1
|
Kowalski A, Reitner M, Del Re L, Chatzieleftheriou M, Amaricci A, Toschi A, De' Medici L, Sangiovanni G, Schäfer T. Thermodynamic Stability at the Two-Particle Level. PHYSICAL REVIEW LETTERS 2024; 133:066502. [PMID: 39178463 DOI: 10.1103/physrevlett.133.066502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/25/2024]
Abstract
We show how the stability conditions for a system of interacting fermions that conventionally involve variations of thermodynamic potentials can be rewritten in terms of one- and two-particle correlators. We illustrate the applicability of this alternative formulation in a multiorbital model of strongly correlated electrons at finite temperatures, inspecting the lowest eigenvalues of the generalized local charge susceptibility in proximity of the phase-separation region. Additionally to the conventional unstable branches, we address unstable solutions possessing a positive, rather than negative, compressibility. Our stability conditions require no derivative of free-energy functions with conceptual and practical advantages for actual calculations and offer a clear-cut criterion for analyzing the thermodynamics of correlated complex systems.
Collapse
Affiliation(s)
- A Kowalski
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Wagner N, Crippa L, Amaricci A, Hansmann P, Klett M, König EJ, Schäfer T, Sante DD, Cano J, Millis AJ, Georges A, Sangiovanni G. Mott insulators with boundary zeros. Nat Commun 2023; 14:7531. [PMID: 37985660 PMCID: PMC10662449 DOI: 10.1038/s41467-023-42773-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
The topological classification of electronic band structures is based on symmetry properties of Bloch eigenstates of single-particle Hamiltonians. In parallel, topological field theory has opened the doors to the formulation and characterization of non-trivial phases of matter driven by strong electron-electron interaction. Even though important examples of topological Mott insulators have been constructed, the relevance of the underlying non-interacting band topology to the physics of the Mott phase has remained unexplored. Here, we show that the momentum structure of the Green's function zeros defining the "Luttinger surface" provides a topological characterization of the Mott phase related, in the simplest description, to the one of the single-particle electronic dispersion. Considerations on the zeros lead to the prediction of new phenomena: a topological Mott insulator with an inverted gap for the bulk zeros must possess gapless zeros at the boundary, which behave as a form of "topological antimatter" annihilating conventional edge states. Placing band and Mott topological insulators in contact produces distinctive observable signatures at the interface, revealing the otherwise spectroscopically elusive Green's function zeros.
Collapse
Affiliation(s)
- N Wagner
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, 97074, Würzburg, Germany
| | - L Crippa
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074, Würzburg, Germany
| | - A Amaricci
- CNR-IOM, Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Via Bonomea 265, 34136, Trieste, Italy
| | - P Hansmann
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - M Klett
- Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - E J König
- Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - T Schäfer
- Max-Planck-Institut für Festkörperforschung, Heisenbergstr. 1, 70569, Stuttgart, Germany
| | - D Di Sante
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
| | - J Cano
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York, NY, 11974, USA
| | - A J Millis
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - A Georges
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA
- Collège de France, PSL University, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211, Geneva, Switzerland
- CPHT, CNRS, École Polytechnique, IP Paris, F-91128, Palaiseau, France
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
3
|
Marie A, Loos PF. A Similarity Renormalization Group Approach to Green's Function Methods. J Chem Theory Comput 2023; 19:3943-3957. [PMID: 37311565 PMCID: PMC10339683 DOI: 10.1021/acs.jctc.3c00281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 06/15/2023]
Abstract
The family of Green's function methods based on the GW approximation has gained popularity in the electronic structure theory thanks to its accuracy in weakly correlated systems combined with its cost-effectiveness. Despite this, self-consistent versions still pose challenges in terms of convergence. A recent study [Monino and Loos J. Chem. Phys. 2022, 156, 231101.] has linked these convergence issues to the intruder-state problem. In this work, a perturbative analysis of the similarity renormalization group (SRG) approach is performed on Green's function methods. The SRG formalism enables us to derive, from first-principles, the expression of a naturally static and Hermitian form of the self-energy that can be employed in quasiparticle self-consistent GW (qsGW) calculations. The resulting SRG-based regularized self-energy significantly accelerates the convergence of qsGW calculations, slightly improves the overall accuracy, and is straightforward to implement in existing code.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Pierre-François Loos
- Laboratoire de Chimie et
Physique Quantiques (UMR 5626), Université
de Toulouse, CNRS, UPS, 31400 Toulouse, France
| |
Collapse
|
4
|
Kim AJ, Lenk K, Li J, Werner P, Eckstein M. Vertex-Based Diagrammatic Treatment of Light-Matter-Coupled Systems. PHYSICAL REVIEW LETTERS 2023; 130:036901. [PMID: 36763380 DOI: 10.1103/physrevlett.130.036901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 12/05/2022] [Indexed: 06/18/2023]
Abstract
We propose a diagrammatic Monte Carlo approach for quantum impurity models, which can be regarded as a generalization of the strong-coupling expansion for fermionic impurity models. The algorithm is based on a self-consistently computed three-point vertex and a stochastically sampled four-point vertex, and it allows one to obtain numerically exact results in a wide parameter regime. The performance of the algorithm is demonstrated with applications to a spin-boson model representing an emitter in a waveguide. As a function of the coupling strength, the spin exhibits a delocalization-localization crossover at low temperatures, signaling a qualitative change in the real-time relaxation. In certain parameter regimes, the response functions of the emitter coupled to the electromagnetic continuum can be described by an effective Rabi model with appropriately defined parameters. We also discuss the spatial distribution of the photon density around the emitter.
Collapse
Affiliation(s)
- Aaram J Kim
- Department of Physics, University of Fribourg, 1700 Fribourg Switzerland
| | - Katharina Lenk
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jiajun Li
- Department of Physics, University of Fribourg, 1700 Fribourg Switzerland
- Paul Scherrer Institute, Condensed Matter Theory, 5352 PSI Villigen, Switzerland
| | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg Switzerland
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Fraboulet K, Heinzelmann S, Bonetti PM, Al-Eryani A, Vilardi D, Toschi A, Andergassen S. Single-boson exchange functional renormalization group application to the two-dimensional Hubbard model at weak coupling. THE EUROPEAN PHYSICAL JOURNAL. B 2022; 95:202. [PMID: 36573248 PMCID: PMC9780170 DOI: 10.1140/epjb/s10051-022-00438-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Abstract We illustrate the algorithmic advantages of the recently introduced single-boson exchange (SBE) formulation for the one-loop functional renormalization group (fRG), by applying it to the two-dimensional Hubbard model on a square lattice. We present a detailed analysis of the fermion-boson Yukawa couplings and of the corresponding physical susceptibilities by studying their evolution with temperature and interaction strength, both at half filling and finite doping. The comparison with the conventional fermionic fRG decomposition shows that the rest functions of the SBE algorithm, which describe correlation effects beyond the SBE processes, play a negligible role in the weak-coupling regime above the pseudo-critical temperature, in contrast to the rest functions of the conventional fRG. Remarkably, they remain finite also at the pseudo-critical transition, whereas the corresponding rest functions of the conventional fRG implementation diverge. As a result, the SBE formulation of the fRG flow allows for a substantial reduction of the numerical effort in the treatment of the two-particle vertex function, paving a promising route for future multiboson and multiloop extensions. Graphical abstract
Collapse
Affiliation(s)
- Kilian Fraboulet
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Sarah Heinzelmann
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Pietro M. Bonetti
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | - Aiman Al-Eryani
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Demetrio Vilardi
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany
| | | | - Sabine Andergassen
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
6
|
Marino J, Eckstein M, Foster MS, Rey AM. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:116001. [PMID: 36075190 DOI: 10.1088/1361-6633/ac906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew S Foster
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Rice Center for Quantum Materials, Rice University, Houston, TX 77005, United States of America
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics,University of Colorado, Boulder, CO 80309, United States of America
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
7
|
Schäfer T, Toschi A. How to read between the lines of electronic spectra: the diagnostics of fluctuations in strongly correlated electron systems. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:214001. [PMID: 33652424 DOI: 10.1088/1361-648x/abeb44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
While calculations and measurements of single-particle spectral properties often offer the most direct route to study correlated electron systems, the underlying physics may remain quite elusive, if information at higher particle levels is not explicitly included. Here, we present a comprehensive overview of the different approaches which have been recently developed and applied to identify the dominant two-particle scattering processes controlling the shape of the one-particle spectral functions and, in some cases, of the physical response of the system. In particular, we will discuss the underlying general idea, the common threads and the specific peculiarities of all the proposed approaches. While all of them rely on a selective analysis of the Schwinger-Dyson (or the Bethe-Salpeter) equation, the methodological differences originate from the specific two-particle vertex functions to be computed and decomposed. Finally, we illustrate the potential strength of these methodologies by means of their applications the two-dimensional Hubbard model, and we provide an outlook over the future perspective and developments of this route for understanding the physics of correlated electrons.
Collapse
Affiliation(s)
- Thomas Schäfer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
| | | |
Collapse
|
8
|
Chalupa P, Schäfer T, Reitner M, Springer D, Andergassen S, Toschi A. Fingerprints of the Local Moment Formation and its Kondo Screening in the Generalized Susceptibilities of Many-Electron Problems. PHYSICAL REVIEW LETTERS 2021; 126:056403. [PMID: 33605751 DOI: 10.1103/physrevlett.126.056403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/08/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
We identify the precise hallmarks of the local magnetic moment formation and its Kondo screening in the frequency structure of the generalized charge susceptibility. The sharpness of our identification even pinpoints an alternative criterion to determine the Kondo temperature of strongly correlated systems on the two-particle level, which only requires calculations at the lowest Matsubara frequency. We showcase its strength by applying it to the single impurity and the periodic Anderson model as well as to the Hubbard model. Our results represent a significant progress for the general understanding of quantum field theory at the two-particle level and allow for tracing the limits of the physics captured by perturbative approaches for correlated systems.
Collapse
Affiliation(s)
- P Chalupa
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| | - T Schäfer
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- CPHT, CNRS, École Polytechnique, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France
| | - M Reitner
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| | - D Springer
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
- Institute of Advanced Research in Artificial Intelligence, IARAI, A-1030 Vienna, Austria
| | - S Andergassen
- Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - A Toschi
- Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria
| |
Collapse
|
9
|
Reitner M, Chalupa P, Del Re L, Springer D, Ciuchi S, Sangiovanni G, Toschi A. Attractive Effect of a Strong Electronic Repulsion: The Physics of Vertex Divergences. PHYSICAL REVIEW LETTERS 2020; 125:196403. [PMID: 33216567 DOI: 10.1103/physrevlett.125.196403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
While the breakdown of the perturbation expansion for the many-electron problem has several formal consequences, here we unveil its physical effect: flipping the sign of the effective electronic interaction in specific scattering channels. By decomposing local and uniform susceptibilities of the Hubbard model via their spectral representations, we prove how entering the nonperturbative regime causes an enhancement of the charge response, ultimately responsible for the phase-separation instabilities close to the Mott metal-insulator transition. Our analysis opens a new route for understanding phase transitions in the nonperturbative regime and clarifies why attractive effects emerging from a strong repulsion can induce phase separations but not s-wave pairing or charge-density wave instabilities.
Collapse
Affiliation(s)
- M Reitner
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
| | - P Chalupa
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
| | - L Del Re
- Department of Physics, Georgetown University, 37th and O Streets, NW, Washington, D.C. 20057, USA
- Erwin Schrödinger International Insitute for Mathematics and Physics, Boltzmanngasse 9 1090 Vienna, Austria
| | - D Springer
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
- Institute of Advanced Research in Artificial Intelligence, IARAI, A-1030 Vienna, Austria
| | - S Ciuchi
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, and Istituto dei Sistemi Complessi,CNR, Coppito-L'Aquila, Italy
| | - G Sangiovanni
- Institut für Theoretische Physik und Astrophysik and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, 97074, Germany
| | - A Toschi
- Institute of Solid State Physics, TU Wien, 1040 Vienna, Austria
| |
Collapse
|
10
|
van Loon EGCP, Krien F, Katanin AA. Bethe-Salpeter Equation at the Critical End Point of the Mott Transition. PHYSICAL REVIEW LETTERS 2020; 125:136402. [PMID: 33034474 DOI: 10.1103/physrevlett.125.136402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Strong repulsive interactions between electrons can lead to a Mott metal-insulator transition. The dynamical mean-field theory (DMFT) explains the critical end point and the hysteresis region usually in terms of single-particle concepts, such as the spectral function and the quasiparticle weight. In this Letter, we reconsider the critical end point of the metal-insulator transition on the DMFT's two-particle level. We show that the relevant eigenvalue and eigenvector of the nonlocal Bethe-Salpeter kernel in the charge channel provide a unified picture of the hysteresis region and of the critical end point of the Mott transition. In particular, they simultaneously explain the thermodynamics of the hysteresis region and the iterative stability of the DMFT equations. This analysis paves the way for a deeper understanding of phase transitions in correlated materials.
Collapse
Affiliation(s)
- Erik G C P van Loon
- Institut für Theoretische Physik, Universität Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- Bremen Center for Computational Materials Science, Universität Bremen, Am Fallturm 1a, 28359 Bremen, Germany
| | - Friedrich Krien
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Andrey A Katanin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- M. N. Mikheev Institute of Metal Physics, Russian Academy of Sciences, 620108 Yekaterinburg, Russia
| |
Collapse
|
11
|
Golze D, Dvorak M, Rinke P. The GW Compendium: A Practical Guide to Theoretical Photoemission Spectroscopy. Front Chem 2019; 7:377. [PMID: 31355177 PMCID: PMC6633269 DOI: 10.3389/fchem.2019.00377] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
The GW approximation in electronic structure theory has become a widespread tool for predicting electronic excitations in chemical compounds and materials. In the realm of theoretical spectroscopy, the GW method provides access to charged excitations as measured in direct or inverse photoemission spectroscopy. The number of GW calculations in the past two decades has exploded with increased computing power and modern codes. The success of GW can be attributed to many factors: favorable scaling with respect to system size, a formal interpretation for charged excitation energies, the importance of dynamical screening in real systems, and its practical combination with other theories. In this review, we provide an overview of these formal and practical considerations. We expand, in detail, on the choices presented to the scientist performing GW calculations for the first time. We also give an introduction to the many-body theory behind GW, a review of modern applications like molecules and surfaces, and a perspective on methods which go beyond conventional GW calculations. This review addresses chemists, physicists and material scientists with an interest in theoretical spectroscopy. It is intended for newcomers to GW calculations but can also serve as an alternative perspective for experts and an up-to-date source of computational techniques.
Collapse
Affiliation(s)
- Dorothea Golze
- Department of Applied Physics, Aalto University, School of Science, Espoo, Finland
| | | | | |
Collapse
|
12
|
Burton HGA, Thom AJW, Loos PF. Complex adiabatic connection: A hidden non-Hermitian path from ground to excited states. J Chem Phys 2019; 150:041103. [DOI: 10.1063/1.5085121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hugh G. A. Burton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alex J. W. Thom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Véril M, Romaniello P, Berger JA, Loos PF. Unphysical Discontinuities in GW Methods. J Chem Theory Comput 2018; 14:5220-5228. [DOI: 10.1021/acs.jctc.8b00745] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Variational structure of Luttinger-Ward formalism and bold diagrammatic expansion for Euclidean lattice field theory. Proc Natl Acad Sci U S A 2018; 115:2282-2286. [PMID: 29463752 DOI: 10.1073/pnas.1720782115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Luttinger-Ward functional was proposed more than five decades ago and has been used to formally justify most practically used Green's function methods for quantum many-body systems. Nonetheless, the very existence of the Luttinger-Ward functional has been challenged by recent theoretical and numerical evidence. We provide a rigorously justified Luttinger-Ward formalism, in the context of Euclidean lattice field theory. Using the Luttinger-Ward functional, the free energy can be variationally minimized with respect to Green's functions in its domain. We then derive the widely used bold diagrammatic expansion rigorously, without relying on formal arguments such as partial resummation of bare diagrams to infinite order.
Collapse
|
15
|
Kugler FB, von Delft J. Multiloop Functional Renormalization Group That Sums Up All Parquet Diagrams. PHYSICAL REVIEW LETTERS 2018; 120:057403. [PMID: 29481160 DOI: 10.1103/physrevlett.120.057403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 06/08/2023]
Abstract
We present a multiloop flow equation for the four-point vertex in the functional renormalization group (FRG) framework. The multiloop flow consists of successive one-loop calculations and sums up all parquet diagrams to arbitrary order. This provides substantial improvement of FRG computations for the four-point vertex and, consequently, the self-energy. Using the x-ray-edge singularity as an example, we show that solving the multiloop FRG flow is equivalent to solving the (first-order) parquet equations and illustrate this with numerical results.
Collapse
Affiliation(s)
- Fabian B Kugler
- Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany
| | - Jan von Delft
- Physics Department, Arnold Sommerfeld Center for Theoretical Physics, and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany
| |
Collapse
|
16
|
Lu Y, Haverkort MW. Nonperturbative Series Expansion of Green's Functions: The Anatomy of Resonant Inelastic X-Ray Scattering in the Doped Hubbard Model. PHYSICAL REVIEW LETTERS 2017; 119:256401. [PMID: 29303347 DOI: 10.1103/physrevlett.119.256401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 06/07/2023]
Abstract
We present a nonperturbative, divergence-free series expansion of Green's functions using effective operators. The method is especially suited for computing correlators of complex operators as a series of correlation functions of simpler forms. We apply the method to study low-energy excitations in resonant inelastic x-ray scattering (RIXS) in doped one- and two-dimensional single-band Hubbard models. The RIXS operator is expanded into polynomials of spin, density, and current operators weighted by fundamental x-ray spectral functions. These operators couple to different polarization channels resulting in simple selection rules. The incident photon energy dependent coefficients help to pinpoint main RIXS contributions from different degrees of freedom. We show in particular that, with parameters pertaining to cuprate superconductors, local spin excitation dominates the RIXS spectral weight over a wide doping range in the cross-polarization channel.
Collapse
Affiliation(s)
- Yi Lu
- Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany
- Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany
| | - Maurits W Haverkort
- Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany
| |
Collapse
|