1
|
Rycerz A, Rycerz K, Witkowski P. Sub-Sharvin Conductance and Incoherent Shot-Noise in Graphene Disks at Magnetic Field. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3067. [PMID: 38998150 PMCID: PMC11487447 DOI: 10.3390/ma17133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024]
Abstract
Highly doped graphene samples show reduced conductance and enhanced shot-noise power compared with standard ballistic systems in two-dimensional electron gas. These features can be understood within a model that assumes incoherent scattering of Dirac electrons between two interfaces separating the sample and the leads. Here we find, by adopting the above model for the edge-free (Corbino) geometry and by computer simulation of quantum transport, that another graphene-specific feature should be observable when the current flow through a doped disk is blocked by a strong magnetic field. When the conductance drops to zero, the Fano factor approaches the value of F≈0.56, with a very weak dependence on the ratio of the disk radii. The role of finite source-drain voltages and the system behavior when the electrostatic potential barrier is tuned from a rectangular to a parabolic shape are also discussed.
Collapse
Affiliation(s)
- Adam Rycerz
- Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków, Poland;
| | - Katarzyna Rycerz
- Faculty of Computer Science, AGH University of Krakow, al. Mickiewicza 30, PL-30059 Kraków, Poland
| | - Piotr Witkowski
- Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL-30348 Kraków, Poland;
| |
Collapse
|
2
|
Tong K, Dou W. Numerical study of non-adiabatic quantum thermodynamics of the driven resonant level model: non-equilibrium entropy production and higher order corrections. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:495703. [PMID: 36223783 DOI: 10.1088/1361-648x/ac99c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
We present our numerical study on quantum thermodynamics of the resonant level model subjected to non-equilibrium condition as well as external driving. Following our previous work on non-equilibrium quantum thermodynamics (Douet al2020Phys. Rev.B101184304), we expand the density operator into a series of power in the driving speed, where we can determine the non-adiabatic thermodynamic quantities. Particularly, we calculate the non-equilibrium entropy production rate as well as higher order non-adiabatic corrections to the energy and/or population, which is not determined previously in Douet al(2020Phys. Rev.B101184304). In the limit of weak system-bath coupling, our results reduce to the one from the quantum master equation.
Collapse
Affiliation(s)
- Kaiyi Tong
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
| | - Wenjie Dou
- School of Science, Westlake University, Hangzhou, Zhejiang 310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, People's Republic of China
| |
Collapse
|
3
|
Ryu S, López R, Serra L, Sánchez D. Beating Carnot efficiency with periodically driven chiral conductors. Nat Commun 2022; 13:2512. [PMID: 35523762 PMCID: PMC9076907 DOI: 10.1038/s41467-022-30039-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Classically, the power generated by an ideal thermal machine cannot be larger than the Carnot limit. This profound result is rooted in the second law of thermodynamics. A hot question is whether this bound is still valid for microengines operating far from equilibrium. Here, we demonstrate that a quantum chiral conductor driven by AC voltage can indeed work with efficiencies much larger than the Carnot bound. The system also extracts work from common temperature baths, violating Kelvin-Planck statement. Nonetheless, with the proper definition, entropy production is always positive and the second law is preserved. The crucial ingredients to obtain efficiencies beyond the Carnot limit are: i) irreversible entropy production by the photoassisted excitation processes due to the AC field and ii) absence of power injection thanks to chirality. Our results are relevant in view of recent developments that use small conductors to test the fundamental limits of thermodynamic engines.
Collapse
Affiliation(s)
- Sungguen Ryu
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain.
| | - Rosa López
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain
| | - Llorenç Serra
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain
| | - David Sánchez
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain
| |
Collapse
|
4
|
Dai X, Le K, Wang F, Wei R, Liu J, Jiang Y, Li H. Single-Molecule Detection of Acetylcholine by Translating the Neuronal Signal to a Single Distinct Electronic Peak. ACS APPLIED BIO MATERIALS 2020; 3:6888-6896. [PMID: 35019350 DOI: 10.1021/acsabm.0c00797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bioelectric signal deriving from acetylcholine (ACh) plays an important role in regulating body function. Translating neuronal signals to electrical current peaks is a promising approach to achieve rapid detection of the bioelectric signal, but direct nanodevice-based single-molecule detection of the neurotransmitter is hampered by technology. Herein, we propose a neurotransmitter molecular nanogap device composed of atomically thin black phosphorus (BP) electrodes, which could rapidly distinguish the single distinct electronic peak of ACh at low positive bias from other central neurotransmitters. It is the first time that this unique electronic signal has been found, which originates from its quaternary ammonium group, and it has been experimentally verified in the linear sweep voltammetry (LSV) curves measured at 0.3 mV s-1 in 0.01 M acetycholine chloride aqueous solution. Furthermore, our results suggest that replacing the N atom with a P atom can not only reverse the current signal but also change the signal magnitude in ACh or choline nanoelectronic devices. Importantly, all these appealing properties can even be assembled as components to make these molecules into parallel heterojunctions, making them a promising candidate for applications in forward or backward rectifying diodes. These results provide a theoretical basis for the creative applications of a BP electrode-based nanogap device in the rapid and single-molecule level detection of ACh, an electrochemical understanding for the mechanism of the signal transmission between neurons, and a physical approach to controlling the complex biological signal transduction in organisms. Ultimately, our findings lay the basis for next-generation biomedical solutions to clinical problems in the neurologic field.
Collapse
Affiliation(s)
- Xinyue Dai
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Kai Le
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Rubin Wei
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, People's Republic of China
| |
Collapse
|
5
|
Semenov A, Nitzan A. Transport and thermodynamics in quantum junctions: A scattering approach. J Chem Phys 2020; 152:244126. [PMID: 32610981 DOI: 10.1063/5.0010127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a scattering approach for the study of the transport and thermodynamics of quantum systems strongly coupled to their thermal environment(s). This formalism recovers the standard non-equilibrium Green's function expressions for quantum transport and reproduces recently obtained results for the quantum thermodynamics of slowly driven systems. Using this approach, new results have been obtained. First, we derived a general explicit expression for the non-equilibrium steady-state density matrix of a system composed of multiple infinite baths coupled through a general interaction. Then, we obtained a general expression for the dissipated power for the driven non-interacting resonant level to the first order in the driving speeds, where both the dot energy level and its couplings are changing, without invoking the wide-band approximation. In addition, we also showed that the symmetric splitting of the system bath interaction, employed for the case of a system coupled to one bath to determine the effective system Hamiltonian [A. Bruch et al., Phys. Rev. B 93, 115318 (2016)], is valid for the multiple bath case as well. Finally, we demonstrated an equivalence of our method to the Landauer-Buttiker formalism and its extension to slowly driven systems developed by Bruch, Lewenkopf, and von Oppen [Phys. Rev. Lett. 120, 107701 (2018)]. To demonstrate the use of this formalism, we analyze the operation of a device in which the dot is driven cyclically between two leads under strong coupling conditions. We also generalize the previously obtained expression for entropy production in such driven processes to the many-bath case.
Collapse
Affiliation(s)
- Alexander Semenov
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
6
|
Strasberg P, Esposito M. Measurability of nonequilibrium thermodynamics in terms of the Hamiltonian of mean force. Phys Rev E 2020; 101:050101. [PMID: 32575212 DOI: 10.1103/physreve.101.050101] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/22/2020] [Indexed: 11/07/2022]
Abstract
The nonequilibrium thermodynamics of an open (classical or quantum) system in strong contact with a single heat bath can be conveniently described in terms of the Hamiltonian of mean force. However, the conventional formulation is limited by the necessity to measure differences in equilibrium properties of the system-bath composite. We make use of the freedom involved in defining thermodynamic quantities, which leaves the thermodynamics unchanged, to show that the Hamiltonian of mean force can be inferred from measurements on the system alone, up to that irrelevant freedom. In doing so, we refute a key criticism expressed in the works by P. Talkner and P. Hänggi [Phys. Rev. E 94, 022143 (2016)10.1103/PhysRevE.94.022143 and arXiv:1911.11660]. We also discuss the remaining part of the criticism.
Collapse
Affiliation(s)
- Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| | - Massimiliano Esposito
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
7
|
Zimbovskaya NA, Nitzan A. Energy, Work, Entropy, and Heat Balance in Marcus Molecular Junctions. J Phys Chem B 2020; 124:2632-2642. [PMID: 32163712 DOI: 10.1021/acs.jpcb.0c00059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a consistent theory of energy balance and conversion in a single-molecule junction with strong interactions between electrons on the molecular linker (dot) and phonons in the nuclear environment where the Marcus-type electron hopping processes predominate in the electron transport. It is shown that the environmental reorganization and relaxation that accompany electron hopping energy exchange between the electrodes and the nuclear (molecular and solvent) environment may bring a moderate local cooling of the latter in biased systems. The effect of a periodically driven dot level on the heat transport and power generated in the system is analyzed, and energy conservation is demonstrated both within and beyond the quasistatic regime. Finally, a simple model of atomic scale engine based on a Marcus single-molecule junction with a driven electron level is suggested and discussed.
Collapse
Affiliation(s)
- Natalya A Zimbovskaya
- Department of Physics and Electronics, University of Puerto Rico-Humacao, CUH Station, Humacao, Puerto Rico 00791, United States
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Cohen G, Galperin M. Green’s function methods for single molecule junctions. J Chem Phys 2020; 152:090901. [DOI: 10.1063/1.5145210] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Guy Cohen
- The Raymond and Beverley Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Galperin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
9
|
Abstract
Dynamics at molecule-metal interfaces are a subject of intense current interest and come in many different flavors of experiments: gas-phase scattering, chemisorption, electrochemistry, nanojunction transport, and heterogeneous catalysis, to name a few. These dynamics involve nuclear degrees of freedom entangled with many electronic degrees of freedom (in the metal), and as such there is always the possibility for nonadiabatic phenomena to appear: the nuclei do not necessarily need to move slower than the electrons to break the Born-Oppenheimer (BO) approximation. In this Feature Article, we review a set of dynamical methods developed recently to deal with such nonadiabatic phenomena at a metal surface, methods that serve as alternatives to Tully's independent electron surface hopping (IESH) model. In the weak molecule-metal coupling regime, a classical master equation (CME) can be derived and a simple surface hopping approach is proposed to propagate nuclear and electronic dynamics stochastically. In the strong molecule-metal interaction regime, a Fokker-Planck equation can be derived for the nuclear dynamics, with electronic DoFs incorporated into the overall friction and random force. Lastly, a broadened classical master equation (BCME) can interpolate between the weak and strong molecule-metal interactions. Here, we briefly review these methods and the relevant benchmarking data, showing in particular how the methods can be used to calculate nonequilibrium transport properties. We highlight several open questions and pose several avenues for future study.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry , University of California, Berkeley , Berkeley , California 94720 , United States
| | - Joseph E Subotnik
- Department of Chemistry , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
10
|
Dai X, Jiang Y, Li H. BAs nanotubes with non-circular cross section shapes for gas sensors. Phys Chem Chem Phys 2020; 22:12584-12590. [DOI: 10.1039/d0cp01708f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic transport properties of circular and elliptical BAs nanotubes before and after encapsulation of water.
Collapse
Affiliation(s)
- Xinyue Dai
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid–Solid Structural Evolution and Processing of Materials
- Ministry of Education
- Shandong University
- Jinan 250061
- People's Republic of China
| |
Collapse
|
11
|
Oz A, Hod O, Nitzan A. Numerical Approach to Nonequilibrium Quantum Thermodynamics: Nonperturbative Treatment of the Driven Resonant Level Model Based on the Driven Liouville von-Neumann Formalism. J Chem Theory Comput 2019; 16:1232-1248. [DOI: 10.1021/acs.jctc.9b00999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19103, United States
| |
Collapse
|
12
|
Strasberg P. Repeated Interactions and Quantum Stochastic Thermodynamics at Strong Coupling. PHYSICAL REVIEW LETTERS 2019; 123:180604. [PMID: 31763881 DOI: 10.1103/physrevlett.123.180604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Indexed: 06/10/2023]
Abstract
The thermodynamic framework of repeated interactions is generalized to an arbitrary open quantum system in contact with a heat bath. Based on these findings, the theory is then extended to arbitrary measurements performed on the system. This constitutes a direct experimentally testable framework in strong coupling quantum thermodynamics. By construction, it provides many quantum stochastic processes and quantum causal models with a consistent thermodynamic interpretation. The setting can be further used, for instance, to rigorously investigate the interplay between non-Markovianity and nonequilibrium thermodynamics.
Collapse
Affiliation(s)
- Philipp Strasberg
- Física Teòrica: Informació i Fenòmens Quàntics, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
| |
Collapse
|
13
|
Shastry A, Xu Y, Stafford CA. The third law of thermodynamics in open quantum systems. J Chem Phys 2019. [DOI: 10.1063/1.5100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Abhay Shastry
- Department of Physics, University of Arizona, 1118 East Fourth Street, Tucson, Arizona 85721, USA
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H4, Canada
| | - Yiheng Xu
- Department of Physics, University of Arizona, 1118 East Fourth Street, Tucson, Arizona 85721, USA
- Department of Physics, University of California, San Diego, California 92093, USA
| | - Charles A. Stafford
- Department of Physics, University of Arizona, 1118 East Fourth Street, Tucson, Arizona 85721, USA
| |
Collapse
|
14
|
Abstract
A comprehensive approach to modeling open quantum systems consistent with thermodynamics is presented. The theory of open quantum systems is employed to define system bath partitions. The Markovian master equation defines an isothermal partition between the system and bath. Two methods to derive the quantum master equation are described: the weak coupling limit and the repeated collision model. The role of the eigenoperators of the free system dynamics is highlighted, in particular, for driven systems. The thermodynamical relations are pointed out. Models that lead to loss of coherence, i.e., dephasing are described. The implication of the laws of thermodynamics to simulating transport and spectroscopy is described. The indications for self-averaging in large quantum systems and thus its importance in modeling are described. Basic modeling by the surrogate Hamiltonian is described, as well as thermal boundary conditions using the repeated collision model and their use in the stochastic surrogate Hamiltonian. The problem of modeling with explicitly time dependent driving is analyzed. Finally, the use of the stochastic surrogate Hamiltonian for modeling ultrafast spectroscopy and quantum control is reviewed.
Collapse
Affiliation(s)
- Ronnie Kosloff
- The Institute of Chemistry and The Fritz Haber Centre for Theoretical Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
15
|
Abstract
Electronic friction is a correction to the Born-Oppenheimer approximation, whereby nuclei in motion experience a drag in the presence of a manifold of electronic states. The notion of electronic friction has a long history and has been (re-)discovered in the context of a wide variety of different chemical and physical systems including, but not limited to, surface scattering events, surface reactions or chemisorption, electrochemistry, and conduction through molecular-(or nano-) junctions. Over the years, quite a few different forms of electronic friction have been offered in the literature. In this perspective, we briefly review these developments of electronic friction, highlighting the fact that we can now isolate a single, unifying form for (Markovian) electronic friction. We also focus on the role of electron-electron interactions for understanding frictional effects and offer our thoughts on the strengths and weaknesses of using electronic friction to model dynamics in general.
Collapse
Affiliation(s)
- Wenjie Dou
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|