1
|
Ji Z, Zhao Y, Chen Y, Zhu Z, Wang Y, Liu W, Modi G, Mele EJ, Jin S, Agarwal R. Opto-twistronic Hall effect in a three-dimensional spiral lattice. Nature 2024; 634:69-73. [PMID: 39294380 DOI: 10.1038/s41586-024-07949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 08/14/2024] [Indexed: 09/20/2024]
Abstract
Studies of moiré systems have explained the effect of superlattice modulations on their properties, demonstrating new correlated phases1. However, most experimental studies have focused on a few layers in two-dimensional systems. Extending twistronics to three dimensions, in which the twist extends into the third dimension, remains underexplored because of the challenges associated with the manual stacking of layers. Here we study three-dimensional twistronics using a self-assembled twisted spiral superlattice of multilayered WS2. Our findings show an opto-twistronic Hall effect driven by structural chirality and coherence length, modulated by the moiré potential of the spiral superlattice. This is an experimental manifestation of the noncommutative geometry of the system. We observe enhanced light-matter interactions and an altered dependence of the Hall coefficient on photon momentum. Our model suggests contributions from higher-order quantum geometric quantities to this observation, providing opportunities for designing quantum-materials-based optoelectronic lattices with large nonlinearities.
Collapse
Affiliation(s)
- Zhurun Ji
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics and Applied Physics, Stanford University, Stanford, CA, USA
| | - Yuzhou Zhao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Yicong Chen
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Ziyan Zhu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Yuhui Wang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenjing Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Gaurav Modi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene J Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Ritesh Agarwal
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Fan FR, Xiao C, Yao W. Intrinsic dipole Hall effect in twisted MoTe 2: magnetoelectricity and contact-free signatures of topological transitions. Nat Commun 2024; 15:7997. [PMID: 39266571 PMCID: PMC11393455 DOI: 10.1038/s41467-024-52314-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
We discover an intrinsic dipole Hall effect in a variety of magnetic insulating states at integer fillings of twisted MoTe2 moiré superlattice, including topologically trivial and nontrivial ferro-, antiferro-, and ferri-magnetic configurations. The dipole Hall current, in linear response to in-plane electric field, generates an in-plane orbital magnetization M∥ along the field, through which an AC field can drive magnetization oscillation up to THz range. Upon the continuous topological phase transitions from trivial to quantum anomalous Hall states in both ferromagnetic and antiferromagnetic configurations, the dipole Hall current and M∥ have an abrupt sign change, enabling contact-free detection of the transitions through the magnetic stray field. In configurations where the linear response is forbidden by symmetry, the dipole Hall current and M∥ appear as a crossed nonlinear response to both in-plane and out-of-plane electric fields. These magnetoelectric phenomena showcase fascinating functionalities of insulators from the interplay between magnetism, topology, and electrical polarization.
Collapse
Affiliation(s)
- Feng-Ren Fan
- New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
| | - Cong Xiao
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China
| | - Wang Yao
- New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China.
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China.
| |
Collapse
|
3
|
Oudich M, Kong X, Zhang T, Qiu C, Jing Y. Engineered moiré photonic and phononic superlattices. NATURE MATERIALS 2024; 23:1169-1178. [PMID: 39215155 DOI: 10.1038/s41563-024-01950-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/13/2024] [Indexed: 09/04/2024]
Abstract
Recent discoveries of Mott insulating and unconventional superconducting states in twisted bilayer graphene with moiré superlattices have not only reshaped the landscape of 'twistronics' but also sparked the rapidly growing fields of moiré photonic and phononic structures. These innovative moiré structures have opened new routes of exploration for classical wave physics, leading to intriguing phenomena and robust control of electromagnetic and mechanical waves. Drawing inspiration from the success of twisted bilayer graphene, this Perspective describes an overarching framework of the emerging moiré photonic and phononic structures that promise novel classical wave devices. We begin with the fundamentals of moiré superlattices, before highlighting recent studies that exploit twist angle and interlayer coupling as new ingredients with which to engineer and tailor the band structures and effective material properties of photonic and phononic structures. Finally, we discuss the future directions and prospects of this emerging area in materials science and wave physics.
Collapse
Affiliation(s)
- Mourad Oudich
- Graduate Program in Acoustics, Penn State University, University Park, PA, USA
- Institut Jean Lamour, CNRS, Université de Lorraine, Nancy, France
| | - Xianghong Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Tan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Chengwei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
| | - Yun Jing
- Graduate Program in Acoustics, Penn State University, University Park, PA, USA.
| |
Collapse
|
4
|
Song G, Hao H, Yan S, Fang S, Xu W, Tong L, Zhang J. Observation of Chirality Transfer in Twisted Few-Layer Graphene. ACS NANO 2024; 18:17578-17585. [PMID: 38919006 DOI: 10.1021/acsnano.4c01934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Chiral materials are the focus of research in a variety of fields such as chiroptical sensing, biosensing, catalysis, and spintronics. Twisted two-dimensional (2D) materials are rapidly developing into a class of atomically thin chiral materials that can be effectively modulated through interlayer twist. However, chirality transfer in chiral 2D materials has not been reported. Here, we show that the chirality from the twist interface of graphene can directly transfer to achiral few-layer graphene and lead to a strong chiroptical response probed with circularly polarized Raman spectroscopy. Distinct Raman optical activity (ROA) for the interlayer shear modes in achiral few-layer graphene is observed, with the degree of polarization reaching as high as 0.5. These findings demonstrate the programmability of chiroptical response through stacking and twist engineering in 2D materials and offer insights into the transfer of chirality in atomically thin chiral materials for optical and electronic applications.
Collapse
Affiliation(s)
- Ge Song
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - He Hao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shuowen Yan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Susu Fang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Weigao Xu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Hu Y, Lin ZB, Li ZL, Peng YG, Zhu XF. Experimental investigation of acoustic moiré effect controlled by twisted bilayer gratings. ULTRASONICS 2024; 141:107338. [PMID: 38723293 DOI: 10.1016/j.ultras.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/28/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024]
Abstract
Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.
Collapse
Affiliation(s)
- Yu Hu
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Bin Lin
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zong-Lin Li
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu-Gui Peng
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xue-Feng Zhu
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
6
|
Bigeard G, Cresti A. Magic-angle twisted bilayer graphene under orthogonal and in-plane magnetic fields. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:325502. [PMID: 38670079 DOI: 10.1088/1361-648x/ad4431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
We investigate the effect of a magnetic field on the band structure of bilayer graphene with a magic twist angle of 1.08∘. The coupling of a tight-binding model and the Peierls phase allows the calculation of the energy bands of periodic two-dimensional systems. For an orthogonal magnetic field, the Landau levels are dispersive, particularly for magnetic lengths comparable to or larger than the twisted bilayer cell size. A high in-plane magnetic field modifies the low-energy bands and gap, which we demonstrate to be a direct consequence of the minimal coupling.
Collapse
Affiliation(s)
- Gaëlle Bigeard
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, CROMA, 38000 Grenoble, France
| | - Alessandro Cresti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, Grenoble INP, CROMA, 38000 Grenoble, France
| |
Collapse
|
7
|
Bahamon DA, Gómez-Santos G, Efetov DK, Stauber T. Chirality Probe of Twisted Bilayer Graphene in the Linear Transport Regime. NANO LETTERS 2024; 24:4478-4484. [PMID: 38584591 PMCID: PMC11036400 DOI: 10.1021/acs.nanolett.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
We propose minimal transport experiments in the coherent regime that can probe the chirality of twisted moiré structures. We show that only with a third contact and in the presence of an in-plane magnetic field (or another time-reversal symmetry breaking effect) a chiral system may display nonreciprocal transport in the linear regime. We then propose to use the third lead as a voltage probe and show that opposite enantiomers give rise to different voltage drops on the third lead. Additionally, in the scenario of layer-discriminating contacts, the third lead can serve as a current probe capable of detecting different handedness even in the absence of a magnetic field. In a complementary configuration, applying opposite voltages on the two layers of the third lead gives rise to a chiral (super)current in the absence of a source-drain voltage whose direction is determined by its chirality.
Collapse
Affiliation(s)
- Dario A. Bahamon
- School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- MackGraphe
Graphene and Nanomaterials Research Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil
- Departamento
de Teoría y Simulación de Materiales, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| | - Guillermo Gómez-Santos
- Departamento
de Física de la Materia Condensada, Instituto Nicolás
Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Dmitri K. Efetov
- Fakultät
für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, D-80799 München, Germany
- Munich Center
for Quantum Science and Technology (MCQST), Schellingstrasse 4, D-80799 München, Germany
| | - Tobias Stauber
- Departamento
de Teoría y Simulación de Materiales, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| |
Collapse
|
8
|
Zhu H, Yakobson BI. Creating chirality in the nearly two dimensions. NATURE MATERIALS 2024; 23:316-322. [PMID: 38388730 DOI: 10.1038/s41563-024-01814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Structural chirality, defined as the lack of mirror symmetry in materials' atomic structure, is only meaningful in three-dimensional space. Yet two-dimensional (2D) materials, despite their small thickness, can show chirality that enables prominent asymmetric optical, electrical and magnetic properties. In this Perspective, we first discuss the possible definition and mathematical description of '2D chiral materials', and the intriguing physics enabled by structural chirality in van der Waals 2D homobilayers and heterostructures, such as circular dichroism, chiral plasmons and the nonlinear Hall effect. We then summarize the recent experimental progress and approaches to induce and control structural chirality in 2D materials from monolayers to superlattices. Finally, we postulate a few unique opportunities offered by 2D chiral materials, the synthesis and new properties of which can potentially lead to chiral optoelectronic devices and possibly materials for enantioselective photochemistry.
Collapse
Affiliation(s)
- Hanyu Zhu
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Kuang X, Pantaleón Peralta PA, Angel Silva-Guillén J, Yuan S, Guinea F, Zhan Z. Optical properties and plasmons in moiré structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:173001. [PMID: 38232397 DOI: 10.1088/1361-648x/ad1f8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
The discoveries of numerous exciting phenomena in twisted bilayer graphene (TBG) are stimulating significant investigations on moiré structures that possess a tunable moiré potential. Optical response can provide insights into the electronic structures and transport phenomena of non-twisted and twisted moiré structures. In this article, we review both experimental and theoretical studies of optical properties such as optical conductivity, dielectric function, non-linear optical response, and plasmons in moiré structures composed of graphene, hexagonal boron nitride (hBN), and/or transition metal dichalcogenides. Firstly, a comprehensive introduction to the widely employed methodology on optical properties is presented. After, moiré potential induced optical conductivity and plasmons in non-twisted structures are reviewed, such as single layer graphene-hBN, bilayer graphene-hBN and graphene-metal moiré heterostructures. Next, recent investigations of twist-angle dependent optical response and plasmons are addressed in twisted moiré structures. Additionally, we discuss how optical properties and plasmons could contribute to the understanding of the many-body effects and superconductivity observed in moiré structures.
Collapse
Affiliation(s)
- Xueheng Kuang
- Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, People's Republic of China
| | | | - Jose Angel Silva-Guillén
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| | - Shengjun Yuan
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Francisco Guinea
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
- Donostia International Physics Center, Paseo Manuel de Lardizábal 4, 20018 San Sebastián, Spain
| | - Zhen Zhan
- Instituto Madrileño de Estudios Avanzados, IMDEA Nanociencia, Calle Faraday 9, 28049 Madrid, Spain
| |
Collapse
|
10
|
Halterman K. Controlled light energy and perfect absorption in twisted bilayer graphene. OPTICS EXPRESS 2023; 31:42901-42925. [PMID: 38178398 DOI: 10.1364/oe.509346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024]
Abstract
We theoretically study the components of the dynamical optical conductivity tensor and associated finite-frequency dielectric response of bilayer graphene (BLG), where one graphene layer can slide in-plane or commensurably twist on top of the other. Our results reveal that even slight deviations from the conventional AA, AB, or AC stacking orders yield a finite transverse conductivity. Upon calculating the optical conductivity of the BLG at any arbitrary interlayer displacement, Δ, and chemical potential, µ, it is utilized for a layered device with an epsilon-near-zero (ENZ) insert and metallic back plate. We find that both Δ and µ can effectively control the polarization, energy flow direction, and absorptivity of linearly polarized incident light. By appropriately tailoring Δ and µ, near-perfect absorption and tunable dissipation can be accessible through particular angles of incidence and a broad range of ENZ layer thicknesses. Our findings can be applied to the design of programmable optoelectronics devices.
Collapse
|
11
|
Tan Z, Fan F, Guan S, Wang H, Zhao D, Ji Y, Chang S. Terahertz Spin-Conjugate Symmetry Breaking for Nonreciprocal Chirality and One-Way Transmission Based on Magneto-Optical Moiré Metasurface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204916. [PMID: 36373726 PMCID: PMC9896033 DOI: 10.1002/advs.202204916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, the gyrotropic semiconductor InSb into the twisted bilayer metasurface to form a magneto-optical moiré metasurface is introduced. Through the theoretical analysis, the "moiré angle" is developed in which case the nonreciprocity and chirality with the spin-conjugate asymmetric transmission are obtained due to the simultaneous breaking of both time-reversal symmetry and spatial mirror symmetry. The experiments confirm that the chirality can be actively manipulated by rotating the twisted angle and the external magnetic field, realizing spin-conjugate asymmetric transmission. Meanwhile, the two spin states also realize the nonreciprocal one-way transmission, and their isolation spectra are also spin-conjugate asymmetric: one is enhanced up to 48 dB, and the other's bandwidth is widened to over 730 GHz. This spin-conjugate symmetry-breaking effect in the MOMM brings a combination of time-space asymmetric transmission, and it also provides a new scheme for the implementation of high-performance THz chirality controllers and isolators.
Collapse
Affiliation(s)
- Zhiyu Tan
- Institute of Modern OpticsNankai UniversityTianjin Key Laboratory of Micro‐Scale Optical Information Science and TechnologyTianjin300350P. R. China
| | - Fei Fan
- Institute of Modern OpticsNankai UniversityTianjin Key Laboratory of Micro‐Scale Optical Information Science and TechnologyTianjin300350P. R. China
| | - Shengnan Guan
- Institute of Modern OpticsNankai UniversityTianjin Key Laboratory of Micro‐Scale Optical Information Science and TechnologyTianjin300350P. R. China
| | - Hao Wang
- Institute of Modern OpticsNankai UniversityTianjin Key Laboratory of Micro‐Scale Optical Information Science and TechnologyTianjin300350P. R. China
| | - Dan Zhao
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network TechnologyTianjin300350P. R. China
| | - Yunyun Ji
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network TechnologyTianjin300350P. R. China
| | - Shengjiang Chang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network TechnologyTianjin300350P. R. China
| |
Collapse
|
12
|
Han Z, Wang F, Sun J, Wang X, Tang Z. Recent Advances in Ultrathin Chiral Metasurfaces by Twisted Stacking. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2206141. [PMID: 36284479 DOI: 10.1002/adma.202206141] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Artificial chiral nanostructures have been subjected to extensive research for their unique chiroptical activities. Planarized chiral films of ultrathin thicknesses are in particular demand for easy on-chip integration and improved energy efficiency as polarization-sensitive metadevices. Recently, controlled twisted stacking of two or more layers of nanomaterials, such as 2D van der Waals materials, ultrathin films, or traditional metasurfaces, at an angle has emerged as a general strategy to introduce optical chirality into achiral solid-state systems. This method endows new degrees of freedom, e.g., the interlayer twist angle, to flexibly engineer and tune the chiroptical responses without having to change the material or the design, thus greatly facilitating the development of multifunctional metamaterials. In this review, recent exciting progress in planar chiral metasurfaces are summarized and discussed from the viewpoints of building blocks, fabrication methods, as well as circular dichroism and modulation thereof in twisted stacked nanostructures. The review further highlights the ever-growing portfolio of applications of these chiral metasurfaces, including polarization conversion, information encryption, chiral sensing, and as an engineering platform for hybrid metadevices. Finally, forward-looking prospects are provided.
Collapse
Affiliation(s)
- Zexiang Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Fei Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Juehan Sun
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Xiaoli Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Hu H, Geng M, Jiang Z, Zhang H, Zhu Z, Guan C, Zhang H, Shi J. Tunable circular polarization responses of twisted black phosphorus metamaterials. OPTICS EXPRESS 2022; 30:47690-47700. [PMID: 36558691 DOI: 10.1364/oe.478144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
As one of the most significant 2D materials, black phosphorus (BP) offers a promising way to manipulate the polarization state of light due to its in-plane anisotropy, however, reconfigurable polarization manipulation is still challenging in simple BP structure. Here, we propose a multilayer metamaterial with twisted BP nanostructures and numerically study its circular dichroism (CD) and circular birefringence (CB) responses. The dependences of the circular polarization responses in the twisted BP metamaterial have been fully investigated on geometrical and material parameters. The giant tunability enables the twisted BP nanostructure to be attractive for constructing BP-based metamaterials devices, such as polarizers, biosensors and modulators.
Collapse
|
14
|
Dai G, Chen X, Jing Y, Wang J. Anti-Symmetric Electromagnetic Interactions' Response in Electron Circular Dichroism and Chiral Origin of Periodic, Complementary Twisted Angle in Twisted Bilayer Graphene. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196525. [PMID: 36235063 PMCID: PMC9572769 DOI: 10.3390/molecules27196525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/29/2022]
Abstract
Many novel physical properties of twisted bilayer graphene have been discovered and studied successively, but the physical mechanism of the chiral modulation of BLG by a twisted angle lacks theoretical research. In this work, the density functional theory, the wavefunction analysis of the excited state, and the quantum theory of atoms in molecules are used to calculate and analyze the anti-symmetric chiral characteristics of zigzag-edge twisted bilayer graphene quantum dots based on periodic complementary twisted angles. The analysis of the partial density of states shows that Moiré superlattices can effectively adjust the contribution of the atomic basis function of the fragment to the transition dipole moment. The topological analysis of electron density indicates that the Moiré superlattices structure can enhance the localization of the system, increasing the electron density of the Moiré central ring, reducing the electron surge capacity in general and inducing the reversed helical properties of the top and underlying graphene, which can be used as the origin of the chiral discrimination; it also reveals the mole in the superlattice chiral physical mechanism. On this basis, we will also study the nonlinear optical properties of twisted bilayer graphene based on a twisted angle.
Collapse
Affiliation(s)
- Guoqiang Dai
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
| | - Xiangtao Chen
- School of Physics, Northeast Normal University, Changchun 130024, China
| | - Ying Jing
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
- Correspondence: (Y.J.); (J.W.)
| | - Jingang Wang
- College of Science, Liaoning Petrochemical University, Fushun 113001, China
- Correspondence: (Y.J.); (J.W.)
| |
Collapse
|
15
|
Liu S, Ma S, Shao R, Zhang L, Yan T, Ma Q, Zhang S, Cui TJ. Moiré metasurfaces for dynamic beamforming. SCIENCE ADVANCES 2022; 8:eabo1511. [PMID: 35977023 PMCID: PMC9385154 DOI: 10.1126/sciadv.abo1511] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/05/2022] [Indexed: 05/22/2023]
Abstract
Recent advances in digitally programmable metamaterials have accelerated the development of reconfigurable intelligent surfaces (RIS). However, the excessive use of active components (e.g., pin diodes and varactor diodes) leads to high costs, especially for those operating at millimeter-wave frequencies, impeding their large-scale deployments in RIS. Here, we introduce an entirely different approach-moiré metasurfaces-to implement dynamic beamforming through mutual twists of two closely stacked metasurfaces. The superposition of two high-spatial-frequency patterns produces a low-spatial-frequency moiré pattern through the moiré effect, which provides the surface impedance profiles to generate desired radiation patterns. We demonstrate experimentally that the direction of the radiated beams can continuously sweep over the entire reflection space along predesigned trajectories by simply adjusting the twist angle and the overall orientation. Our work opens previously unexplored directions for synthesizing far-field scattering through the direct contact of mutually twisted metallic patterns with different plane symmetry groups.
Collapse
Affiliation(s)
- Shuo Liu
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Shaojie Ma
- Department of Physics, The University of Hong Kong, Hong Kong, China
| | - Ruiwen Shao
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Lei Zhang
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Tao Yan
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Qian Ma
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
| | - Shuang Zhang
- Department of Physics, The University of Hong Kong, Hong Kong, China
- Corresponding author. (T.J.C.); (S.Z.)
| | - Tie Jun Cui
- State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
- Corresponding author. (T.J.C.); (S.Z.)
| |
Collapse
|
16
|
Observation of chiral and slow plasmons in twisted bilayer graphene. Nature 2022; 605:63-68. [PMID: 35508778 DOI: 10.1038/s41586-022-04520-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Moiré superlattices have led to observations of exotic emergent electronic properties such as superconductivity and strong correlated states in small-rotation-angle twisted bilayer graphene (tBLG)1,2. Recently, these findings have inspired the search for new properties in moiré plasmons. Although plasmon propagation in the tBLG basal plane has been studied by near-field nano-imaging techniques3-7, the general electromagnetic character and properties of these plasmons remain elusive. Here we report the direct observation of two new plasmon modes in macroscopic tBLG with a highly ordered moiré superlattice. Using spiral structured nanoribbons of tBLG, we identify signatures of chiral plasmons that arise owing to the uncompensated Berry flux of the electron gas under optical pumping. The salient features of these chiral plasmons are shown through their dependence on optical pumping intensity and electron fillings, in conjunction with distinct resonance splitting and Faraday rotation coinciding with the spectral window of maximal Berry flux. Moreover, we also identify a slow plasmonic mode around 0.4 electronvolts, which stems from the interband transitions between the nested subbands in lattice-relaxed AB-stacked domains. This mode may open up opportunities for strong light-matter interactions within the highly sought after mid-wave infrared spectral window8. Our results unveil the new electromagnetic dynamics of small-angle tBLG and exemplify it as a unique quantum optical platform.
Collapse
|
17
|
Uehara K, Kano H, Matsuo K, Hayashi H, Fujiki M, Yamada H, Aratani N. Mirror‐Image Cofacial Coronene Dimers Characterized by CD and CPL Spectroscopy: A Twisted Bilayer Nanographene. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keiji Uehara
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Haruka Kano
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Kyohei Matsuo
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Michiya Fujiki
- Division of R&D True2Materials PTE. Ltd. 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| | - Naoki Aratani
- Division of Materials Science Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma 630-0192 Japan
| |
Collapse
|
18
|
Zuber JW, Zhang C. Twist dependent magneto-optical response in twisted bilayer graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:445501. [PMID: 34375960 DOI: 10.1088/1361-648x/ac1c30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
By employing a linearised Boltzmann equation, we calculate the magneto-optical properties of twisted bilayer graphene using non-magnetic wave functions. Both transverse and longitudinal responses are calculated up to the second order in applied magnetic field with their twist angle and Fermi level dependence examined. We find that increasing the twist angle increases the transverse metallic response so long as the Fermi level remains below the upper conduction band. Interlayer transitions provide an appreciable enhancement when the Fermi level traverses the gap between the two conduction bands. Interlayer transitions are also responsible for a nonzero anomalous Hall conductivity in this model. As the Fermi level moves towards zero, the longitudinal response begins to dominate and a highly anisotropic negative magneto-resistance is observed.
Collapse
Affiliation(s)
- J W Zuber
- School of Physics and Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
| | - C Zhang
- School of Physics and Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
| |
Collapse
|
19
|
Zachman MJ, Madsen J, Zhang X, Ajayan PM, Susi T, Chi M. Interferometric 4D-STEM for Lattice Distortion and Interlayer Spacing Measurements of Bilayer and Trilayer 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100388. [PMID: 34080781 DOI: 10.1002/smll.202100388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Van der Waals materials composed of stacks of individual atomic layers have attracted considerable attention due to their exotic electronic properties that can be altered by, e.g., manipulating the twist angle of bilayer materials or the stacking sequence of trilayer materials. To fully understand and control the unique properties of these few-layer materials, a technique that can provide information about their local in-plane structural deformations, twist direction, and out-of-plane structure is needed. In principle, interference in overlap regions of Bragg disks originating from separate layers of a material encodes 3D information about the relative positions of atoms in the corresponding layers. Here, an interferometric 4D scanning transmission electron microscopy technique is described that utilizes this phenomenon to extract precise structural information from few-layer materials with nm-scale resolution. It is demonstrated how this technique enables measurement of local pm-scale in-plane lattice distortions as well as twist direction and average interlayer spacings in bilayer and trilayer graphene, and therefore provides a means to better understand the interplay between electronic properties and precise structural arrangements of few-layer 2D materials.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jacob Madsen
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Xiang Zhang
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
20
|
Lou B, Zhao N, Minkov M, Guo C, Orenstein M, Fan S. Theory for Twisted Bilayer Photonic Crystal Slabs. PHYSICAL REVIEW LETTERS 2021; 126:136101. [PMID: 33861130 DOI: 10.1103/physrevlett.126.136101] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
We analyze scattering properties of twisted bilayer photonic crystal slabs through a high-dimensional plane wave expansion method. The method is applicable for arbitrary twist angles and does not suffer from the limitations of the commonly used supercell approximation. We show strongly tunable resonance properties of this system which can be accounted for semianalytically from a correspondence relation to a simpler structure. We also observe strongly tunable resonant chiral behavior in this system. Our work provides the theoretical foundation for predicting and understanding the rich optical physics of twisted multilayer photonic crystal systems.
Collapse
Affiliation(s)
- Beicheng Lou
- Department of Applied Physics, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Nathan Zhao
- Department of Applied Physics, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Momchil Minkov
- Department of Electrical Engineering, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Cheng Guo
- Department of Applied Physics, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Meir Orenstein
- The Andrew and Erna Viterbi Faculty of Electrical Engineering, Technion, Haifa 32000, Israel
| | - Shanhui Fan
- Department of Electrical Engineering, and Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
21
|
Brey L, Stauber T, Slipchenko T, Martín-Moreno L. Plasmonic Dirac Cone in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2020; 125:256804. [PMID: 33416378 DOI: 10.1103/physrevlett.125.256804] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states that appear at the AB-BA interfaces. The CEP form a hexagonal network with a unique energy scale ε_{p}=(e^{2})/(ε_{0}εt_{0}) with t_{0} the moiré lattice constant and ε the dielectric constant. From the dielectric matrix we obtain the plasmon spectra that has two main characteristics: (i) a diverging density of states at zero energy, and (ii) the presence of a plasmonic Dirac cone at ℏω∼ε_{p}/2 with sound velocity v_{D}=0.0075c, which is formed by zigzag and armchair current oscillations. A network model reveals that the antisymmetry of the plasmon bands implies that CEP scatter at the hexagon vertices maximally in the deflected chiral outgoing directions, with a current ratio of 4/9 into each of the deflected directions and 1/9 into the forward one. We show that scanning near-field microscopy should be able to observe the predicted plasmonic Dirac cone and its broken symmetry phases.
Collapse
Affiliation(s)
- Luis Brey
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - T Stauber
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, 28049 Madrid, Spain
| | - T Slipchenko
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - L Martín-Moreno
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| |
Collapse
|
22
|
Stauber T, Low T, Gómez-Santos G. Plasmon-Enhanced Near-Field Chirality in Twisted van der Waals Heterostructures. NANO LETTERS 2020; 20:8711-8718. [PMID: 33237775 DOI: 10.1021/acs.nanolett.0c03519] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
It is shown that chiral plasmons, characterized by a longitudinal magnetic moment accompanying the longitudinal charge plasmon, lead to electromagnetic near-fields that are also chiral. For twisted bilayer graphene, we estimate that the near-field chirality of screened plasmons can be several orders of magnitude larger than that of the related circularly polarized light. The chirality also manifests itself in a deflection angle that is formed between the direction of the plasmon propagation and its Poynting vector. Twisted van der Waals heterostructures might thus provide a novel platform to promote enantiomer-selective physio-chemical processes in chiral molecules without the application of a magnetic field or external nanopatterning that break time-reversal, mirror plane, or inversion symmetry, respectively.
Collapse
Affiliation(s)
- Tobias Stauber
- Departamento de Teoría y Simulación de Materiales, Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guillermo Gómez-Santos
- Departamento de Física de la Materia Condensada, INC and IFIMAC, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
23
|
Bocquet FC, Lin YR, Franke M, Samiseresht N, Parhizkar S, Soubatch S, Lee TL, Kumpf C, Tautz FS. Surfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC. PHYSICAL REVIEW LETTERS 2020; 125:106102. [PMID: 32955317 DOI: 10.1103/physrevlett.125.106102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely R0° rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a preoriented template to induce the unconventional orientation. Using spot profile analysis low-energy electron diffraction, angle-resolved photoelectron spectroscopy, and the normal incidence x-ray standing wave technique, we assess the crystalline quality and coverage of the graphene layer. Combined with the presence of a covalently bound graphene layer in the conventional orientation underneath, our surfactant-mediated growth offers an ideal platform to prepare epitaxial twisted bilayer graphene via intercalation.
Collapse
Affiliation(s)
- F C Bocquet
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - Y-R Lin
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - M Franke
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - N Samiseresht
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - S Parhizkar
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - S Soubatch
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
| | - T-L Lee
- Diamond Light Source, Ltd., Didcot OX110DE, Oxfordshire, United Kingdom
| | - C Kumpf
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| | - F S Tautz
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, 52425 Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Otto-Blumenthal-Straße, 52074 Aachen, Germany
| |
Collapse
|
24
|
Lin X, Liu Z, Stauber T, Gómez-Santos G, Gao F, Chen H, Zhang B, Low T. Chiral Plasmons with Twisted Atomic Bilayers. PHYSICAL REVIEW LETTERS 2020; 125:077401. [PMID: 32857562 DOI: 10.1103/physrevlett.125.077401] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
van der Waals heterostructures of atomically thin layers with rotational misalignments, such as twisted bilayer graphene, feature interesting structural moiré superlattices. Because of the quantum coupling between the twisted atomic layers, light-matter interaction is inherently chiral; as such, they provide a promising platform for chiral plasmons in the extreme nanoscale. However, while the interlayer quantum coupling can be significant, its influence on chiral plasmons still remains elusive. Here we present the general solutions from full Maxwell equations of chiral plasmons in twisted atomic bilayers, with the consideration of interlayer quantum coupling. We find twisted atomic bilayers have a direct correspondence to the chiral metasurface, which simultaneously possesses chiral and magnetic surface conductivities, besides the common electric surface conductivity. In other words, the interlayer quantum coupling in twisted van der Waals heterostructures may facilitate the construction of various (e.g., bi-anisotropic) atomically-thin metasurfaces. Moreover, the chiral surface conductivity, determined by the interlayer quantum coupling, determines the existence of chiral plasmons and leads to a unique phase relationship (i.e., ±π/2 phase difference) between their transverse-electric (TE) and transverse-magnetic (TM) wave components. Importantly, such a unique phase relationship for chiral plasmons can be exploited to construct the missing longitudinal spin of plasmons, besides the common transverse spin of plasmons.
Collapse
Affiliation(s)
- Xiao Lin
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zifei Liu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tobias Stauber
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Guillermo Gómez-Santos
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Fei Gao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, ZJU-UIUC Institute, Zhejiang University, Haining 314400, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Centre for Disruptive Photonic Technologies, NTU, Singapore 637371, Singapore
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
25
|
Bahamon DA, Gómez-Santos G, Stauber T. Emergent magnetic texture in driven twisted bilayer graphene. NANOSCALE 2020; 12:15383-15392. [PMID: 32656559 DOI: 10.1039/d0nr02786c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transport properties of a twisted bilayer graphene barrier are investigated for various twist angles. Remarkably, for small twist angles around the magic angle θm ∼ 1.05°, the local currents around the AA-stacked regions are strongly enhanced compared to the injected electron rate. Furthermore, the total and counterflow (magnetic) current patterns show high correlations in these regions, giving rise to well-defined magnetic moments that form a magnetic Moiré superlattice. The orientation and magnitude of these magnetic moments change as a function of the gate voltage and possible implications for emergent spin-liquid behaviour are discussed.
Collapse
Affiliation(s)
- Dario A Bahamon
- MackGraphe - Graphene and Nano-Materials Research Center, Mackenzie Presbyterian University, Rua da Consolação 896, 01302-907, São Paulo, SP, Brazil.
| | - G Gómez-Santos
- Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - T Stauber
- Departamento de Teoría y Simulación de Materiales, Instituto de Ciencias de Materiales de Madrid, CSIC, E-28049, Madrid, Spain.
| |
Collapse
|
26
|
Ochoa H, Asenjo-Garcia A. Flat Bands and Chiral Optical Response of Moiré Insulators. PHYSICAL REVIEW LETTERS 2020; 125:037402. [PMID: 32745399 DOI: 10.1103/physrevlett.125.037402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/06/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
We present a low-energy model describing the reconstruction of the electronic spectrum in twisted bilayers of honeycomb crystals with broken sublattice symmetry. The resulting moiré patterns are classified into two families with different symmetry. In both cases, flat bands appear at relatively large angles without any magic-angle condition. Transitions between them give rise to sharp resonances in the optical absorption spectrum at frequencies well below the gap of the monolayer. Owing to their chiral symmetry, twisted bilayers display circular dichroism, that is, different absorption of left and right circularly polarized light. This optical activity is a nonlocal property determined by the stacking. In hexagonal boron nitride, sensitivity to the stacking leads to strikingly different circular dichroism in the two types of moirés. Our calculations exemplify how subtle properties of the electronic wave functions, encoded in current correlations between the layers, control physical observables of moiré materials.
Collapse
Affiliation(s)
- H Ochoa
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - A Asenjo-Garcia
- Department of Physics, Columbia University, New York, New York 10027, USA
| |
Collapse
|
27
|
Dai Z, Hu G, Ou Q, Zhang L, Xia F, Garcia-Vidal FJ, Qiu CW, Bao Q. Artificial Metaphotonics Born Naturally in Two Dimensions. Chem Rev 2020; 120:6197-6246. [DOI: 10.1021/acs.chemrev.9b00592] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, P.R. China
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qingdong Ou
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lei Zhang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Francisco J. Garcia-Vidal
- Departamento de Fisica Teorica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autonoma de Madrid, Madrid 28049, Spain
- Donostia International Physics Center (DIPC), Donostia−San Sebastian E-20018, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Qiaoliang Bao
- Department of Materials Science and Engineering, ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
28
|
Saraswat A, Pramoda K, Debnath K, Servottam S, Waghmare UV, Rao CNR. Chemical Route to Twisted Graphene, Graphene Oxide and Boron Nitride. Chemistry 2020; 26:6499-6503. [PMID: 32162366 DOI: 10.1002/chem.202000277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 11/12/2022]
Abstract
The recently discovered twisted graphene has attracted considerable interest. A simple chemical route was found to prepare twisted graphene by covalently linking layers of exfoliated graphene containing surface carboxyl groups with an amine-containing linker (trans-1,4-diaminocyclohexane). The twisted graphene shows the expected selected area electron diffraction pattern with sets of diffraction spots out with different angular spacings, unlike graphene, which shows a hexagonal pattern. Twisted multilayer graphene oxide could be prepared by the above procedure. Twisted boron nitride, prepared by cross-linking layers of boron nitride (BN) containing surface amino groups with oxalic acid linker, exhibited a diffraction pattern comparable to that of twisted graphene. First-principles DFT calculations threw light on the structures and the nature of interactions associated with twisted graphene/BN obtained by covalent linking of layers.
Collapse
Affiliation(s)
- Aditi Saraswat
- New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore, 560064, India
| | - K Pramoda
- New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore, 560064, India
| | - Koyendrila Debnath
- New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore, 560064, India
| | - Swaraj Servottam
- New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore, 560064, India
| | - Umesh V Waghmare
- New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore, 560064, India
| | - C N R Rao
- New Chemistry Unit, Chemistry and Physics of Materials Unit, Theoretical Science Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P. O., Bangalore, 560064, India
| |
Collapse
|
29
|
Manappadan Z, Kumar S, Joshi K, Govindaraja T, Krishnamurty S, Selvaraj K. Unravelling the distinct surface interactions of modified graphene nanostructures with methylene blue dye through experimental and computational approaches. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:121755. [PMID: 31796357 DOI: 10.1016/j.jhazmat.2019.121755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
Nanoscopic modifications leading to multi-dimensional graphene structures are known to significantly influence their candidature for several applications including catalysis, energy storage, molecular sensing and most significantly adsorption and remediation of harmful materials such as dyes. The present work attempts to identify the key trajectories that connect the structural qualification with a chosen application, viz., the interactive forces in dye remediation. Various physico-chemically Modified Graphene Nanostructures (MGNs) such as 2 dimensional Graphite, Graphene Oxide (GO), reduced GO (rGO), holey rGO, and 3 dimensional GO hydrogel and Holey GO hydrogel are chosen and synthesised herein. These represent varieties of physicochemical features with respect to their dimensionality, surface features such as oxygen functionality, nanoscopic holes etc., that contribute to their characteristic overall surface interactions. Methylene Blue (MB), a popular industrial effluent posing major environmental concern is chosen to be a probe adsorbate in this case study. An exclusive real time in-situ UV visible spectral experiment provides the revealing reasons behind the outstanding performance of 2D GO sheets with an adsorption capacity of greater than 92 % even at high MB concentrations (>2000 ppm). A complex dependency of various factors such as surface oxygen, morphology, nanoporosity etc. on the unique overall interaction with an adsorbent such as MB by all these adsorbates is demonstrated using experimental and DFT based computational studies. Electrostatics and hydrogen bonding are understood to be the two dominant forces driving the MB adsorption on the best performing GO here.
Collapse
Affiliation(s)
- Zinoy Manappadan
- Nano and Computational Materials Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Shubham Kumar
- Nano and Computational Materials Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Krati Joshi
- Functional Materials Division, CSIR-Central Electrochemical Research Institute, Karaikudi, 630003, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Thillai Govindaraja
- Nano and Computational Materials Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune, 411008, India
| | - Sailaja Krishnamurty
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad, 201 002, Uttar Pradesh, India
| | - Kaliaperumal Selvaraj
- Nano and Computational Materials Lab, Catalysis Division, CSIR-National Chemical Laboratory, Pune, 411008, India; Academy of Scientific and Innovative Research, CSIR- Human Resource Development Centre (CSIR-HRDC) Campus, Postal Staff College Area, Ghaziabad, 201 002, Uttar Pradesh, India.
| |
Collapse
|
30
|
Gao Y, Zhang Y, Xiao D. Tunable Layer Circular Photogalvanic Effect in Twisted Bilayers. PHYSICAL REVIEW LETTERS 2020; 124:077401. [PMID: 32142309 DOI: 10.1103/physrevlett.124.077401] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
We develop a general theory of the layer circular photogalvanic effect (LCPGE) in quasi-two-dimensional chiral bilayers, which refers to the appearance of a polarization-dependent, out-of-plane static dipole moment induced by circularly polarized light. We elucidate the geometric origin of the LCPGE as two types of interlayer coordinate shift weighted by the quantum metric tensor and the Berry curvature, respectively. As a concrete example, we calculate the LCPGE in twisted bilayer graphene, and find that it exhibits a resonance peak whose frequency can be tuned from visible to infrared as the twisting angle varies. The LCPGE thus provides a promising route toward frequency-sensitive, circularly polarized light detection, particularly in the infrared range.
Collapse
Affiliation(s)
- Yang Gao
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Yinhan Zhang
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Di Xiao
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
31
|
Wang X, Hao J, Cheng J, Li J, Miao J, Li R, Li Y, Li J, Liu Y, Zhu X, Liu Y, Sun XW, Tang Z, Delville MH, He T, Chen R. Chiral CdSe nanoplatelets as an ultrasensitive probe for lead ion sensing. NANOSCALE 2019; 11:9327-9334. [PMID: 30911741 DOI: 10.1039/c8nr10506e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
As opposed to traditional photoluminescence and ultra-violet based optical sensing, we present here a sensing system based on resolved optically active polarization with promising applications. It is based on the ultrathin CdSe nanoplatelets (NPLs) when modified with either l or d-cysteine molecules (l/d-cys) as bio-to-nano ligands. The chiral ligand transfers its chiroptical activity to the achiral nanoplatelets with an anisotropy factor of ∼10-4, which unlocks the chiral excitonic transitions and allows lead ion detection with a limit of detection (LOD) as low as 4.9 nM. Simulations and modelling based on time-dependent density functional theory (TD-DFT) reveal the chiral mechanism of l/d-cys capped CdSe NPLs. The presented CD-based sensing system illustrates an alternative possibility of using chiral CdSe NPLs as competitive chiral sensors for heavy metal ion detection.
Collapse
Affiliation(s)
- Xiongbin Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
González J, Stauber T. Kohn-Luttinger Superconductivity in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2019; 122:026801. [PMID: 30720323 DOI: 10.1103/physrevlett.122.026801] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Indexed: 05/27/2023]
Abstract
We show that the recently observed superconductivity in twisted bilayer graphene (TBG) can be explained as a consequence of the Kohn-Luttinger (KL) instability which leads to an effective attraction between electrons with originally repulsive interaction. Usually, the KL instability takes place at extremely low energy scales, but in TBG, a doubling and subsequent strong coupling of the van Hove singularities (vHS) in the electronic spectrum occurs as the magic angle is approached, leading to extended saddle points in the highest valence band with almost perfect nesting between states belonging to different valleys. The highly anisotropic screening induces an effective attraction in a p-wave channel with odd parity under the exchange of the two disjoined patches of the Fermi line. We also predict the appearance of a spin-density wave instability, adjacent to the superconducting phase, and the opening of a gap in the electronic spectrum from the condensation of spins with wave vector corresponding to the nesting vector close to the vHS.
Collapse
Affiliation(s)
- J González
- Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
| | - T Stauber
- Materials Science Factory, Instituto de Ciencia de Materiales de Madrid, CSIC, E-28049 Madrid, Spain
| |
Collapse
|