1
|
Portugal P, Brange F, Flindt C. Heat Pulses in Electron Quantum Optics. PHYSICAL REVIEW LETTERS 2024; 132:256301. [PMID: 38996267 DOI: 10.1103/physrevlett.132.256301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
Electron quantum optics aims to realize ideas from the quantum theory of light with the role of photons being played by charge pulses in electronic conductors. Experimentally, the charge pulses are excited by time-dependent voltages; however, one could also generate heat pulses by heating and cooling an electrode. Here, we explore this intriguing idea by formulating a Floquet scattering theory of heat pulses in mesoscopic conductors. The adiabatic emission of heat pulses leads to a heat current that in linear response is given by the thermal conductance quantum. However, we also find a high-frequency component, which ensures that the fluctuation-dissipation theorem for heat currents, whose validity has been debated, is fulfilled. The heat pulses are uncharged, and we probe their electron-hole content by evaluating the partition noise in the outputs of a quantum point contact. We also employ a Hong-Ou-Mandel setup to examine if the pulses bunch or antibunch. Finally, to generate an electric current, we use a Mach-Zehnder interferometer that breaks the electron-hole symmetry and thereby enables a thermoelectric effect. Our Letter paves the way for systematic investigations of heat pulses in mesoscopic conductors, and it may stimulate future experiments.
Collapse
|
2
|
Kuo DMT, Chang YC. Contact Effects on Thermoelectric Properties of Textured Graphene Nanoribbons. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193357. [PMID: 36234484 PMCID: PMC9565821 DOI: 10.3390/nano12193357] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 06/12/2023]
Abstract
The transport and thermoelectric properties of finite textured graphene nanoribbons (t-GNRs) connected to electrodes with various coupling strengths are theoretically studied in the framework of the tight-binding model and Green's function approach. Due to quantum constriction induced by the indented edges, such t-GNRs behave as serially coupled graphene quantum dots (SGQDs). These types of SGQDs can be formed by tailoring zigzag GNRs (ZGNRs) or armchair GNRs (AGNRs). Their bandwidths and gaps can be engineered by varying the size of the quantum dot and the neck width at indented edges. Effects of defects and junction contact on the electrical conductance, Seebeck coefficient, and electron thermal conductance of t-GNRs are calculated. When a defect occurs in the interior site of textured ZGNRs (t-ZGNRs), the maximum power factor within the central gap or near the band edges is found to be insensitive to the defect scattering. Furthermore, we found that SGQDs formed by t-ZGNRs have significantly better electrical power outputs than those of textured ANGRs due to the improved functional shape of the transmission coefficient in t-ZGNRs. With a proper design of contact, the maximum power factor (figure of merit) of t-ZGNRs could reach 90% (95%) of the theoretical limit.
Collapse
Affiliation(s)
- David M. T. Kuo
- Department of Electrical Engineering and Department of Physics, National Central University, Chungli 320, Taiwan
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academic Sinica, Taipei 11529, Taiwan
- Department of Physics, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
3
|
Kotilahti J, Burset P, Moskalets M, Flindt C. Multi-Particle Interference in an Electronic Mach-Zehnder Interferometer. ENTROPY (BASEL, SWITZERLAND) 2021; 23:736. [PMID: 34200952 PMCID: PMC8230567 DOI: 10.3390/e23060736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022]
Abstract
The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach-Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach-Zehnder interferometer.
Collapse
Affiliation(s)
- Janne Kotilahti
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland; (J.K.); (C.F.)
| | - Pablo Burset
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland; (J.K.); (C.F.)
- Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Michael Moskalets
- Department of Metal and Semiconductor Physics, NTU “Kharkiv Polytechnic Institute”, 61002 Kharkiv, Ukraine;
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland; (J.K.); (C.F.)
| |
Collapse
|
4
|
Gresta D, Real M, Arrachea L. Optimal Thermoelectricity with Quantum Spin Hall Edge States. PHYSICAL REVIEW LETTERS 2019; 123:186801. [PMID: 31763901 DOI: 10.1103/physrevlett.123.186801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/16/2019] [Indexed: 06/10/2023]
Abstract
We study the thermoelectric properties of a Kramers pair of helical edge states of the quantum spin Hall effect coupled to a nanomagnet with a component of the magnetization perpendicular to the direction of the spin-orbit interaction of the host. We show that the transmission function of this structure has the desired qualities for optimal thermoelectric performance in the quantum coherent regime. For a single magnetic domain, there is a power generation close to the optimal bound. In a configuration with two magnetic domains with different orientations, pronounced peaks in the transmission functions and resonances lead to a high figure of merit. We provide estimates for the fabrication of this device with HgTe quantum-well topological insulators.
Collapse
Affiliation(s)
- Daniel Gresta
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| | - Mariano Real
- Instituto Nacional de Tecnologia Industrial, INTI, Avenida General Paz 5445, 1650 Buenos Aires, Argentina
| | - Liliana Arrachea
- International Center for Advanced Studies, ECyT-UNSAM, Campus Miguelete, 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
5
|
Ronetti F, Acciai M, Ferraro D, Rech J, Jonckheere T, Martin T, Sassetti M. Symmetry Properties of Mixed and Heat Photo-Assisted Noise in the Quantum Hall Regime. ENTROPY 2019; 21:e21080730. [PMID: 33267444 PMCID: PMC7515259 DOI: 10.3390/e21080730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 11/23/2022]
Abstract
We investigate the photo-assisted charge-heat mixed noise and the heat noise generated by periodic drives in Quantum Hall states belonging to the Laughlin sequence. Fluctuations of the charge and heat currents are due to weak backscattering induced in a quantum point contact geometry and are evaluated at the lowest order in the tunneling amplitude. Focusing on the cases of a cosine and Lorentzian periodic drive, we show that the different symmetries of the photo-assisted tunneling amplitudes strongly affect the overall profile of these quantities as a function of the AC and DC voltage contributions, which can be tuned independently in experiments.
Collapse
Affiliation(s)
- Flavio Ronetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - Matteo Acciai
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
- SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
| | - Dario Ferraro
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
- Correspondence:
| | - Jérôme Rech
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | | | - Thierry Martin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - Maura Sassetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- SPIN-CNR, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
6
|
Koley S, Sen S, Chakrabarti S. Vanishing Thermal Conductance of Carbon Nanotube upon Encapsulation by Zigzag Sulfur Chain. J Phys Chem Lett 2018; 9:3105-3109. [PMID: 29788721 DOI: 10.1021/acs.jpclett.8b01121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report an unprecedented enhancement of thermoelectric properties of a single-walled carbon nanotube upon encapsulation of a zigzag sulfur chain inside the nanocore. Our calculations on a 70 Å long [5, 5] carbon nanotube reveal that the encapsulation of zigzag sulfur chain will lead to a 107% increase in the thermoelectric figure of merit and concomitant quenching of thermal conductance by 90%. We have noticed that finite transmission gradient at the Fermi level combined with destructive quantum interference at the sulfur sites and structural conformation-dependent scattering-induced damping of phonon transmission are attributed to the dramatic improvement of thermoelectric behavior of this material. This finding indeed will help circumvent the long-standing problem in the fabrication of carbon-nanotube-based ultrafast device.
Collapse
Affiliation(s)
- Sayantanu Koley
- Department of Chemistry , University of Calcutta , 92, A. P. C. Road , Kolkata 700009 , India
| | - Sabyasachi Sen
- Department of Physics , JIS College of Engineering , Block-A, Phase-III , Kalyani, Nadia PIN-741235 , India
| | - Swapan Chakrabarti
- Department of Chemistry , University of Calcutta , 92, A. P. C. Road , Kolkata 700009 , India
| |
Collapse
|
7
|
Brandner K, Hanazato T, Saito K. Thermodynamic Bounds on Precision in Ballistic Multiterminal Transport. PHYSICAL REVIEW LETTERS 2018; 120:090601. [PMID: 29547314 DOI: 10.1103/physrevlett.120.090601] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/28/2017] [Indexed: 06/08/2023]
Abstract
For classical ballistic transport in a multiterminal geometry, we derive a universal trade-off relation between total dissipation and the precision, at which particles are extracted from individual reservoirs. Remarkably, this bound becomes significantly weaker in the presence of a magnetic field breaking time-reversal symmetry. By working out an explicit model for chiral transport enforced by a strong magnetic field, we show that our bounds are tight. Beyond the classical regime, we find that, in quantum systems far from equilibrium, the correlated exchange of particles makes it possible to exponentially reduce the thermodynamic cost of precision.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Taro Hanazato
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
8
|
Brandner K, Bauer M, Seifert U. Universal Coherence-Induced Power Losses of Quantum Heat Engines in Linear Response. PHYSICAL REVIEW LETTERS 2017; 119:170602. [PMID: 29219425 DOI: 10.1103/physrevlett.119.170602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 06/07/2023]
Abstract
We identify a universal indicator for the impact of coherence on periodically driven quantum devices by dividing their power output into a classical contribution and one stemming solely from superpositions. Specializing to Lindblad dynamics and small driving amplitudes, we derive general upper bounds on both the coherent and the total power of cyclic heat engines. These constraints imply that, for sufficiently slow driving, coherence inevitably leads to power losses in the linear-response regime. We illustrate our theory by working out the experimentally relevant example of a single-qubit engine.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Michael Bauer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|