Frankfurt, Institut für Kernphysik, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Marcus Agåker
- Uppsala Universitet, Department of Physics and Astronomy, Box 516, 751 20 Uppsala, Sweden
- Lund University, MAX IV Laboratory, PO Box 118, SE-22100 Lund, Sweden
| | - Giorgio Visentin
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Joakim Andersson
- Uppsala University, Division of Solid State Electronics, Department of Electrical Engineering, Box 65, SE-751 03 Uppsala, Sweden
| | - Ludvig Kjellsson
- Uppsala Universitet, Department of Physics and Astronomy, Box 516, 751 20 Uppsala, Sweden
| | - Iyas Ismail
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Nicolas Velasquez
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Dimitris Koulentianos
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Manuel Harder
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Zhong Yin
- Tohoku University, International Center for Synchrotron Radiation Innovation Smart, Sendai 980-8572, Japan
| | - Johan Söderström
- Uppsala Universitet, Department of Physics and Astronomy, Box 516, 751 20 Uppsala, Sweden
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Renaud Guillemin
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - O Dennis McGinnis
- Goethe-Universität Frankfurt, Institut für Kernphysik, Max-von-Laue-Straße 1, 60438 Frankfurt am Main, Germany
| | - Hans Ågren
- Uppsala Universitet, Department of Physics and Astronomy, Box 516, 751 20 Uppsala, Sweden
| | - Stephan Fritzsche
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany
- Helmholtz-Institut Jena, Fröbelstieg 3, 07743 Jena, Germany
- Friedrich-Schiller-Universität Jena, Theoretisch-Physikalisches Institut, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Jan-Erik Rubensson
- Uppsala Universitet, Department of Physics and Astronomy, Box 516, 751 20 Uppsala, Sweden
| | - Joseph Nordgren
- Uppsala Universitet, Department of Physics and Astronomy, Box 516, 751 20 Uppsala, Sweden
| |
Collapse
|
2
|
Travnikova O, Kimberg V, Cunha de Miranda B, Trinter F, Schöffler MS, Carniato S, Marchenko T, Guillemin R, Ismail I, Kastirke G, Piancastelli MN, Jahnke T, Dörner R, Simon M. X-ray-Induced Molecular Catapult: Ultrafast Dynamics Driven by Lightweight Linkages. J Phys Chem Lett 2024; 15:11883-11890. [PMID: 39569981 DOI: 10.1021/acs.jpclett.4c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In our work, we demonstrate that X-ray photons can initiate a "molecular catapult" effect, leading to the dissociation of chemical bonds and the formation of heavy fragments within just a few femtoseconds. We reconstruct the momenta of fragments from a three-body dissociation in bromochloromethane using the ion pair average (IPA) reference frame, demonstrating how light atomic groups, such as alkylene and alkanylene, can govern nuclear dynamics during the dissociation process, akin to projectiles released by a catapult. Supported by ab initio calculations, this work highlights the crucial role of low-reduced-mass vibrational modes in driving ultrafast chemical processes.
Collapse
Affiliation(s)
- Oksana Travnikova
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Victor Kimberg
- Division of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Barbara Cunha de Miranda
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Florian Trinter
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Stéphane Carniato
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Renaud Guillemin
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Iyas Ismail
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Maria Novella Piancastelli
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Till Jahnke
- European XFEL, D-22869 Schenefeld, Germany
- Max-Planck-Institut für Kernphysik, 69117 Heidelberg, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität, D-60438 Frankfurt am Main, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| |
Collapse
|
3
|
Pratt ST, Jacovella U, Gans B, Bozek JD, Holland DMP. Resonant Auger decay of dissociating CH3I near the I 4d threshold. J Chem Phys 2024; 160:074304. [PMID: 38375906 DOI: 10.1063/5.0190794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Resonant Auger processes provide a unique perspective on electronic interactions and excited vibrational and electronic states of molecular ions. Here, new data are presented on the resonant Auger decay of excited CH3I in the region just below the I 4d-1 ionization threshold. The resonances include the Rydberg series converging to the five spin-orbit and ligand-field split CH3I (I 4d-1) thresholds, as well as resonances corresponding to excitation from the I 4d5/2,3/2 orbitals into the σ* lowest unoccupied molecular orbital. This study focuses on participator decay that populates the lowest lying states of CH3I+, in particular, the X̃2E3/2 and 2E1/2 states, and on spectator decay that populates the lowest-lying (CH3I2+)σ* states of CH3I+. The CH3I (I 4d-1)σ* resonances are broad, and dissociation to CH3 + I competes with the autoionization of the core-excited states. Auger decay as the molecule dissociates produces a photoelectron spectrum with a long progression (up to v3+ ∼ 25) in the C-I stretching mode of the X̃2E3/2 and 2E1/2 states, providing insights into the shape of the dissociative core-excited surface. The observed spectator decay processes indicate that CH3I+ is formed on the repulsive wall of the lower-lying (CH3I2+)σ* potentials, and the photon-energy dependence of the processes provides insights into the relative slopes of the (4d-1)σ* and (CH3I2+)σ* potential surfaces. Data are also presented for the spectator decay of higher lying CH3I (I 4d-1)nl Rydberg resonances. Photoelectron angular distributions for the resonant Auger processes provide additional information that helps distinguish these processes from the direct ionization signal.
Collapse
Affiliation(s)
- Stephen T Pratt
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ugo Jacovella
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Bérenger Gans
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - John D Bozek
- Synchrotron SOLEIL, L'Orme des Merisiers, Départmentale 128, 91190 Saint-Aubin, France
| | - David M P Holland
- STFC, Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, United Kingdom
| |
Collapse
|
4
|
Koulentianos D, Carravetta V, Couto RC, Andersson J, Hult Roos A, Squibb RJ, Wallner M, Eland JHD, Simon M, Ågren H, Feifel R. Formation and relaxation of K −2 and K −2V double-core-hole states in n-butane. J Chem Phys 2022; 157:044306. [DOI: 10.1063/1.5135388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using a magnetic bottle multi-electron time-of-flight spectrometer in combination with synchrotron radiation, double-core-hole pre-edge and continuum states involving the K-shell of the carbon atoms in n-butane ( n-C4H10) have been identified, where the ejected core electron(s) and the emitted Auger electrons from the decay of such states have been detected in coincidence. An assignment of the main observed spectral features is based on the results of multi-configurational self-consistent field (MCSCF) calculations for the excitation energies and static exchange (STEX) calculations for energies and intensities. MCSCF results have been analyzed in terms of static and dynamic electron relaxation as well as electron correlation contributions to double-core-hole state ionization potentials. The analysis of applicability of the STEX method, which implements the one-particle picture toward the complete basis set limit, is motivated by the fact that it scales well toward large species. We find that combining the MCSCF and STEX techniques is a viable approach to analyze double-core-hole spectra.
Collapse
Affiliation(s)
- D. Koulentianos
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
- Laboratoire de Chimie Physique-Matière et Rayonnement, CNRS, Sorbonne Université, Cedex 05, F-75005 Paris, France
| | - V. Carravetta
- Institute of Chemical Physical Processes - CNR, via Moruzzi 1, 56124 Pisa, Italy
| | - R. C. Couto
- Department of Chemistry-Ångström, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden
| | - J. Andersson
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
| | - A. Hult Roos
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
| | - R. J. Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
| | - M. Wallner
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
| | - J. H. D. Eland
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, Oxford University, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - M. Simon
- Laboratoire de Chimie Physique-Matière et Rayonnement, CNRS, Sorbonne Université, Cedex 05, F-75005 Paris, France
| | - H. Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People’s Republic of China
| | - R. Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
5
|
Tenorio BNC, Voß TA, Bokarev SI, Decleva P, Coriani S. Multireference Approach to Normal and Resonant Auger Spectra Based on the One-Center Approximation. J Chem Theory Comput 2022; 18:4387-4407. [PMID: 35737643 PMCID: PMC9281372 DOI: 10.1021/acs.jctc.2c00252] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A methodology to calculate the decay rates of normal and resonant Auger processes in atoms and molecules based on the One-Center Approximation (OCA), using atomic radial Auger integrals, is implemented within the restricted-active-space self-consistent-field (RASSCF) and the multistate restricted-active-space perturbation theory of second order (MS-RASPT2) frameworks, as part of the OpenMolcas project. To ensure an unbiased description of the correlation and relaxation effects on the initial core excited/ionized states and the final cationic states, their wave functions are optimized independently, whereas the Auger matrix elements are computed with a biorthonormalized set of molecular orbitals within the state-interaction (SI) approach. As a decay of an isolated resonance, the computation of Auger intensities involves matrix elements with one electron in the continuum. However, treating ionization and autoionization problems can be overwhelmingly complicated for nonexperts, because of many peculiarities, in comparison to bound-state electronic structure theory. One of the advantages of our approach is that by projecting the intensities on the atomic center bearing the core hole and using precalculated atomic radial two-electron integrals, the Auger decay rates can be easily obtained directly with OpenMolcas, avoiding the need to interface it with external programs to compute matrix elements with the photoelectron wave function. The implementation is tested on the Ne atom, for which numerous theoretical and experimental results are available for comparison, as well as on a set of prototype closed- and open-shell molecules, namely, CO, N2, HNCO, H2O, NO2, and C4N2H4 (pyrimidine).
Collapse
Affiliation(s)
- Bruno Nunes Cabral Tenorio
- DTU
Chemistry − Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | - Torben Arne Voß
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
| | - Sergey I. Bokarev
- Institut
für Physik, Universität Rostock, Albert-Einstein-Str. 23-24, D-18059 Rostock, Germany
| | - Piero Decleva
- Istituto
Officina dei Materiali IOM−CNR and Dipartimento di Scienze
Chimiche e Farmaceutiche, Università
degli Studi di Trieste, I-34121 Trieste, Italy
| | - Sonia Coriani
- DTU
Chemistry − Department of Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
- Department
of Chemistry, Norwegian University of Science
and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
6
|
Goldsztejn G, Guillemin R, Marchenko T, Travnikova O, Céolin D, Journel L, Simon M, Piancastelli MN, Püttner R. Simulation of Auger decay dynamics in the hard X-ray regime: HCl as a showcase. Phys Chem Chem Phys 2022; 24:6590-6604. [PMID: 35234229 DOI: 10.1039/d1cp05662j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Auger decay after photoexcitation or photoemission of an electron from a deep inner shell in the hard X-ray regime can be rather complex, implying a multitude of phenomena such as multiple-step cascades, post-collision interaction (PCI), and electronic state-lifetime interference. Furthermore, in a molecule nuclear motion can also be triggered. Here we discuss a comprehensive theoretical method which allows us to analyze in great detail Auger spectra measured around an inner-shell ionization threshold. HCl photoexcited or photoionized around the deep Cl 1s threshold is chosen as a showcase. Our method allows calculating Auger cross sections considering the nature of the ground, intermediate and final states (bound or dissociative), and the evolution of the relaxation process, including both electron and nuclear dynamics. In particular, we show that we can understand and reproduce a so-called experimental 2D-map, consisting of a series of resonant Auger spectra measured at different photon energies, therefore obtaining a detailed picture of all above-mentioned dynamical phenomena at once.
Collapse
Affiliation(s)
- G Goldsztejn
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France.
| | - R Guillemin
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France. .,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - T Marchenko
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France. .,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - O Travnikova
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France. .,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - L Journel
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France. .,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - M Simon
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France. .,Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, F-91192 Gif-sur-Yvette Cedex, France
| | - M N Piancastelli
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France. .,Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - R Püttner
- Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany.
| |
Collapse
|
7
|
Simon M. Gas phase Photoemission studies in the hard X-ray domain. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent results obtained in gas phase photoemission studies are presented in this article with particular emphasis on recoil, Double Core Hole and Post Collision Interaction. These three important effects are not specific to the gas phase and could have more general applications in condensed matter studies.
Collapse
|
8
|
Koulentianos D, Carniato S, Püttner R, Martins JB, Travnikova O, Marchenko T, Journel L, Guillemin R, Ismail I, Céolin D, Piancastelli MN, Feifel R, Simon M. The O K -2V spectrum of CO: the influence of the second core-hole. Phys Chem Chem Phys 2021; 23:10780-10790. [PMID: 33908498 DOI: 10.1039/d1cp00607j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using synchrotron radiation in the tender X-ray regime, a photoelectron spectrum showing the formation of single site double-core-hole pre-edge states, involving the K shell of the O atom in CO, has been recorded by means of high-resolution electron spectroscopy. The experimentally observed structures have been simulated, interpreted and assigned, employing state-of-the-art ab initio quantum chemical calculations, on the basis of a theoretical model, accounting for their so-called direct or conjugate character. Features appearing above the double ionization threshold have been reproduced by taking into account the strong mixing between multi-excited and continuum states. The shift of the σ* resonance below the double ionization threshold, in combination with the non-negligible contributions of multi-excited configurations in the final states reached, gives rise to a series of avoided crossings between the different potential energy curves.
Collapse
Affiliation(s)
- D Koulentianos
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kalha C, Fernando NK, Bhatt P, Johansson FOL, Lindblad A, Rensmo H, Medina LZ, Lindblad R, Siol S, Jeurgens LPH, Cancellieri C, Rossnagel K, Medjanik K, Schönhense G, Simon M, Gray AX, Nemšák S, Lömker P, Schlueter C, Regoutz A. Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233001. [PMID: 33647896 DOI: 10.1088/1361-648x/abeacd] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.
Collapse
Affiliation(s)
- Curran Kalha
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Nathalie K Fernando
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Prajna Bhatt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Fredrik O L Johansson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Andreas Lindblad
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Håkan Rensmo
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - León Zendejas Medina
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Rebecka Lindblad
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Sebastian Siol
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Lars P H Jeurgens
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Claudia Cancellieri
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Kai Rossnagel
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Katerina Medjanik
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Gerd Schönhense
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Alexander X Gray
- Department of Physics, Temple University, Philadelphia, PA 19122, United States of America
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Patrick Lömker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
10
|
Boudjemia N, Jänkälä K, Püttner R, Marchenko T, Travnikova O, Guillemin R, Journel L, Ismail I, Koulentianos D, Kosugi S, Azuma Y, Patanen M, Huttula M, Céolin D, Piancastelli MN, Simon M. Electron spectroscopy and dynamics of HBr around the Br 1s -1 threshold. Phys Chem Chem Phys 2020; 22:26806-26818. [PMID: 33227117 DOI: 10.1039/d0cp04787b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A comprehensive electron spectroscopic study combined with partial electron yield measurements around the Br 1s ionization threshold of HBr at ≅13.482 keV is reported. In detail, the Br 1s-1 X-ray absorption spectrum, the 1s-1 photoelectron spectrum as well as the normal and resonant KLL Auger spectra are presented. Moreover, the L-shell Auger spectra measured with photon energies below and above the Br 1s-1 ionization energy as well as on top of the Br 1s-1σ* resonance are shown. The latter two Auger spectra represent the second step of the decay cascade subsequent to producing a Br 1s-1 core hole. The measurements provide information on the electron and nuclear dynamics of deep core-excited states of HBr on the femtosecond timescale. From the different spectra the lifetime broadening of the Br 1s-1 single core-hole state as well as of the Br(2s-2,2s-12p-1,2p-2) double core-hole states are extracted and discussed. The slope of the strongly dissociative HBr 2p-2σ* potential energy curve is found to be about -13.60 eV Å-1. The interpretation of the experimental data, and in particular the assignment of the spectral features in the KLL and L-shell Auger spectra, is supported by relativistic calculations for HBr molecule and atomic Br.
Collapse
Affiliation(s)
- Nacer Boudjemia
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
12
|
Piancastelli MN, Marchenko T, Guillemin R, Journel L, Travnikova O, Ismail I, Simon M. Hard x-ray spectroscopy and dynamics of isolated atoms and molecules: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:016401. [PMID: 31694003 DOI: 10.1088/1361-6633/ab5516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present here a review of the most significant recent achievements in the field of HAXPES (hard x-ray photoelectron spectroscopy) on isolated atoms and molecules, and related spectroscopies. The possibility of conducting hard x-ray photoexcitation and photoionization experiments under state-of-the art conditions in terms of photon and electron kinetic energy resolution has become available only in the last few years. HAXPES has then produced structural and dynamical information at the level of detail already reached in the VUV and soft-x-ray ranges. The much improved experimental conditions have allowed extending to the hard x-ray range some methods well established in soft x-ray spectroscopies. Investigations of electron and nuclear dynamics in the femtosecond (fs, 10-15 s) and even attosecond (as, 10-18 s) regime have become feasible. Complex relaxation phenomena following deep-core ionization can now be enlightened in great detail. Other phenomena like e.g. recoil-induced effects are much more important in fast photoelectron emission, which can be induced by hard x-rays. Furthermore, a new kind of ionic states with double core holes can be observed by x-ray single-photon absorption. Future perspectives are also discussed.
Collapse
Affiliation(s)
- M N Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France. Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
Koulentianos D, Carniato S, Püttner R, Goldsztejn G, Marchenko T, Travnikova O, Journel L, Guillemin R, Céolin D, Rocco MLM, Piancastelli MN, Feifel R, Simon M. Double-core-hole states in CH3CN: Pre-edge structures and chemical-shift contributions. J Chem Phys 2018; 149:134313. [DOI: 10.1063/1.5047854] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D. Koulentianos
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
| | - S. Carniato
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
| | - R. Püttner
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
| | - G. Goldsztejn
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
| | - T. Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - O. Travnikova
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - L. Journel
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - R. Guillemin
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - D. Céolin
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - M. L. M. Rocco
- Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - M. N. Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - R. Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-412 96 Gothenburg, Sweden
| | - M. Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris Cedex 05, France
- Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
14
|
Santos ACF, Vasconcelos DN, MacDonald MA, Sant’Anna MM, Tenório BNC, Rocha AB, Morcelle V, Appathurai N, Zuin L. Atomic versus molecular Auger decay in CH2Cl2 and CD2Cl2 molecules. J Chem Phys 2018; 149:054303. [DOI: 10.1063/1.5030644] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. C. F. Santos
- Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | - D. N. Vasconcelos
- Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | - M. A. MacDonald
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - M. M. Sant’Anna
- Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972 Rio de Janeiro, RJ, Brazil
| | - B. N. C. Tenório
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ, Brazil
| | - A. B. Rocha
- Instituto de Química, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, RJ, Brazil
| | - V. Morcelle
- Departamento de Física, Universidade Federal Rural do Rio de Janeiro, CEP 23890-000 Seropédica, RJ, Brazil
| | - N. Appathurai
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| | - L. Zuin
- Canadian Light Source, Inc., Saskatoon, Saskatchewan S7N 2V3, Canada
| |
Collapse
|
15
|
Inhester L, Oostenrijk B, Patanen M, Kokkonen E, Southworth SH, Bostedt C, Travnikova O, Marchenko T, Son SK, Santra R, Simon M, Young L, Sorensen SL. Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation. J Phys Chem Lett 2018; 9:1156-1163. [PMID: 29444399 DOI: 10.1021/acs.jpclett.7b03235] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In many cases fragmentation of molecules upon inner-shell ionization is very unspecific with respect to the initially localized ionization site. Often this finding is interpreted in terms of an equilibration of internal energy into vibrational degrees of freedom after Auger decay. We investigate the X-ray photofragmentation of ethyl trifluoroacetate upon core electron ionization at environmentally distinct carbon sites using photoelectron-photoion-photoion coincidence measurements and ab initio electronic structure calculations. For all four carbon ionization sites, the Auger decay weakens the same bonds and transfers the two charges to opposite ends of the molecule, which leads to a rapid dissociation into three fragments, followed by further fragmentation steps. The lack of site specificity is attributed to the character of the dicationic electronic states after Auger decay instead of a fast equilibration of internal energy.
Collapse
Affiliation(s)
- Ludger Inhester
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Bart Oostenrijk
- Department of Physics, Lund University , Box 118, 221 00 Lund, Sweden
| | - Minna Patanen
- Faculty of Science, Nano and Molecular Systems Research Unit, University of Oulu , Box 3000, FIN-90014 Oulu, Finland
| | - Esko Kokkonen
- Faculty of Science, Nano and Molecular Systems Research Unit, University of Oulu , Box 3000, FIN-90014 Oulu, Finland
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Christoph Bostedt
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Physics, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Oksana Travnikova
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, LCPMR , F-75005 Paris, France
| | - Tatiana Marchenko
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, LCPMR , F-75005 Paris, France
| | - Sang-Kil Son
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Robin Santra
- Center for Free-Electron Laser Science, DESY , Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging , Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, University of Hamburg , Jungiusstrasse 9, 20355 Hamburg, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, LCPMR , F-75005 Paris, France
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
- Department of Physics and James Franck Institute, The University of Chicago , Chicago, Illinois 60637, United States
| | - Stacey L Sorensen
- Department of Physics, Lund University , Box 118, 221 00 Lund, Sweden
| |
Collapse
|
16
|
Marchenko T, Goldsztejn G, Jänkälä K, Travnikova O, Journel L, Guillemin R, Sisourat N, Céolin D, Žitnik M, Kavčič M, Bučar K, Mihelič A, de Miranda BC, Ismail I, Lago AF, Gel'mukhanov F, Püttner R, Piancastelli MN, Simon M. Potential Energy Surface Reconstruction and Lifetime Determination of Molecular Double-Core-Hole States in the Hard X-Ray Regime. PHYSICAL REVIEW LETTERS 2017; 119:133001. [PMID: 29341715 DOI: 10.1103/physrevlett.119.133001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/07/2023]
Abstract
A combination of resonant inelastic x-ray scattering and resonant Auger spectroscopy provides complementary information on the dynamic response of resonantly excited molecules. This is exemplified for CH_{3}I, for which we reconstruct the potential energy surface of the dissociative I 3d^{-2} double-core-hole state and determine its lifetime. The proposed method holds a strong potential for monitoring the hard x-ray induced electron and nuclear dynamic response of core-excited molecules containing heavy elements, where ab initio calculations of potential energy surfaces and lifetimes remain challenging.
Collapse
Affiliation(s)
- T Marchenko
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - G Goldsztejn
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Max-Born-Institut, Max-Born-Straße 2A, 12489 Berlin, Germany
| | - K Jänkälä
- Nano and Molecular Systems Research Unit, University of Oulu, P.O. Box 3000, 90014 Oulu, Finland
| | - O Travnikova
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - L Journel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - R Guillemin
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - N Sisourat
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - D Céolin
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - M Žitnik
- Jožef Stefan Institute, SI-1001 Ljubljana, Slovenia
| | - M Kavčič
- Jožef Stefan Institute, SI-1001 Ljubljana, Slovenia
| | - K Bučar
- Jožef Stefan Institute, SI-1001 Ljubljana, Slovenia
| | - A Mihelič
- Jožef Stefan Institute, SI-1001 Ljubljana, Slovenia
| | - B Cunha de Miranda
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - I Ismail
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - A F Lago
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC), 09210-580 Santo André, SP, Brazil
| | - F Gel'mukhanov
- Theoretical Chemistry & Biology, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - R Püttner
- Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - M N Piancastelli
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Department of Physics and Astronomy, Uppsala University, PO Box 516, SE-751 20 Uppsala, Sweden
| | - M Simon
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|