1
|
Hasegawa Y, Nishiyama T. Thermodynamic Concentration Inequalities and Trade-Off Relations. PHYSICAL REVIEW LETTERS 2024; 133:247101. [PMID: 39750357 DOI: 10.1103/physrevlett.133.247101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 10/16/2024] [Indexed: 01/04/2025]
Abstract
Thermodynamic tradeoff relations quantify the fundamental concept of "no free lunch" in the physical world, suggesting that faster and more precise physical processes come at a higher thermodynamic cost. The key elements in these trade-off relations are the thermodynamic uncertainty relation and speed limit, which are closely tied to information inequalities from which other trade-off relations are derived. Concentration inequalities are relations that complement information inequalities in statistical analyses and have been widely used in various fields. However, their role in thermodynamic trade-off relations remains unclear. This Letter develops thermodynamic concentration inequalities that provide bounds for the distribution of observables in quantum and classical Markov processes. We derive a set of trade-off relations that generalize speed limits and thermodynamic uncertainty relations from the developed thermodynamic concentration inequalities. The derived trade-off relations hold under minimal assumptions of the underlying physical processes. This Letter clarifies the role of concentration inequalities in thermodynamics, paving the way for deriving new trade-off relations.
Collapse
|
2
|
Pietzonka P, Coghi F. Thermodynamic cost for precision of general counting observables. Phys Rev E 2024; 109:064128. [PMID: 39020906 DOI: 10.1103/physreve.109.064128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/13/2024] [Indexed: 07/20/2024]
Abstract
We analytically derive universal bounds that describe the tradeoff between thermodynamic cost and precision in a sequence of events related to some internal changes of an otherwise hidden physical system. The precision is quantified by the fluctuations in either the number of events counted over time or the waiting times between successive events. Our results are valid for the same broad class of nonequilibrium driven systems considered by the thermodynamic uncertainty relation, but they extend to both time-symmetric and asymmetric observables. We show how optimal precision saturating the bounds can be achieved. For waiting-time fluctuations of asymmetric observables, a phase transition in the optimal configuration arises, where higher precision can be achieved by combining several signals.
Collapse
|
3
|
Tesser L, Splettstoesser J. Out-of-Equilibrium Fluctuation-Dissipation Bounds. PHYSICAL REVIEW LETTERS 2024; 132:186304. [PMID: 38759166 DOI: 10.1103/physrevlett.132.186304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/02/2024] [Indexed: 05/19/2024]
Abstract
We prove a general inequality between the charge current and its fluctuations valid for any weakly interacting coherent electronic conductor and for any stationary out-of-equilibrium condition, thereby going beyond established fluctuation-dissipation relations. The developed fluctuation-dissipation bound saturates at large temperature bias and reveals additional insight for heat engines, since it limits the output power by power fluctuations. It is valid when the thermodynamic uncertainty relations break down due to quantum effects and provides stronger constraints close to thermovoltage.
Collapse
Affiliation(s)
- Ludovico Tesser
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| | - Janine Splettstoesser
- Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology, S-412 96 Göteborg, Sweden
| |
Collapse
|
4
|
Salazar DSP. Uncertainty relation for symmetric Petz-Rényi relative entropy. Phys Rev E 2024; 109:L052106. [PMID: 38907441 DOI: 10.1103/physreve.109.l052106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 06/24/2024]
Abstract
Holevo introduced a fidelity between quantum states that is symmetric and as effective as the trace distance in evaluating their similarity. This fidelity is bounded by a function of the trace distance, a relationship to which we will refer as Holevo's inequality. More broadly, Holevo's fidelity is part of a one-parameter family of symmetric Petz-Rényi relative entropies, which in turn satisfy a Pinsker's-like inequality with respect to the trace distance. Although Holevo's inequality is tight, Pinsker's inequality is loose for this family. We show that the symmetric Petz-Rényi relative entropies satisfy a tight inequality with respect to the trace distance, improving Pinsker's and reproducing Holevo's as a specific case. Additionally, we show how this result emerges from a symmetric Petz-Rényi uncertainty relation, a result that encompasses several relations in quantum and stochastic thermodynamics.
Collapse
|
5
|
Hasegawa Y. Thermodynamic Correlation Inequality. PHYSICAL REVIEW LETTERS 2024; 132:087102. [PMID: 38457724 DOI: 10.1103/physrevlett.132.087102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 01/23/2024] [Indexed: 03/10/2024]
Abstract
Trade-off relations place fundamental limits on the operations that physical systems can perform. This Letter presents a trade-off relation that bounds the correlation function, which measures the relationship between a system's current and future states, in Markov processes. The obtained bound, referred to as the thermodynamic correlation inequality, states that the change in the correlation function has an upper bound comprising the dynamical activity, a thermodynamic measure of the activity of a Markov process. Moreover, by applying the obtained relation to the linear response function, it is demonstrated that the effect of perturbation can be bounded from above by the dynamical activity.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Salazar DSP. Quantum relative entropy uncertainty relation. Phys Rev E 2024; 109:L012103. [PMID: 38366413 DOI: 10.1103/physreve.109.l012103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
For classic systems, the thermodynamic uncertainty relation (TUR) states that the fluctuations of a current have a lower bound in terms of the entropy production. Some TURs are rooted in information theory, particularly derived from relations between observations (mean and variance) and dissimilarities, such as the Kullback-Leibler divergence, which plays the role of entropy production in stochastic thermodynamics. We generalize this idea for quantum systems, where we find a lower bound for the uncertainty of quantum observables given in terms of the quantum relative entropy. We apply the result to obtain a quantum thermodynamic uncertainty relation in terms of the quantum entropy production, valid for arbitrary dynamics and nonthermal environments.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade de Educação a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, 52171-900 Recife, Pernambuco, Brazil
| |
Collapse
|
7
|
Mohanta S, Agarwalla BK. Full statistics of nonequilibrium heat and work for many-body quantum Otto engines and universal bounds: A nonequilibrium Green's function approach. Phys Rev E 2023; 108:064127. [PMID: 38243491 DOI: 10.1103/physreve.108.064127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024]
Abstract
We consider a generic four-stroke quantum Otto engine consisting of two unitary and two thermalization strokes with an arbitrary many-body working medium. Using the Schwinger-Keldysh nonequilibrium Green's function formalism, we provide an analytical expression for the cumulant generating function corresponding to the joint probability distribution of nonequilibrium work and heat. The obtained result is valid up to the second order of the external driving amplitude. We then focus on the linear response limit and obtained Onsager's transport coefficients for the generic Otto cycle and show that the traditional fluctuation-dissipation relation for the total work is violated in the quantum domain, whereas for heat it is preserved. This leads to remarkable consequences in obtaining universal constraints on heat and work fluctuations for engine and refrigerator regimes of the Otto cycle and further allows us to make connections to the thermodynamic uncertainty relations. These findings are illustrated using a paradigmatic model that can be feasibly implemented in experiments.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
8
|
Bakewell-Smith G, Girotti F, Guţă M, Garrahan JP. General Upper Bounds on Fluctuations of Trajectory Observables. PHYSICAL REVIEW LETTERS 2023; 131:197101. [PMID: 38000415 DOI: 10.1103/physrevlett.131.197101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 09/21/2023] [Indexed: 11/26/2023]
Abstract
Thermodynamic uncertainty relations (TURs) are general lower bounds on the size of fluctuations of dynamical observables. They have important consequences, one being that the precision of estimation of a current is limited by the amount of entropy production. Here, we prove the existence of general upper bounds on the size of fluctuations of any linear combination of fluxes (including all time-integrated currents or dynamical activities) for continuous-time Markov chains. We obtain these general relations by means of concentration bound techniques. These "inverse TURs" are valid for all times and not only in the long time limit. We illustrate our analytical results with a simple model, and discuss wider implications of these new relations.
Collapse
Affiliation(s)
- George Bakewell-Smith
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Federico Girotti
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department of Mathematics, Polytechnic University of Milan, Milan, Piazza Leonardo da Vinci 32, 20133, Italy
| | - Mădălin Guţă
- School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Juan P Garrahan
- Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
9
|
Nishiyama T, Hasegawa Y. Upper bound for entropy production in Markov processes. Phys Rev E 2023; 108:044139. [PMID: 37978718 DOI: 10.1103/physreve.108.044139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The second law of thermodynamics states that entropy production cannot be negative. Recent developments concerning uncertainty relations in stochastic thermodynamics, such as thermodynamic uncertainty relations and speed limits, have yielded refined second laws that provide lower bounds of entropy production by incorporating information from current statistics or distributions. In contrast, in this study we bound the entropy production from above by terms comprising the dynamical activity and maximum transition-rate ratio. We derive two upper bounds: One applies to steady-state conditions, whereas the other applies to arbitrary time-dependent conditions. We verify these bounds through numerical simulation and identify several potential applications.
Collapse
Affiliation(s)
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
10
|
Mohanta S, Saha M, Venkatesh BP, Agarwalla BK. Bounds on nonequilibrium fluctuations for asymmetrically driven quantum Otto engines. Phys Rev E 2023; 108:014118. [PMID: 37583162 DOI: 10.1103/physreve.108.014118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 06/21/2023] [Indexed: 08/17/2023]
Abstract
For a four-stroke asymmetrically driven quantum Otto engine with working medium modeled by a single qubit, we study the bounds on nonequilibrium fluctuations of work and heat. We find strict relations between the fluctuations of work and individual heat for hot and cold reservoirs in arbitrary operational regimes. Focusing on the engine regime, we show that the ratio of nonequilibrium fluctuations of output work to input heat from the hot reservoir is both upper and lower bounded. As a consequence, we establish a hierarchical relation between the relative fluctuations of work and heat for both cold and hot reservoirs and further make a connection with the thermodynamic uncertainty relations. We discuss the fate of these bounds also in the refrigerator regime. The reported bounds, for such asymmetrically driven engines, emerge once both the time-forward and the corresponding reverse cycles of the engine are considered on an equal footing. We also extend our study and report bounds for a parametrically driven harmonic oscillator Otto engine.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Madhumita Saha
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - B Prasanna Venkatesh
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
11
|
Das A, Mahunta S, Agarwalla BK, Mukherjee V. Precision bound and optimal control in periodically modulated continuous quantum thermal machines. Phys Rev E 2023; 108:014137. [PMID: 37583225 DOI: 10.1103/physreve.108.014137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
We use Floquet formalism to study fluctuations in periodically modulated continuous quantum thermal machines. We present a generic theory for such machines, followed by specific examples of sinusoidal, optimal, and circular modulations, respectively. The thermodynamic uncertainty relations (TUR) hold for all modulations considered. Interestingly, in the case of sinusoidal modulation, the TUR ratio assumes a minimum at the heat engine to refrigerator transition point, while the chopped random basis optimization protocol allows us to keep the ratio small for a wide range of modulation frequencies. Furthermore, our numerical analysis suggests that TUR can show signatures of heat engine to refrigerator transition, for more generic modulation schemes. We also study bounds in fluctuations in the efficiencies of such machines; our results indicate that fluctuations in efficiencies are bounded from above for a refrigerator and from below for an engine. Overall, this study emphasizes the crucial role played by different modulation schemes in designing practical quantum thermal machines.
Collapse
Affiliation(s)
- Arpan Das
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5/7, 87-100 Toruń, Poland
| | - Shishira Mahunta
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, India
| | - Victor Mukherjee
- Department of Physical Sciences, Indian Institute of Science Education and Research Berhampur, Berhampur 760010, India
| |
Collapse
|
12
|
Lucena IRAC, Batista RA, Ramos JGGS. Thermodynamic uncertainty relations in mesoscopic devices. Phys Rev E 2023; 107:064104. [PMID: 37464637 DOI: 10.1103/physreve.107.064104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/15/2023] [Indexed: 07/20/2023]
Abstract
We investigate the thermodynamic uncertainty relations (TURs) in mesoscopic devices for all universal symmetry classes of Wigner-Dyson and Dirac (chiral). The observables of interest include the TUR (MS), which is defined in terms of the ratio between the mean noise and mean conductance, as well as a new TUR (R) proposed in this article, which is based on the ensemble mean of the noise-to-conductance ratio. A detailed study is made on the quantum interference corrections associated with the TURs. We also analyze the influence of orbital and sublattice/chiral degrees of freedom for the validity of the observables in these chaotic mesoscopic billiards. Our investigation is based on the concatenation between the Landauer-Büttiker theory, the Mahaux-Wendeinmüller theory, and the TURs. We simulate the universal mesoscopic chaotic quantum dots using the random-matrix theory and compare our numerical results with the pertinent experimental data. The results were obtained for a different number of channels and tunneling rates that vary from the opaque to the ideal regime and, in all cases, demonstrate a clear phenomenological distinction between the TURs. In particular, the opaque regime engenders remarkable differences between the observables, even in the semiclassical regime, which characterizes a clear violation of the central limit theorem. Furthermore, we show that the phenomenology of the quantum interference corrections is strikingly robust, surprisingly exhibiting an order of magnitude greater than the supposedly leading semiclassical term for the TUR (R).
Collapse
Affiliation(s)
- I R A C Lucena
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 Joaão Pessoa, Paraíba, Brazil
| | - R A Batista
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 Joaão Pessoa, Paraíba, Brazil
| | - J G G S Ramos
- Departamento de Física, Universidade Federal da Paraíba, 58051-970 Joaão Pessoa, Paraíba, Brazil
| |
Collapse
|
13
|
Hasegawa Y. Unifying speed limit, thermodynamic uncertainty relation and Heisenberg principle via bulk-boundary correspondence. Nat Commun 2023; 14:2828. [PMID: 37198163 DOI: 10.1038/s41467-023-38074-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023] Open
Abstract
The bulk-boundary correspondence provides a guiding principle for tackling strongly correlated and coupled systems. In the present work, we apply the concept of the bulk-boundary correspondence to thermodynamic bounds described by classical and quantum Markov processes. Using the continuous matrix product state, we convert a Markov process to a quantum field, such that jump events in the Markov process are represented by the creation of particles in the quantum field. Introducing the time evolution of the continuous matrix product state, we apply the geometric bound to its time evolution. We find that the geometric bound reduces to the speed limit relation when we represent the bound in terms of the system quantity, whereas the same bound reduces to the thermodynamic uncertainty relation when expressed based on quantities of the quantum field. Our results show that the speed limits and thermodynamic uncertainty relations are two aspects of the same geometric bound.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
14
|
Kamijima T, Ito S, Dechant A, Sagawa T. Thermodynamic uncertainty relations for steady-state thermodynamics. Phys Rev E 2023; 107:L052101. [PMID: 37329003 DOI: 10.1103/physreve.107.l052101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 04/20/2023] [Indexed: 06/18/2023]
Abstract
A system can be driven out of equilibrium by both time-dependent and nonconservative forces, which gives rise to a decomposition of the dissipation into two nonnegative components, called the excess and housekeeping entropy productions. We derive thermodynamic uncertainty relations for the excess and housekeeping entropy. These can be used as tools to estimate the individual components, which are in general difficult to measure directly. We introduce a decomposition of an arbitrary current into housekeeping and excess parts, which provide lower bounds on the respective entropy production. Furthermore, we also provide a geometric interpretation of the decomposition and show that the uncertainties of the two components are not independent, but rather have to obey a joint uncertainty relation, which also yields a tighter bound on the total entropy production. We apply our results to a paradigmatic example that illustrates the physical interpretation of the components of the current and how to estimate the entropy production.
Collapse
Affiliation(s)
- Takuya Kamijima
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Sosuke Ito
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Andreas Dechant
- Department of Physics No. 1, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
15
|
Koyuk T, Seifert U. Thermodynamic Uncertainty Relation in Interacting Many-Body Systems. PHYSICAL REVIEW LETTERS 2022; 129:210603. [PMID: 36461951 DOI: 10.1103/physrevlett.129.210603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/01/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
The thermodynamic uncertainty relation (TUR) has been well studied for systems with few degrees of freedom. While, in principle, the TUR holds for more complex systems with many interacting degrees of freedom as well, little is known so far about its behavior in such systems. We analyze the TUR in the thermodynamic limit for mixtures of driven particles with short-range interactions. Our main result is an explicit expression for the optimal estimate of the total entropy production in terms of single-particle currents and correlations between two-particle currents. Quantitative results for various versions of a driven lattice gas demonstrate the practical implementation of this approach.
Collapse
Affiliation(s)
- Timur Koyuk
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
16
|
López-Alamilla NJ, Cachi RUL. Virial-like thermodynamic uncertainty relation in the tight-binding regime. CHAOS (WOODBURY, N.Y.) 2022; 32:103109. [PMID: 36319277 DOI: 10.1063/5.0107554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We presented a methodology to approximate the entropy production for Brownian motion in a tilted periodic potential. The approximation stems from the well known thermodynamic uncertainty relation. By applying a virial-like expansion, we provided a tighter lower limit solely in terms of the drift velocity and diffusion. The approach presented is systematically analyzed in the tight-binding regime. We also provide a relative simple rule to validate using the tight-binding approach based on drift and diffusion relations rather than energy barriers and forces. We also discuss the implications of our results outside the tight-binding regime.
Collapse
Affiliation(s)
- N J López-Alamilla
- Department of Physics, University of Otago, P. O. Box 56, Dunedin 9054, New Zealand
| | - R U L Cachi
- Department of Chemistry, KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
17
|
Ptaszyński K. Bounds on skewness and kurtosis of steady-state currents. Phys Rev E 2022; 106:024119. [PMID: 36109909 DOI: 10.1103/physreve.106.024119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Current fluctuations are a powerful tool to unravel the underlying physics of the observed transport process. This work discusses some general properties of the third and the fourth current cumulant (skewness and kurtosis) related to dynamics and thermodynamics of a transport setup. Specifically, several distinct bounds on these quantities are either analytically derived or numerically conjectured, which are applicable to (1) noninteracting fermionic systems, (2) noninteracting bosonic systems, (3) thermally driven classical Markovian systems, and (4) unicyclic Markovian networks. Finally, it is demonstrated that violation of the obtained inequalities can provide a broad spectrum of information about the physics of the analyzed system; e.g., it can enable one to infer the presence of interactions or unitary dynamics, unravel the topology of the Markovian network, or characterize the nature of thermodynamic forces driving the system. In particular, relevant information about the microscopic dynamics can be gained even at equilibrium when the current variance-a standard measure of current fluctuations-is determined mostly by the thermal noise.
Collapse
Affiliation(s)
- Krzysztof Ptaszyński
- Institute of Molecular Physics, Polish Academy of Sciences, Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|
18
|
Oberreiter L, Seifert U, Barato AC. Universal minimal cost of coherent biochemical oscillations. Phys Rev E 2022; 106:014106. [PMID: 35974563 DOI: 10.1103/physreve.106.014106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Biochemical clocks are essential for virtually all living systems. A biochemical clock that is isolated from an external periodic signal and subjected to fluctuations can oscillate coherently only for a finite number of oscillations. Furthermore, such an autonomous clock can oscillate only if it consumes free energy. What is the minimum amount of free-energy consumption required for a certain number of coherent oscillations? We conjecture a universal bound that answers this question. A system that oscillates coherently for N oscillations has a minimal free-energy cost per oscillation of 4π^{2}Nk_{B}T. Our bound is valid for general finite Markov processes, is conjectured based on extensive numerical evidence, is illustrated with numerical simulations of a known model for a biochemical oscillator, and applies to existing experimental data.
Collapse
Affiliation(s)
- Lukas Oberreiter
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Andre C Barato
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| |
Collapse
|
19
|
López-Alamilla NJ, Cachi RUL. A model of minimal entropy generation for cytoskeletal transport systems with multiple interacting motors. Biophys Chem 2022; 288:106853. [PMID: 35753181 DOI: 10.1016/j.bpc.2022.106853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
We study the steady-state rate of entropy generation for multiple interacting particles. The description used is based on the partially asymmetric exclusion process in a lattice with periodic boundary conditions. Our methodology shows that in the steady-state, the rate of entropy generation is directly proportional to the bulk drift and the applied driving force. Since in many cases the driving force is unknown or hard to determine. We circumvent this by deriving a lower bound for the entropy, resulting in an extended thermodynamic uncertainty relation for the asymmetric simple exclusion process. We systematically compared this bound with the actual entropy generation. Thus, we identify the force regimes, and particles' density conditions where the entropy bound derived from this extended thermodynamic uncertainty relation is meaningful.
Collapse
Affiliation(s)
| | - R U L Cachi
- Department of Physics, University of Otago, Dunedin, New Zealand; Department of Chemistry, KU Leuven, Leuven, Belgium
| |
Collapse
|
20
|
Verification of Information Thermodynamics in a Trapped Ion System. ENTROPY 2022; 24:e24060813. [PMID: 35741534 PMCID: PMC9222944 DOI: 10.3390/e24060813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023]
Abstract
Information thermodynamics has developed rapidly over past years, and the trapped ions, as a controllable quantum system, have demonstrated feasibility to experimentally verify the theoretical predictions in the information thermodynamics. Here, we address some representative theories of information thermodynamics, such as the quantum Landauer principle, information equality based on the two-point measurement, information-theoretical bound of irreversibility, and speed limit restrained by the entropy production of system, and review their experimental demonstration in the trapped ion system. In these schemes, the typical physical processes, such as the entropy flow, energy transfer, and information flow, build the connection between thermodynamic processes and information variation. We then elucidate the concrete quantum control strategies to simulate these processes by using quantum operators and the decay paths in the trapped-ion system. Based on them, some significantly dynamical processes in the trapped ion system to realize the newly proposed information-thermodynamic models is reviewed. Although only some latest experimental results of information thermodynamics with a single trapped-ion quantum system are reviewed here, we expect to find more exploration in the future with more ions involved in the experimental systems.
Collapse
|
21
|
Van Vu T, Saito K. Thermodynamics of Precision in Markovian Open Quantum Dynamics. PHYSICAL REVIEW LETTERS 2022; 128:140602. [PMID: 35476476 DOI: 10.1103/physrevlett.128.140602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The thermodynamic and kinetic uncertainty relations indicate trade-offs between the relative fluctuation of observables and thermodynamic quantities such as dissipation and dynamical activity. Although these relations have been well studied for classical systems, they remain largely unexplored in the quantum regime. In this Letter, we investigate such trade-off relations for Markovian open quantum systems whose underlying dynamics are quantum jumps, such as thermal processes and quantum measurement processes. Specifically, we derive finite-time lower bounds on the relative fluctuation of both dynamical observables and their first passage times for arbitrary initial states. The bounds imply that the precision of observables is constrained not only by thermodynamic quantities but also by quantum coherence. We find that the product of the relative fluctuation and entropy production or dynamical activity is enhanced by quantum coherence in a generic class of dissipative processes of systems with nondegenerate energy levels. Our findings provide insights into the survival of the classical uncertainty relations in quantum cases.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
22
|
Pietzonka P. Classical Pendulum Clocks Break the Thermodynamic Uncertainty Relation. PHYSICAL REVIEW LETTERS 2022; 128:130606. [PMID: 35426718 DOI: 10.1103/physrevlett.128.130606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
The thermodynamic uncertainty relation expresses a seemingly universal trade-off between the cost for driving an autonomous system and precision in any output observable. It has so far been proven for discrete systems and for overdamped Brownian motion. Its validity for the more general class of underdamped Brownian motion, where inertia is relevant, was conjectured based on numerical evidence. We now disprove this conjecture by constructing a counterexample. Its design is inspired by a classical pendulum clock, which uses an escapement to couple the motion of an oscillator to regulate the motion of another degree of freedom (a "hand") driven by an external force. Considering a thermodynamically consistent, discrete model for an escapement mechanism, we first show that the oscillations of an underdamped harmonic oscillator in thermal equilibrium are sufficient to break the thermodynamic uncertainty relation. We then show that this is also the case in simulations of a fully continuous underdamped system with a potential landscape that mimics an escaped pendulum.
Collapse
Affiliation(s)
- Patrick Pietzonka
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
| |
Collapse
|
23
|
Hasegawa Y. Thermodynamic uncertainty relation for quantum first-passage processes. Phys Rev E 2022; 105:044127. [PMID: 35590682 DOI: 10.1103/physreve.105.044127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
We derive a thermodynamic uncertainty relation for first passage processes in quantum Markov chains. We consider first passage processes that stop after a fixed number of jump events, which contrasts with typical quantum Markov chains which end at a fixed time. We obtain bounds for the observables of the first passage processes in quantum Markov chains by the Loschmidt echo, which quantifies the extent of irreversibility in quantum many-body systems. Considering a particular case, we show that the lower bound corresponds to the quantum Fisher information, which plays a fundamental role in uncertainty relations in quantum systems. Moreover, considering classical dynamics, our bound reduces to a thermodynamic uncertainty relation for classical first passage processes.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
24
|
Mohanta S, Saryal S, Agarwalla BK. Universal bounds on cooling power and cooling efficiency for autonomous absorption refrigerators. Phys Rev E 2022; 105:034127. [PMID: 35428079 DOI: 10.1103/physreve.105.034127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/23/2022] [Indexed: 11/07/2022]
Abstract
For steady-state autonomous absorption refrigerators operating in the linear response regime, we show that there exists a hierarchy between the relative fluctuation of currents for cold, hot, and work terminals. Our proof requires the Onsager reciprocity relation along with the refrigeration condition that sets the direction of the mean currents for each terminal. As a consequence, the universal bounds on the mean cooling power, obtained following the thermodynamic uncertainty relations, follow a hierarchy. Interestingly, within this hierarchy, the tightest bound is given in terms of the work current fluctuation. Furthermore, the relative uncertainty hierarchy introduces a bound on cooling efficiency that is tighter than the bound obtained from the thermodynamic uncertainty relations. Interestingly, all of these bounds saturate in the tight-coupling limit. We test the validity of our results for two paradigmatic absorption refrigerator models: (i) a four-level working fluid and (ii) a two-level working fluid, operating in the weak (additive) and strong (multiplicative) system-bath interaction regimes, respectively.
Collapse
Affiliation(s)
- Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
25
|
Saryal S, Mohanta S, Agarwalla BK. Bounds on fluctuations for machines with broken time-reversal symmetry: A linear response study. Phys Rev E 2022; 105:024129. [PMID: 35291179 DOI: 10.1103/physreve.105.024129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
For a generic class of machines with broken time-reversal symmetry we show that in the linear response regime the relative fluctuation of the sum of output currents for time-forward and time-reversed processes is always lower bounded by the corresponding relative fluctuation of the sum of input currents. This bound is received when the same operating condition, for example, engine, refrigerator, or pump, is imposed on both the forward and the reversed processes. As a consequence, universal upper and lower bounds for the ratio between fluctuations of output and input current are obtained. Furthermore, we establish an important connection between our results and the recently obtained generalized thermodynamic uncertainty relations for time-reversal symmetry-broken systems. We illustrate these findings for two different types of machines: (1) a steady-state three-terminal quantum thermoelectric setup in presence of an external magnetic field and (2) a periodically driven classical Brownian heat engine.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Sandipan Mohanta
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
26
|
Singh D, Hyeon C. Origin of loose bound of the thermodynamic uncertainty relation in a dissipative two-level quantum system. Phys Rev E 2021; 104:054115. [PMID: 34942793 DOI: 10.1103/physreve.104.054115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/02/2021] [Indexed: 11/07/2022]
Abstract
Thermodynamic uncertainty relations (TURs), originally discovered for classical systems, dictate the tradeoff between dissipation and fluctuations of irreversible current, specifying a minimal bound that constrains the two quantities. In a series of efforts to extend the relation to the one under more generalized conditions, it has been noticed that the bound is less tight in open quantum processes. To study the origin of the loose bounds, we consider an external field-driven transition dynamics of a two-level quantum system weakly coupled to the bosonic bath as a model of an open quantum system. The model makes it explicit that the imaginary part of quantum coherence, which contributes to dissipation to the environment, is responsible for loosening the TUR bound by suppressing the relative fluctuations in the irreversible current of transitions, whereas the real part of the coherence tightens it. Our study offers a better understanding of how quantum nature affects the TUR bound.
Collapse
|
27
|
Hasegawa Y. Irreversibility, Loschmidt Echo, and Thermodynamic Uncertainty Relation. PHYSICAL REVIEW LETTERS 2021; 127:240602. [PMID: 34951787 DOI: 10.1103/physrevlett.127.240602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
Entropy production characterizes irreversibility. This viewpoint allows us to consider the thermodynamic uncertainty relation, which states that a higher precision can be achieved at the cost of higher entropy production, as a relation between precision and irreversibility. Considering the original and perturbed dynamics, we show that the precision of an arbitrary counting observable in continuous measurement of quantum Markov processes is bounded from below by the Loschmidt echo between the two dynamics, representing the irreversibility of quantum dynamics. When considering particular perturbed dynamics, our relation leads to several thermodynamic uncertainty relations, indicating that our relation provides a unified perspective on classical and quantum thermodynamic uncertainty relations.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
28
|
Kamijima T, Otsubo S, Ashida Y, Sagawa T. Higher-order efficiency bound and its application to nonlinear nanothermoelectrics. Phys Rev E 2021; 104:044115. [PMID: 34781477 DOI: 10.1103/physreve.104.044115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
Power and efficiency of heat engines are two conflicting objectives. A tight efficiency bound is expected to give insights on the fundamental properties of such a power-efficiency tradeoff. Here, we derive an upper bound on the efficiency of steady-state heat engines, which incorporates higher-order fluctuations of power. In a prototypical model of nonlinear nanostructured thermoelectrics, we show that the obtained bound is tighter than a well-established efficiency bound derived from the thermodynamic uncertainty relation, demonstrating that the higher-order terms have rich information about the thermodynamic efficiency in the nonlinear regime. In particular, we find that the higher-order bound is exactly achieved if the tight coupling condition is satisfied. The obtained bound gives a consistent prediction with an observation that nonlinearity enhances the power-efficiency tradeoff, and would also be useful in a variety of nanoscale engines.
Collapse
Affiliation(s)
- Takuya Kamijima
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shun Otsubo
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuto Ashida
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | - Takahiro Sagawa
- Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Quantum-Phase Electronics Center (QPEC), The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
29
|
Van Vu T, Hasegawa Y. Lower Bound on Irreversibility in Thermal Relaxation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 127:190601. [PMID: 34797124 DOI: 10.1103/physrevlett.127.190601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
We consider the thermal relaxation process of a quantum system attached to single or multiple reservoirs. Quantifying the degree of irreversibility by entropy production, we prove that the irreversibility of the thermal relaxation is lower bounded by a relative entropy between the unitarily evolved state and the final state. The bound characterizes the state discrepancy induced by the nonunitary dynamics, and thus reflects the dissipative nature of irreversibility. Intriguingly, the bound can be evaluated solely in terms of the initial and final states and the system Hamiltonian, thereby providing a feasible way to estimate entropy production without prior knowledge of the underlying coupling structure. This finding refines the second law of thermodynamics and reveals a universal feature of thermal relaxation processes.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
30
|
Saryal S, Gerry M, Khait I, Segal D, Agarwalla BK. Universal Bounds on Fluctuations in Continuous Thermal Machines. PHYSICAL REVIEW LETTERS 2021; 127:190603. [PMID: 34797144 DOI: 10.1103/physrevlett.127.190603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/07/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
We study bounds on ratios of fluctuations in steady-state time-reversal energy conversion devices. In the linear response regime, we prove that the relative fluctuations (precision) of the output current (power) is always lower bounded by the relative fluctuations of the input current (heat current absorbed from the hot bath). As a consequence, the ratio between the fluctuations of the output and input currents are bounded both from above and below, where the lower (upper) bound is determined by the square of the averaged efficiency (square of the Carnot efficiency) of the engine. The saturation of the lower bound is achieved in the tight-coupling limit when the determinant of the Onsager response matrix vanishes. Our analysis can be applied to different operational regimes, including engines, refrigerators, and heat pumps. We illustrate our findings in two types of continuous engines: two-terminal coherent thermoelectric junctions and three-terminal quantum absorption refrigerators. Numerical simulations in the far-from-equilibrium regime suggest that these bounds apply more broadly, beyond linear response.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Matthew Gerry
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Ilia Khait
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
| | - Dvira Segal
- Department of Physics, University of Toronto, 60 Saint George Street, Toronto, Ontario M5S 1A7, Canada
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
31
|
Kalaee AAS, Wacker A, Potts PP. Violating the thermodynamic uncertainty relation in the three-level maser. Phys Rev E 2021; 104:L012103. [PMID: 34412265 DOI: 10.1103/physreve.104.l012103] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Nanoscale heat engines are subject to large fluctuations which affect their precision. The thermodynamic uncertainty relation (TUR) provides a trade-off between output power, fluctuations, and entropic cost. This trade-off may be overcome by systems exhibiting quantum coherence. This Letter provides a study of the TUR in a prototypical quantum heat engine, the Scovil-Schulz-DuBois maser. Comparison with a classical reference system allows us to determine the effect of quantum coherence on the performance of the heat engine. We identify analytically regions where coherence suppresses fluctuations, implying a quantum advantage, as well as regions where fluctuations are enhanced by coherence. This quantum effect cannot be anticipated from the off-diagonal elements of the density matrix. Because the fluctuations are not encoded in the steady state alone, TUR violations are a consequence of coherence that goes beyond steady-state coherence. While the system violates the conventional TUR, it adheres to a recent formulation of a quantum TUR. We further show that parameters where the engine operates close to the conventional limit are prevalent and TUR violations in the quantum model are not uncommon.
Collapse
Affiliation(s)
| | - Andreas Wacker
- Mathematical Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden
| | - Patrick P Potts
- Mathematical Physics and NanoLund, Lund University, Box 118, 221 00 Lund, Sweden.,Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Saryal S, Agarwalla BK. Bounds on fluctuations for finite-time quantum Otto cycle. Phys Rev E 2021; 103:L060103. [PMID: 34271746 DOI: 10.1103/physreve.103.l060103] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/04/2021] [Indexed: 11/07/2022]
Abstract
For quantum Otto engine driven quasistatically, we provide exact full statistics of heat and work for a class of working fluids that follow a scale-invariant energy eigenspectra under driving. Equipped with the full statistics we go on to derive a universal expression for the ratio of nth cumulant of output work and input heat in terms of the mean Otto efficiency. Furthermore, for nonadiabatic driving of quantum Otto engine with working fluid consisting of either a (i) qubit or (ii) a harmonic oscillator, we show that the relative fluctuation of output work is always greater than the corresponding relative fluctuation of input heat absorbed from the hot bath. As a result, the ratio between the work fluctuation and the input heat fluctuation receives a lower bound in terms of the square value of the average efficiency of the engine. The saturation of the lower bound is received in the quasistatic limit of the engine.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Ward No. 8, NCL Colony, Pashan, Pune, Maharashtra 411008, India
| |
Collapse
|
33
|
Rignon-Bret A, Guarnieri G, Goold J, Mitchison MT. Thermodynamics of precision in quantum nanomachines. Phys Rev E 2021; 103:012133. [PMID: 33601640 DOI: 10.1103/physreve.103.012133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022]
Abstract
Fluctuations strongly affect the dynamics and functionality of nanoscale thermal machines. Recent developments in stochastic thermodynamics have shown that fluctuations in many far-from-equilibrium systems are constrained by the rate of entropy production via so-called thermodynamic uncertainty relations. These relations imply that increasing the reliability or precision of an engine's power output comes at a greater thermodynamic cost. Here we study the thermodynamics of precision for small thermal machines in the quantum regime. In particular, we derive exact relations between the power, power fluctuations, and entropy production rate for several models of few-qubit engines (both autonomous and cyclic) that perform work on a quantized load. Depending on the context, we find that quantum coherence can either help or hinder where power fluctuations are concerned. We discuss design principles for reducing such fluctuations in quantum nanomachines and propose an autonomous three-qubit engine whose power output for a given entropy production is more reliable than would be allowed by any classical Markovian model.
Collapse
Affiliation(s)
- Antoine Rignon-Bret
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland.,École Normale Supérieure, 45 rue d'Ulm, F-75230 Paris, France
| | - Giacomo Guarnieri
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - John Goold
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Mark T Mitchison
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
34
|
Saryal S, Sadekar O, Agarwalla BK. Thermodynamic uncertainty relation for energy transport in a transient regime: A model study. Phys Rev E 2021; 103:022141. [PMID: 33736118 DOI: 10.1103/physreve.103.022141] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
We investigate a transient version of the recently discovered thermodynamic uncertainty relation (TUR) which provides a precision-cost trade-off relation for certain out-of-equilibrium thermodynamic observables in terms of net entropy production. We explore this relation in the context of energy transport in a bipartite setting for three exactly solvable toy model systems (two coupled harmonic oscillators, two coupled qubits, and a hybrid coupled oscillator-qubit system) and analyze the role played by the underlying statistics of the transport carriers in the TUR. Interestingly, for all these models, depending on the statistics, the TUR ratio can be expressed as a sum or a difference of a universal term which is always greater than or equal to 2 and a corresponding entropy production term. We find that the generalized version of the TUR, originating from the universal fluctuation symmetry, is always satisfied. However, interestingly, the specialized TUR, a tighter bound, is always satisfied for the coupled harmonic oscillator system obeying Bose-Einstein statistics. Whereas, for both the coupled qubit, obeying Fermi-like statistics, and the hybrid qubit-oscillator system with mixed Fermi-Bose statistics, violation of the tighter bound is observed in certain parameter regimes. We have provided conditions for such violations. We also provide a rigorous proof following the nonequilibrium Green's function approach that the tighter bound is always satisfied in the weak-coupling regime for generic bipartite systems.
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Onkar Sadekar
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
35
|
Hasegawa Y. Thermodynamic Uncertainty Relation for General Open Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 126:010602. [PMID: 33480784 DOI: 10.1103/physrevlett.126.010602] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
We derive a thermodynamic uncertainty relation for general open quantum dynamics, described by a joint unitary evolution on a composite system comprising a system and an environment. By measuring the environmental state after the system-environment interaction, we bound the counting observables in the environment by the survival activity, which reduces to the dynamical activity in classical Markov processes. Remarkably, the relation derived herein holds for general open quantum systems with any counting observable and any initial state. Therefore, our relation is satisfied for classical Markov processes with arbitrary time-dependent transition rates and initial states. We apply our relation to continuous measurement and the quantum walk to find that the quantum nature of the system can enhance the precision. Moreover, we can make the lower bound arbitrarily small by employing appropriate continuous measurement.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
Sacchi MF. Thermodynamic uncertainty relations for bosonic Otto engines. Phys Rev E 2021; 103:012111. [PMID: 33601559 DOI: 10.1103/physreve.103.012111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
We study two-mode bosonic engines undergoing an Otto cycle. The energy exchange between the two bosonic systems is provided by a tunable unitary bilinear interaction in the mode operators modeling frequency conversion, whereas the cyclic operation is guaranteed by relaxation to two baths at different temperatures after each interacting stage. By means of a two-point-measurement approach we provide the joint probability of the stochastic work and heat. We derive exact expressions for work and heat fluctuations, identities showing the interdependence among average extracted work, fluctuations, and efficiency, along with thermodynamic uncertainty relations between the signal-to-noise ratio of observed work and heat and the entropy production. We outline how the presented approach can be suitably applied to derive thermodynamic uncertainty relations for quantum Otto engines with alternative unitary strokes.
Collapse
Affiliation(s)
- Massimiliano F Sacchi
- CNR-Istituto di Fotonica e Nanotecnologie, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy and QUIT Group, Dipartimento di Fisica, Università di Pavia, via A. Bassi 6, I-27100 Pavia, Italy
| |
Collapse
|
37
|
Koyuk T, Seifert U. Thermodynamic Uncertainty Relation for Time-Dependent Driving. PHYSICAL REVIEW LETTERS 2020; 125:260604. [PMID: 33449796 DOI: 10.1103/physrevlett.125.260604] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/09/2020] [Indexed: 05/10/2023]
Abstract
Thermodynamic uncertainty relations yield a lower bound on entropy production in terms of the mean and fluctuations of a current. We derive their general form for systems under arbitrary time-dependent driving from arbitrary initial states and extend these relations beyond currents to state variables. The quality of the bound is discussed for various types of observables for an interacting pair of colloidal particles in a moving laser trap and for the dynamical unfolding of a small protein. Since the input for evaluating these bounds does not require specific knowledge of the system or its coupling to the time-dependent control, they should become widely applicable tools for thermodynamic inference in time-dependently driven systems.
Collapse
Affiliation(s)
- Timur Koyuk
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
38
|
Benenti G, Casati G, Wang J. Power, efficiency, and fluctuations in steady-state heat engines. Phys Rev E 2020; 102:040103. [PMID: 33212678 DOI: 10.1103/physreve.102.040103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/06/2020] [Indexed: 11/07/2022]
Abstract
We consider the quality factor Q, which quantifies the trade-off between power, efficiency, and fluctuations in steady-state heat engines modeled by dynamical systems. We show that the nonlinear scattering theory, in both classical and quantum mechanics, sets the bound Q=3/8 when approaching the Carnot efficiency. On the other hand, interacting, nonintegrable, and momentum-conserving systems can achieve the value Q=1/2, which is the universal upper bound in linear response. This result shows that interactions are necessary to achieve the optimal performance of a steady-state heat engine.
Collapse
Affiliation(s)
- Giuliano Benenti
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan, Italy.,NEST, Istituto Nanoscienze-CNR, I-56126 Pisa, Italy
| | - Giulio Casati
- Center for Nonlinear and Complex Systems, Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell'Insubria, via Valleggio 11, 22100 Como, Italy.,International Institute of Physics, Federal University of Rio Grande do Norte, Campus Universitário-Lagoa Nova, CP. 1613, Natal, Rio Grande Do Norte 59078-970, Brazil
| | - Jiao Wang
- Department of Physics and Key Laboratory of Low Dimensional Condensed Matter Physics (Department of Education of Fujian Province), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
39
|
Fischer LP, Chun HM, Seifert U. Free diffusion bounds the precision of currents in underdamped dynamics. Phys Rev E 2020; 102:012120. [PMID: 32794919 DOI: 10.1103/physreve.102.012120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/21/2020] [Indexed: 11/07/2022]
Abstract
The putative generalization of the thermodynamic uncertainty relation (TUR) to underdamped dynamics is still an open problem. So far, bounds that have been derived for such a dynamics are not particularly transparent and they do not converge to the known TUR in the overdamped limit. Furthermore, it was found that there are restrictions for a TUR to hold such as the absence of a magnetic field. In this article we first analyze the properties of driven free diffusion in the underdamped regime and show that it inherently violates the overdamped TUR for finite times. Based on numerical evidence, we then conjecture a bound for one-dimensional driven diffusion in a potential which is based on the result for free diffusion. This bound converges to the known overdamped TUR in the corresponding limit. Moreover, the conjectured bound holds for observables that involve higher powers of the velocity as long as the observable is odd under time reversal. Finally, we address the applicability of this bound to underdamped dynamics in higher dimensions.
Collapse
Affiliation(s)
- Lukas P Fischer
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Hyun-Myung Chun
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| | - Udo Seifert
- II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
40
|
Hasegawa Y. Quantum Thermodynamic Uncertainty Relation for Continuous Measurement. PHYSICAL REVIEW LETTERS 2020; 125:050601. [PMID: 32794846 DOI: 10.1103/physrevlett.125.050601] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We use quantum estimation theory to derive a thermodynamic uncertainty relation in Markovian open quantum systems, which bounds the fluctuation of continuous measurements. The derived quantum thermodynamic uncertainty relation holds for arbitrary continuous measurements satisfying a scaling condition. We derive two relations; the first relation bounds the fluctuation by the dynamical activity and the second one does so by the entropy production. We apply our bounds to a two-level atom driven by a laser field and a three-level quantum thermal machine with jump and diffusion measurements. Our result shows that there exists a universal bound upon the fluctuations, regardless of continuous measurements.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
41
|
Jack MW, López-Alamilla NJ, Challis KJ. Thermodynamic uncertainty relations and molecular-scale energy conversion. Phys Rev E 2020; 101:062123. [PMID: 32688509 DOI: 10.1103/physreve.101.062123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
The thermodynamic uncertainty relation (TUR) is a universal constraint for nonequilibrium steady states that requires the entropy production rate to be greater than the relative magnitude of current fluctuations. It has potentially important implications for the thermodynamic efficiency of molecular-scale energy conversion in both biological and artificial systems. An alternative multidimensional thermodynamic uncertainty relation (MTUR) has also been proposed. In this paper we apply the TUR and the MTUR to a description of molecular-scale energy conversion that explicitly contains the degrees of freedom exchanging energy via a time-independent multidimensional periodic potential. The TUR and the MTUR are found to be universal lower bounds on the entropy generation rate and provide upper bounds on the thermodynamic efficiency. The TUR is found to provide only a weak bound while the MTUR provides a much tighter constraint by taking into account correlations between degrees of freedom. The MTUR is found to provide a tight bound in the near or far from equilibrium regimes but not in the intermediate force regime. Collectively, these results demonstrate that the MTUR is more appropriate than the TUR for energy conversion processes, but that both diverge from the actual entropy generation in certain regimes.
Collapse
Affiliation(s)
- M W Jack
- Department of Physics, University of Otago, Dunedin, New Zealand
| | | | - K J Challis
- Scion, 49 Sala Street, Rotorua 3046, New Zealand
| |
Collapse
|
42
|
Van Vu T, Vo VT, Hasegawa Y. Entropy production estimation with optimal current. Phys Rev E 2020; 101:042138. [PMID: 32422750 DOI: 10.1103/physreve.101.042138] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/03/2020] [Indexed: 11/07/2022]
Abstract
Entropy production characterizes the thermodynamic irreversibility and reflects the amount of heat dissipated into the environment and free energy lost in nonequilibrium systems. According to the thermodynamic uncertainty relation, we propose a deterministic method to estimate the entropy production from a single trajectory of system states. We explicitly and approximately compute an optimal current that yields the tightest lower bound using predetermined basis currents. Notably, the obtained tightest lower bound is intimately related to the multidimensional thermodynamic uncertainty relation. By proving the saturation of the thermodynamic uncertainty relation in the short-time limit, the exact estimate of the entropy production can be obtained for overdamped Langevin systems, irrespective of the underlying dynamics. For Markov jump processes, because the attainability of the thermodynamic uncertainty relation is not theoretically ensured, the proposed method provides the tightest lower bound for the entropy production. When entropy production is the optimal current, a more accurate estimate can be further obtained using the integral fluctuation theorem. We illustrate the proposed method using three systems: a four-state Markov chain, a periodically driven particle, and a multiple bead-spring model. The estimated results in all examples empirically verify the effectiveness and efficiency of the proposed method.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Van Tuan Vo
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
43
|
Song Y, Hyeon C. Thermodynamic Cost, Speed, Fluctuations, and Error Reduction of Biological Copy Machines. J Phys Chem Lett 2020; 11:3136-3143. [PMID: 32227999 DOI: 10.1021/acs.jpclett.0c00545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to large fluctuations in cellular environments, transfer of information in biological processes without regulation is error-prone. The mechanistic details of error-reducing mechanisms in biological copying processes have been a subject of active research; however, how error reduction of a process is balanced with its thermodynamic cost and dynamical properties remain largely unexplored. Here, we study the error reducing strategies in light of the recently discovered thermodynamic uncertainty relation (TUR) that sets a physical bound to the cost-precision trade-off for dissipative processes. We found that the two representative copying processes, DNA replication by the exonuclease-deficient T7 DNA polymerase and mRNA translation by the E. coli ribosome, reduce the error rates to biologically acceptable levels while also optimizing the processes close to the physical limit dictated by TUR.
Collapse
Affiliation(s)
- Yonghyun Song
- Korea Institute for Advanced Study, Seoul 02455, Korea
| | | |
Collapse
|
44
|
Potts PP, Samuelsson P. Thermodynamic uncertainty relations including measurement and feedback. Phys Rev E 2019; 100:052137. [PMID: 31869995 DOI: 10.1103/physreve.100.052137] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 12/26/2022]
Abstract
Thermodynamic uncertainty relations quantify how the signal-to-noise ratio of a given observable is constrained by dissipation. Fluctuation relations generalize the second law of thermodynamics to stochastic processes. We show that any fluctuation relation directly implies a thermodynamic uncertainty relation, considerably increasing their range of applicability. In particular, we extend thermodynamic uncertainty relations to scenarios which include measurement and feedback. Since feedback generally breaks time-reversal invariance, the uncertainty relations involve quantities averaged over the forward and the backward experiment defined by the associated fluctuation relation. This implies that the signal-to-noise ratio of a given experiment can in principle become arbitrarily large as long as the corresponding backward experiment compensates, e.g., by being sufficiently noisy. We illustrate our results with the Szilard engine as well as work extraction by free energy reduction in a quantum dot.
Collapse
Affiliation(s)
- Patrick P Potts
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| | - Peter Samuelsson
- Physics Department and NanoLund, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
45
|
Saryal S, Friedman HM, Segal D, Agarwalla BK. Thermodynamic uncertainty relation in thermal transport. Phys Rev E 2019; 100:042101. [PMID: 31770984 DOI: 10.1103/physreve.100.042101] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Indexed: 11/07/2022]
Abstract
We use the fundamental nonequilibrium steady-state fluctuation symmetry and derive a condition on the validity of the thermodynamic uncertainty relation (TUR) in thermal transport problems, classical and quantum alike. We test this condition and study the breakdown of the TUR in different thermal transport junctions of bosonic and electronic degrees of freedom. We prove that the TUR is valid in harmonic oscillator junctions. In contrast, in the nonequilibrium spin-boson model, which realizes many-body effects, it is satisfied in the Markovian limit, but violations arise as we tune (reduce) the cutoff frequency of the thermal baths, thus observing non-Markovian dynamics. We consider heat transport by noninteracting electrons in a tight-binding chain model. We show that the TUR is feasibly violated by tuning, e.g., the hybridization energy of the chain to the metal leads. These results manifest that the validity of the TUR relies on the statistics of the participating carriers, their interaction, and the nature of their couplings to the macroscopic contacts (metal electrodes and phonon baths).
Collapse
Affiliation(s)
- Sushant Saryal
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| | - Hava Meira Friedman
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Bijay Kumar Agarwalla
- Department of Physics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
46
|
Van Vu T, Hasegawa Y. Uncertainty relations for underdamped Langevin dynamics. Phys Rev E 2019; 100:032130. [PMID: 31640023 DOI: 10.1103/physreve.100.032130] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 11/07/2022]
Abstract
A trade-off between the precision of an arbitrary current and the dissipation, known as the thermodynamic uncertainty relation, has been investigated for various Markovian systems. Here, we study the thermodynamic uncertainty relation for underdamped Langevin dynamics. By employing information inequalities, we prove that for such systems, the relative fluctuation of a current at a steady state is constrained by both the entropy production and the average dynamical activity. We find that unlike what is the case for overdamped dynamics, the dynamical activity plays an important role in the bound. We illustrate our results with two systems, a single-well potential system and a periodically driven Brownian particle model, and numerically verify the inequalities.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
47
|
Shiraishi N, Saito K. Information-Theoretical Bound of the Irreversibility in Thermal Relaxation Processes. PHYSICAL REVIEW LETTERS 2019; 123:110603. [PMID: 31573259 DOI: 10.1103/physrevlett.123.110603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/02/2019] [Indexed: 06/10/2023]
Abstract
We establish that entropy production, which is crucial to the characterization of thermodynamic irreversibility, is obtained through a variational principle involving the Kulback-Leibler divergence. A simple application of this representation leads to an information-theoretical bound on entropy production in thermal relaxation processes; this is a stronger inequality than the conventional second law of thermodynamics. This bound is also interpreted as a constraint on the possible path of a thermal relaxation process in terms of information geometry. Our results reveal a hidden universal law inherent to general thermal relaxation processes.
Collapse
Affiliation(s)
- Naoto Shiraishi
- Department of Physics, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, 171-0031 Tokyo, Japan
| | - Keiji Saito
- Department of Physics, Keio university, Hiyoshi 3-14-1, Kohoku-ku, 223-0061 Yokohama, Japan
| |
Collapse
|
48
|
Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric Heat Engine. ENTROPY 2019; 21:e21080777. [PMID: 33267490 PMCID: PMC7515306 DOI: 10.3390/e21080777] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 11/17/2022]
Abstract
The trade-off between large power output, high efficiency and small fluctuations in the operation of heat engines has recently received interest in the context of thermodynamic uncertainty relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating the operation of a quantum point contact (QPC) with an energy-dependent transmission function as a steady-state thermoelectric heat engine. As a starting point, we review and extend previous analysis of the power production and efficiency. Thereafter the power fluctuations and the bound jointly imposed on the power, efficiency, and fluctuations by the TURs are analyzed as additional performance quantifiers. We allow for arbitrary smoothness of the transmission probability of the QPC, which exhibits a close to step-like dependence in energy, and consider both the linear and the non-linear regime of operation. It is found that for a broad range of parameters, the power production reaches nearly its theoretical maximum value, with efficiencies more than half of the Carnot efficiency and at the same time with rather small fluctuations. Moreover, we show that by demanding a non-zero power production, in the linear regime a stronger TUR can be formulated in terms of the thermoelectric figure of merit. Interestingly, this bound holds also in a wide parameter regime beyond linear response for our QPC device.
Collapse
|
49
|
Holubec V, Novotný T. Effects of noise-induced coherence on the fluctuations of current in quantum absorption refrigerators. J Chem Phys 2019; 151:044108. [DOI: 10.1063/1.5096275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Tomáš Novotný
- Charles University, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, CZ-121 16 Praha, Czech Republic
| |
Collapse
|
50
|
Van Vu T, Hasegawa Y. Uncertainty relations for time-delayed Langevin systems. Phys Rev E 2019; 100:012134. [PMID: 31499914 DOI: 10.1103/physreve.100.012134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Indexed: 06/10/2023]
Abstract
The thermodynamic uncertainty relation, which establishes a universal trade-off between nonequilibrium current fluctuations and dissipation, has been found for various Markovian systems. However, this relation has not been revealed for non-Markovian systems; therefore, we investigate the thermodynamic uncertainty relation for time-delayed Langevin systems. We prove that the fluctuation of arbitrary dynamical observables is constrained by the Kullback-Leibler divergence between the distributions of the forward path and its reversed counterpart. Specifically, for observables that are antisymmetric under time reversal, the fluctuation is bounded from below by a function of a quantity that can be identified as a generalization of the total entropy production in Markovian systems. We also provide a lower bound for arbitrary observables that are odd under position reversal. The term in this bound reflects the extent to which the position symmetry has been broken in the system and can be positive even in equilibrium. Our results hold for finite observation times and a large class of time-delayed systems because detailed underlying dynamics are not required for the derivation. We numerically verify the derived uncertainty relations using two single time-delay systems and one distributed time-delay system.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|