1
|
Bournazel M, Espaignol A, Singh D, Bhalavi RK, Billard F, Béjot P, Hertz E, Faucher O. Persistent Ground-State Planar Alignment of Iodine Molecule through Resonant Excitation. PHYSICAL REVIEW LETTERS 2024; 133:133201. [PMID: 39392954 DOI: 10.1103/physrevlett.133.133201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 10/13/2024]
Abstract
We demonstrate the generation of a persistent planar molecular alignment by subjecting a relatively warm gas sample to a resonant femtosecond laser pulse. By optically probing I_{2} molecules in their vibronic ground states, we observe a persistent delocalization of their axes near the plane orthogonal to the field direction. This phenomenon is attributed to the one-photon resonant excitation, primarily removing molecules from the thermal ground-state distribution that are initially aligned along the field, i.e., those with small projection of their rotational angular momentum along the field.
Collapse
|
2
|
Lu C, Xu L, Zhou L, Shi M, Lu P, Li W, Dörner R, Lin K, Wu J. Intermolecular interactions probed by rotational dynamics in gas-phase clusters. Nat Commun 2024; 15:4360. [PMID: 38777851 PMCID: PMC11111446 DOI: 10.1038/s41467-024-48822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The rotational dynamics of a molecule is sensitive to neighboring atoms or molecules, which can be used to probe the intermolecular interactions in the gas phase. Here, we real-time track the laser-driven rotational dynamics of a single N2 molecule affected by neighboring Ar atoms using coincident Coulomb explosion imaging. We find that the alignment trace of N-N axis decays fast and only persists for a few picoseconds when an Ar atom is nearby. We show that the decay rate depends on the rotational geometry of whether the Ar atom stays in or out of the rotational plane of the N2 molecule. Additionally, the vibration of the van der Waals bond is found to be excited through coupling with the rotational N-N axis. The observations are well reproduced by solving the time-dependent Schrödinger equation after taking the interaction potential between the N2 and Ar into consideration. Our results demonstrate that environmental effects on a molecular level can be probed by directly visualizing the rotational dynamics.
Collapse
Affiliation(s)
- Chenxu Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Long Xu
- Department of Physics, Xiamen University, Xiamen, China
| | - Lianrong Zhou
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Menghang Shi
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Wenxue Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Kang Lin
- School of Physics, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, Zhejiang University, Hangzhou, China.
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| |
Collapse
|
3
|
Tanyag RMP, Bacellar C, Pang W, Bernando C, Gomez LF, Jones CF, Ferguson KR, Kwok J, Anielski D, Belkacem A, Boll R, Bozek J, Carron S, Chen G, Delmas T, Englert L, Epp SW, Erk B, Foucar L, Hartmann R, Hexemer A, Huth M, Leone SR, Ma JH, Marchesini S, Neumark DM, Poon BK, Prell J, Rolles D, Rudek B, Rudenko A, Seifrid M, Swiggers M, Ullrich J, Weise F, Zwart P, Bostedt C, Gessner O, Vilesov AF. Sizes of pure and doped helium droplets from single shot x-ray imaging. J Chem Phys 2022; 156:041102. [PMID: 35105059 DOI: 10.1063/5.0080342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advancements in x-ray free-electron lasers on producing ultrashort, ultrabright, and coherent x-ray pulses enable single-shot imaging of fragile nanostructures, such as superfluid helium droplets. This imaging technique gives unique access to the sizes and shapes of individual droplets. In the past, such droplet characteristics have only been indirectly inferred by ensemble averaging techniques. Here, we report on the size distributions of both pure and doped droplets collected from single-shot x-ray imaging and produced from the free-jet expansion of helium through a 5 μm diameter nozzle at 20 bars and nozzle temperatures ranging from 4.2 to 9 K. This work extends the measurement of large helium nanodroplets containing 109-1011 atoms, which are shown to follow an exponential size distribution. Additionally, we demonstrate that the size distributions of the doped droplets follow those of the pure droplets at the same stagnation condition but with smaller average sizes.
Collapse
Affiliation(s)
- Rico Mayro P Tanyag
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Camila Bacellar
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Weiwu Pang
- Department of Computer Science, University of Southern California, Los Angeles, California 90089, USA
| | - Charles Bernando
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Luis F Gomez
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Curtis F Jones
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Ken R Ferguson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Justin Kwok
- Department of Chemical Engineering and Material Science, University of Southern California, Los Angeles, California 90089, USA
| | - Denis Anielski
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Ali Belkacem
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Rebecca Boll
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - John Bozek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Sebastian Carron
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Gang Chen
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Tjark Delmas
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Lars Englert
- Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85741 Garching, Germany
| | - Sascha W Epp
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benjamin Erk
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | - Alexander Hexemer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Martin Huth
- PNSensor GmbH, Otto-Hahn-Ring 6, 81739 München, Germany
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jonathan H Ma
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stefano Marchesini
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Billy K Poon
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - James Prell
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Daniel Rolles
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Benedikt Rudek
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Artem Rudenko
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Martin Seifrid
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Michele Swiggers
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Joachim Ullrich
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Fabian Weise
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Petrus Zwart
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Christoph Bostedt
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey F Vilesov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
4
|
Schouder CA, Chatterley AS, Pickering JD, Stapelfeldt H. Laser-Induced Coulomb Explosion Imaging of Aligned Molecules and Molecular Dimers. Annu Rev Phys Chem 2022; 73:323-347. [PMID: 35081323 DOI: 10.1146/annurev-physchem-090419-053627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nanodroplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
5
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|
6
|
Laimer F, Zappa F, Scheier P, Gatchell M. Multiply Charged Helium Droplet Anions. Chemistry 2021; 27:7283-7287. [PMID: 33385183 PMCID: PMC8251920 DOI: 10.1002/chem.202005004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/19/2020] [Indexed: 01/20/2023]
Abstract
The detection of multiply charged helium droplet anions is reported for the first time. By ionizing droplets of superfluid helium with low energy electrons (up to 25 eV), it was possible to produce droplets containing up to five negative charges, which remain intact on the timescale of the experiment. The appearance sizes for different charge states are determined and are found to be orders of magnitude larger than for the equivalent cationic droplets, starting at 4 million He atoms for dianions. Droplets with He*- as charge carriers show signs of being metastable, but this effect is quenched by the pickup of water molecules.
Collapse
Affiliation(s)
- Felix Laimer
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstr. 256020InnsbruckAustria
| | - Fabio Zappa
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstr. 256020InnsbruckAustria
- Departamento de Física-ICEUniversidade Federal de Juiz de ForaCampus Universitário36036-900Juiz de ForaMGBrazil
| | - Paul Scheier
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstr. 256020InnsbruckAustria
| | - Michael Gatchell
- Institut für Ionenphysik und Angewandte PhysikUniversität InnsbruckTechnikerstr. 256020InnsbruckAustria
- Department of PhysicsStockholm University10691StockholmSweden
| |
Collapse
|
7
|
Saribal C, Owens A, Yachmenev A, Küpper J. Detecting handedness of spatially oriented molecules by Coulomb explosion imaging. J Chem Phys 2021; 154:071101. [PMID: 33607914 DOI: 10.1063/5.0029792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a new technique for detecting chirality in the gas phase: Chiral molecules are spatially aligned in three dimensions by a moderately strong elliptically polarized laser field. The momentum distributions of the charged fragments, produced by laser-induced Coulomb explosion, show distinct three-dimensional orientation of the enantiomers when the laser polarization ellipse is rotated by a non-right angle with respect to the norm vector of the detector plane. The resulting velocity-map-image asymmetry is directly connected to the enantiomeric excess and to the absolute handedness of molecules. We demonstrated our scheme computationally for camphor (C10H16O), with its methyl groups as marker fragments, using quantum-mechanical simulations geared toward experimentally feasible conditions. Computed sensitivity to enantiomeric excess is comparable to other modern chiroptical approaches. The present method can be readily optimized for any chiral molecule with an anisotropic polarizability tensor by adjusting the polarization state and intensity profile of the laser field.
Collapse
Affiliation(s)
- Cem Saribal
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Alec Owens
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Andrey Yachmenev
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| |
Collapse
|
8
|
Vallance C, Heathcote D, Lee JWL. Covariance-Map Imaging: A Powerful Tool for Chemical Dynamics Studies. J Phys Chem A 2021; 125:1117-1133. [DOI: 10.1021/acs.jpca.0c10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
9
|
Cheng QY, Song YZ, Meng QT. Field-free alignment of triatomic molecules controlled by a slow turn-on and rapid turn-off shaped laser pulse. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1859147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Qi-Yuan Cheng
- Medical Engineering Department, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
- Shandong Laibo Biotechnology Co., Ltd., Jinan, People’s Republic of China
- School of Control Science and Engineering, Shandong University, Jinan, People’s Republic of China
| | - Yu-Zhi Song
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| | - Qing-Tian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan, People’s Republic of China
| |
Collapse
|
10
|
Blancafort-Jorquera M, Vilà A, González M. Rotational energy relaxation quantum dynamics of a diatomic molecule in a superfluid helium nanodroplet and study of the hydrogen isotopes case. Phys Chem Chem Phys 2019; 21:21007-21021. [PMID: 31528895 DOI: 10.1039/c9cp00952c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rotational energy relaxation (RER) of a molecule X2(j,mj) in a 4He superfluid nanodroplet [HeND or (4He)N; T = 0.37 K] has been investigated using a hybrid quantum dynamics approach recently proposed by us. As far as we know, this is the first theoretical study about rotational relaxation inside HeNDs, and here several (real and hypothetical) isotopes of H2 have been examined, in order to analyze the influence of the rotational constant Be of these fast rotors on the dynamics. The structure of the nanodroplet practically does not change during the RER process, which approximately takes place according to a cascade mechanism j → j - 2; j - 2 → j - 4; …; 2 → 0, and mj is conserved. The results are consistent with the very scarce estimated experimental data available. The lifetime of an excited rotational state (≈1.0-7.6 ns) increases when: (a) Be increases; (b) j increases; and (c) N decreases (above N = 100 there is a small influence of N on the lifetime). This also applies to the global relaxation time and transition time. The analysis of the influence of the coupling between the j and j - 2 rotational states (due to the X2-helium interaction) and the X2 angular velocity on the lifetime and related properties has been helpful to better understand the dynamics. In contrast to the RER results, for the vibrational energy relaxation (VER) in HeNDs, when the quantum number v increases a decrease is observed in the lifetime of the excited vibrational state. This difference can be interpreted taking into account that RER and VER are associated with very different types of motion. Besides, in VER the intermediate excited states show metastability, differing from the RER case. We hope that the present study will encourage more studies to be developed on the RER dynamics in HeNDs, a basic, interesting and difficult to study physical phenomenon about which we still know very little.
Collapse
Affiliation(s)
- Miquel Blancafort-Jorquera
- Departament de Ciència de Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
11
|
Abstract
Free superfluid helium droplets constitute a versatile medium for a diverse range of experiments in physics and chemistry that extend from studies of the fundamental laws of superfluid motion to the synthesis of novel nanomaterials. In particular, the emergence of quantum vortices in rotating helium droplets is one of the most dramatic hallmarks of superfluidity and gives detailed access to the wave function describing the quantum liquid. This review provides an introduction to quantum vorticity in helium droplets, followed by a historical account of experiments on vortex visualization in bulk superfluid helium and a more detailed discussion of recent advances in the study of the rotational motion of isolated, nano- to micrometer-scale superfluid helium droplets. Ultrafast X-ray and extreme ultraviolet scattering techniques enabled by X-ray free-electron lasers and high-order harmonic generation in particular have facilitated the in situ detection of droplet shapes and the imaging of vortex structures inside individual, isolated droplets. New applications of helium droplets ranging from studies of quantum phase separations to mechanisms of low-temperature aggregation are discussed.
Collapse
Affiliation(s)
- Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andrey F. Vilesov
- Department of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
12
|
Long-lasting field-free alignment of large molecules inside helium nanodroplets. Nat Commun 2019; 10:133. [PMID: 30635554 PMCID: PMC6329814 DOI: 10.1038/s41467-018-07995-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Molecules with their axes sharply confined in space, available through laser-induced alignment methods, are essential for many current experiments, including ultrafast molecular imaging. For these applications the aligning laser field should ideally be turned-off, to avoid undesired perturbations, and the strong alignment should last long enough that reactions and dynamics can be mapped out. Presently, this is only possible for small, linear molecules and for times less than 1 picosecond. Here, we demonstrate strong, field-free alignment of large molecules inside helium nanodroplets, lasting >10 picoseconds. One-dimensional or three-dimensional alignment is created by a slowly switched-on laser pulse, made field-free through rapid pulse truncation, and retained thanks to the impeding effect of the helium environment on molecular rotation. The opportunities field-free aligned molecules open are illustrated by measuring the alignment-dependent strong-field ionization yield of dibromothiophene oligomers. Our technique will enable molecular frame experiments, including ultrafast excited state dynamics, on a variety of large molecules and complexes.
Collapse
|
13
|
Thaler B, Ranftl S, Heim P, Cesnik S, Treiber L, Meyer R, Hauser AW, Ernst WE, Koch M. Femtosecond photoexcitation dynamics inside a quantum solvent. Nat Commun 2018; 9:4006. [PMID: 30275442 PMCID: PMC6167364 DOI: 10.1038/s41467-018-06413-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/29/2018] [Indexed: 11/13/2022] Open
Abstract
The observation of chemical reactions on the time scale of the motion of electrons and nuclei has been made possible by lasers with ever shortened pulse lengths. Superfluid helium represents a special solvent that permits the synthesis of novel classes of molecules that have eluded dynamical studies so far. However, photoexcitation inside this quantum solvent triggers a pronounced response of the solvation shell, which is not well understood. Here, we present a mechanistic description of the solvent response to photoexcitation of indium (In) dopant atoms inside helium nanodroplets (HeN), obtained from femtosecond pump–probe spectroscopy and time-dependent density functional theory simulations. For the In–HeN system, part of the excited state electronic energy leads to expansion of the solvation shell within 600 fs, initiating a collective shell oscillation with a period of about 30 ps. These coupled electronic and nuclear dynamics will be superimposed on intrinsic photoinduced processes of molecular systems inside helium droplets. Femtosecond laser spectroscopy has contributed to our understanding of structure and function of matter. Here, the authors explore the applicability of superfluid helium nanodroplets as a sample preparation method that allows investigation of previously inaccessible classes of tailor-made or fragile molecular systems.
Collapse
Affiliation(s)
- Bernhard Thaler
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Sascha Ranftl
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Pascal Heim
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Stefan Cesnik
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Leonhard Treiber
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Ralf Meyer
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Andreas W Hauser
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Wolfgang E Ernst
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria
| | - Markus Koch
- Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010, Graz, Austria.
| |
Collapse
|
14
|
Rouxel JR, Kowalewski M, Bennett K, Mukamel S. X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics. PHYSICAL REVIEW LETTERS 2018; 120:243902. [PMID: 29956957 DOI: 10.1103/physrevlett.120.243902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 05/23/2023]
Abstract
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Collapse
Affiliation(s)
- Jérémy R Rouxel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Markus Kowalewski
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Kochise Bennett
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Shaul Mukamel
- Department of Chemistry and Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
15
|
Chatterley AS, Karamatskos ET, Schouder C, Christiansen L, Jørgensen AV, Mullins T, Küpper J, Stapelfeldt H. Communication: Switched wave packets with spectrally truncated chirped pulses. J Chem Phys 2018; 148:221105. [DOI: 10.1063/1.5028359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Adam S. Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Evangelos T. Karamatskos
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Constant Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Anders V. Jørgensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Terry Mullins
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Huang Y, Xu S. Controlling population of the molecular rotational state and the alignment theoretically by tailored femtosecond laser pulse. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171502. [PMID: 29410853 PMCID: PMC5792930 DOI: 10.1098/rsos.171502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 12/07/2017] [Indexed: 05/08/2023]
Abstract
We demonstrate that the population of the molecular rotational state through a stimulated impulsive Raman excitation can be controlled by tailoring the femtosecond laser pulse with a V-style phase modulation. The results show that, by precisely manipulating the modulation parameters, both the odd and even populations of the molecular rotational state can be completely suppressed or reconstructed. Meanwhile, the relative excitation between the odd and even populations can be obtained. Finally, we show that field-free molecular alignment can be controlled due to the modulation of the molecular rotational state populations.
Collapse
Affiliation(s)
| | - Shuwu Xu
- School of Science, Nantong University, Nantong 226007, People's Republic of China
| |
Collapse
|