1
|
Yu X, Zhang X, Hu X, Zhao X, Ren D, Li X, Ma P, Wang C, Wu Y, Luo S, Ding D. Femtosecond Time-Resolved Neighbor Roles in the Fragmentation Dynamics of Molecules in a Dimer. PHYSICAL REVIEW LETTERS 2022; 129:023001. [PMID: 35867441 DOI: 10.1103/physrevlett.129.023001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/07/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
How the neighbor effect plays its role in the fragmentation of molecular clusters attracts great attention for physicists and chemists. Here, we study this effect in the fragmentation of N_{2}O dimer by performing three-body coincidence measurements on the femtosecond timescale. Rotations of bound N_{2}O^{+} triggered by neutral or ionic neighbors are tracked. The forbidden dissociation path between B^{2}Π and ^{4}Π is opened by the spin-exchange effect due to the existence of neighbor ions, leading to a new channel of N_{2}O^{+}→NO+N^{+} originating from B^{2}Π. The formation and dissociation of the metastable product N_{3}O_{2}^{+} from two ion-molecule reaction channels are tracked in real time, and the corresponding trajectories are captured. Our results demonstrate a significant and promising step towards the understanding of neighbor roles in the reactions within clusters.
Collapse
Affiliation(s)
- Xitao Yu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Xinyu Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Xiaoqing Hu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Xinning Zhao
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Dianxiang Ren
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Yong Wu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Sizuo Luo
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| | - Dajun Ding
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Abstract
SignificanceExcitation of molecules by an ultrashort laser pulse creates rotational wave packets that lead to transient alignment of the molecules along the laser polarization direction. Here, we show that a train of ultrashort laser pulses can be used to enhance the degree of alignment to a high level such that the diffraction from precisely timed ultrashort electron beams may be used to reconstruct the structure of the isolated molecules with atomic resolution through a coherent diffraction imaging technique. Our results mark a great step toward imaging noncrystallized molecules with atomic resolution and pave the way for creation of three-dimensional "molecular movies" at the femtosecond time scale and atomic spatial scale.
Collapse
|
3
|
Kristensen HH, Kranabetter L, Schouder CA, Stapper C, Arlt J, Mudrich M, Stapelfeldt H. Quantum-State-Sensitive Detection of Alkali Dimers on Helium Nanodroplets by Laser-Induced Coulomb Explosion. PHYSICAL REVIEW LETTERS 2022; 128:093201. [PMID: 35302820 DOI: 10.1103/physrevlett.128.093201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Rubidium dimers residing on the surface of He nanodroplets are doubly ionized by an intense femtosecond laser pulse leading to fragmentation into a pair of Rb^{+} ions. We show that the kinetic energy of the Rb^{+} fragment ions can be used to identify dimers formed in either the X ^{1}Σ_{g}^{+} ground state or in the lowest-lying triplet state, a ^{3}Σ_{u}^{+}. From the experiment, we estimate the abundance ratio of dimers in the a and X states as a function of the mean droplet size and find values between 4∶1 and 5∶1. Our technique applies generally to dimers and trimers of alkali atoms, here also demonstrated for Li_{2}, Na_{2}, and K_{2}, and will enable femtosecond time-resolved measurements of their rotational and vibrational dynamics, possibly with atomic structural resolution.
Collapse
Affiliation(s)
- Henrik H Kristensen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Lorenz Kranabetter
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Christoph Stapper
- Faculty of Chemistry and Pharmacy, University of Würzburg, Am Hubland, Campus Süd, D-97074 Würzburg, Germany
| | - Jacqueline Arlt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Schouder CA, Chatterley AS, Pickering JD, Stapelfeldt H. Laser-Induced Coulomb Explosion Imaging of Aligned Molecules and Molecular Dimers. Annu Rev Phys Chem 2022; 73:323-347. [PMID: 35081323 DOI: 10.1146/annurev-physchem-090419-053627] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We discuss how Coulomb explosion imaging (CEI), triggered by intense femtosecond laser pulses and combined with laser-induced alignment and covariance analysis of the angular distributions of the recoiling fragment ions, provides new opportunities for imaging the structures of molecules and molecular complexes. First, focusing on gas phase molecules, we show how the periodic torsional motion of halogenated biphenyl molecules can be measured in real time by timed CEI, and how CEI of one-dimensionally aligned difluoroiodobenzene molecules can uniquely identify four structural isomers. Next, focusing on molecular complexes formed inside He nanodroplets, we show that the conformations of noncovalently bound dimers or trimers, aligned in one or three dimensions, can be determined by CEI. Results presented for homodimers of CS2, OCS, and bromobenzene pave the way for femtosecond time-resolved structure imaging of molecules undergoing bimolecular interactions and ultimately chemical reactions. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
5
|
Zhang J, Trejo M, Bradford SD, Lei L, Kong W. Electron Diffraction of Ionic Argon Nanoclusters Embedded in Superfluid Helium Droplets. J Phys Chem Lett 2021; 12:9644-9650. [PMID: 34586826 PMCID: PMC8550877 DOI: 10.1021/acs.jpclett.1c02712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report electron diffraction of cationic argon nanoclusters embedded in superfluid helium droplets. Superfluid helium droplets are first doped with neutral argon atoms to form nanoclusters, and then the doped droplets are ionized by electrons. The much lower ionization energy of argon ensures that the positive charge resides on the Ar nanocluster. Using different stagnation temperatures and therefore droplets with different sizes, we have been able to preferentially form a small ionic cluster containing 2-4 Ar atoms and a larger cluster containing 7-11 atoms. The fitting results of the diffraction profiles agree with structures reported from theoretical calculations, containing a cationic trimer core with the remaining atoms largely neutral. This work testifies to the feasibility of performing electron diffraction from ionic species embedded in superfluid helium droplets, dispelling the concern over the particle density in the diffraction region. However, the large number of neutral helium atoms surrounding the cationic nanoclusters poses a challenge for the detection of the helium solvation layer, and the detection of which awaits further technological improvements.
Collapse
Affiliation(s)
| | | | | | | | - Wei Kong
- Corresponding author, , 541-737-6714
| |
Collapse
|
6
|
Heathcote D, Vallance C. Partial and Contingent Recoil-Frame Covariance-Map Imaging. J Phys Chem A 2021; 125:7092-7098. [PMID: 34351156 DOI: 10.1021/acs.jpca.1c04548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When applied to multimass velocity-map imaging data, covariance analysis reveals correlations between different fragment ions formed from the same parent molecule and can provide detailed insights into the fragmentation dynamics. Covariances between the time-of-flight signals for two different ions show that they are formed in the same event, while covariances between their velocity-map images, often referred to as "recoil-frame covariances", reveal details of the correlated motion of the two fragments. In many cases, covariance analysis is complicated by the fact that fluctuations in experimental parameters such as laser or molecular beam intensities can lead to apparent correlations between unrelated ions. In the context of time-of-flight covariance signals, this problem has been overcome by the introduction of partial covariance and contingent covariance approaches. Here, we apply these approaches to recoil-frame covariance-map images. We also demonstrate that in many cases the total signal within each experimental cycle can be used as a useful proxy for independent explicit measurements of the varying experimental parameter(s).
Collapse
Affiliation(s)
- David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
7
|
Pandey R, Tran S, Zhang J, Yao Y, Kong W. Bimodal velocity and size distributions of pulsed superfluid helium droplet beams. J Chem Phys 2021; 154:134303. [PMID: 33832230 PMCID: PMC8018796 DOI: 10.1063/5.0047158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 11/14/2022] Open
Abstract
We report detailed measurements of velocities and sizes of superfluid helium droplets produced from an Even-Lavie pulse valve at stagnation pressures of 20-60 atm and temperatures between 5.7 and 18.0 K. By doping neutral droplets with Rhodamine 6G cations produced from an electrospray ionization source and detecting the positively charged droplets at two different locations along the beam path, we determine the velocities of the different groups of droplets. By subjecting the doped droplet beam to a retardation field, size distributions can then be analyzed. We discover that at stagnation temperatures above 8.0 K, a single group of droplets is observed at both locations, but at 8.0 K and below, two different groups of droplets with different velocities are detectable. The slower group, considered from fragmentation of liquid helium, cannot be deterred by the retardation voltage at 9 kV, implying an exceedingly large size. The faster group, considered from condensation of gaseous helium, has a bimodal distribution when the stagnation temperatures are below 12.3 K at 20 and 40 atm, or 16.1 K at 60 atm. We also report similar size measurements using low energy electrons for impact ionization, and this latter method can be used for facile in situ characterization of pulsed droplet beams. The mechanism of the bimodal size distribution of the condensation group and the reason for the coexistence of both the condensation and fragmentation groups remain elusive.
Collapse
Affiliation(s)
- Rahul Pandey
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Steven Tran
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Yuzhong Yao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, USA
| |
Collapse
|
8
|
Vallance C, Heathcote D, Lee JWL. Covariance-Map Imaging: A Powerful Tool for Chemical Dynamics Studies. J Phys Chem A 2021; 125:1117-1133. [DOI: 10.1021/acs.jpca.0c10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
9
|
Zhang J, Bradford SD, Kong W, Zhang C, Xue L. Electron diffraction of CS 2 nanoclusters embedded in superfluid helium droplets. J Chem Phys 2020; 152:224306. [PMID: 32534524 PMCID: PMC7292678 DOI: 10.1063/5.0011340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/25/2020] [Indexed: 11/14/2022] Open
Abstract
We report experimental results from electron diffraction of CS2 nanoclusters embedded in superfluid helium droplets. From detailed measurements of the sizes of doped droplets, we can model the doping statistics under different experimental conditions, thereby obtaining the range of cluster sizes of CS2. Using a least squares fitting procedure, we can then determine the structures and contributions of dimers, trimers, and tetramers embedded in small droplets. While dimers prefer a stable gas phase structure, trimers and tetramers seem to forgo the highly symmetric gas phase structures and prefer compact cuts from the crystalline structure of CS2. In larger droplets containing more than 12 CS2 monomers, the diffraction profile is consistent with a three-dimensional nanostructure of bulk CS2. This work demonstrates the feasibility of electron diffraction for in situ monitoring of nanocluster formation in superfluid helium droplets.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Stephen D. Bradford
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Chengzhu Zhang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Lan Xue
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
10
|
Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. Intermolecular forces and correlations mediated by a phonon bath. J Chem Phys 2020; 152:164302. [PMID: 32357791 DOI: 10.1063/1.5144759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born-Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.
Collapse
Affiliation(s)
- Xiang Li
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Enderalp Yakaboylu
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giacomo Bighin
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Richard Schmidt
- Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
| | - Mikhail Lemeshko
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andreas Deuchert
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
11
|
Chatterley AS, Baatrup MO, Schouder CA, Stapelfeldt H. Laser-induced alignment dynamics of gas phase CS 2 dimers. Phys Chem Chem Phys 2020; 22:3245-3253. [PMID: 31995073 DOI: 10.1039/c9cp06260b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotational dynamics of gas phase carbon disulfide (CS2) dimers were induced by a moderately intense, circularly polarized alignment laser pulse and measured as a function of time by Coulomb explosion imaging with an intense fs probe pulse. For the alignment pulse, two different temporal intensity profiles were used: a truncated pulse with a 150 ps turn-on and a 8 ps turn-off, or a 'kick' pulse with a duration of 1.3 ps. For both types of pulse, rich rotational dynamics with characteristic full and fractional revivals were recorded, showing that the intermolecular carbon-carbon axis periodically aligns along the propagation direction of the laser pulses. The truncated pulse gave the strongest alignment, which we rationalize as being due to a flat relative phase between the components in the rotational wave packet generated. Fourier analysis of the alignment dynamics gave well-spaced peaks which were fit to determine the rotational constant, B, and the centrifugal constant, DJ, for the ground state of the dimer. Our results agree with values from high-resolution IR spectroscopy. Numerical simulations of the alignment accurately reproduced the experimental dynamics when the truncated pulse or a low intensity kick pulse was used, but failed to reproduce the dynamics induced by a high intensity kick pulse. We posit that the discrepancy is due to excitation of the intermolecular torsional motion by the kick pulse.
Collapse
Affiliation(s)
| | - Mia O Baatrup
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | - Constant A Schouder
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
12
|
Lei L, Yao Y, Zhang J, Tronrud D, Kong W, Zhang C, Xue L, Dontot L, Rapacioli M. Electron Diffraction of Pyrene Nanoclusters Embedded in Superfluid Helium Droplets. J Phys Chem Lett 2020; 11:724-729. [PMID: 31884792 PMCID: PMC7104692 DOI: 10.1021/acs.jpclett.9b03603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report electron diffraction of pyrene nanoclusters embedded in superfluid helium droplets. Using a least-squares fitting procedure, we have been able to separate the contribution of helium from those of the pyrene nanoclusters and determine the most likely structures for dimers and trimers. We confirm that pyrene dimers form a parallel double-layer structure with an interlayer distance of 3.5 Å and suggest that pyrene trimers form a sandwich structure but that the molecular planes are not completely parallel. The relative contributions of the dimers and trimers are ∼6:1. This work is an extension of our effort of solving structures of biological molecules using serial single-molecule electron diffraction imaging. The success of electron diffraction from an all-light-atom sample embedded in helium droplets offers reassuring evidence of the feasibility of this approach.
Collapse
Affiliation(s)
- Lei Lei
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Yuzhong Yao
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dale Tronrud
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Chengzhu Zhang
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Lan Xue
- Department of Statistics, Oregon State University, Corvallis, Oregon 97331, United States
| | - Léo Dontot
- Laboratoire de Chimie et Physique Quantiques, LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Mathias Rapacioli
- Laboratoire de Chimie et Physique Quantiques, LCPQ/IRSAMC, UMR5626, Université de Toulouse (UPS) and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
13
|
Schouder C, Chatterley AS, Calvo F, Christiansen L, Stapelfeldt H. Structure determination of the tetracene dimer in helium nanodroplets using femtosecond strong-field ionization. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044301. [PMID: 31463336 PMCID: PMC6711753 DOI: 10.1063/1.5118005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/09/2019] [Indexed: 05/29/2023]
Abstract
Dimers of tetracene molecules are formed inside helium nanodroplets and identified through covariance analysis of the emission directions of kinetic tetracene cations stemming from femtosecond laser-induced Coulomb explosion. Next, the dimers are aligned in either one or three dimensions under field-free conditions by a nonresonant, moderately intense laser pulse. The experimental angular covariance maps of the tetracene ions are compared to calculated covariance maps for seven different dimer conformations and found to be consistent with four of these. Additional measurements of the alignment-dependent strong-field ionization yield of the dimer narrow the possible conformations down to either a slipped-parallel or parallel-slightly rotated structure. According to our quantum chemistry calculations, these are the two most stable gas-phase conformations of the dimer and one of them is favorable for singlet fission.
Collapse
Affiliation(s)
- Constant Schouder
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Adam S Chatterley
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Florent Calvo
- Université Grenoble Alpes CNRS, LIPHY, F-38000 Grenoble, France
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Milner AA, Fordyce JAM, MacPhail-Bartley I, Wasserman W, Milner V, Tutunnikov I, Averbukh IS. Controlled Enantioselective Orientation of Chiral Molecules with an Optical Centrifuge. PHYSICAL REVIEW LETTERS 2019; 122:223201. [PMID: 31283279 DOI: 10.1103/physrevlett.122.223201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 06/09/2023]
Abstract
We report on the first experimental demonstration of enantioselective rotational control of chiral molecules with a laser field. In our experiments, two enantiomers of propylene oxide are brought to accelerated unidirectional rotation by means of an optical centrifuge. Using Coulomb explosion imaging, we show that the centrifuged molecules acquire preferential orientation perpendicular to the plane of rotation, and that the direction of this orientation depends on the relative handedness of the enantiomer and the rotating centrifuge field. The observed effect is in agreement with theoretical predictions and is reproduced in numerical simulations of the centrifuge excitation followed by Coulomb explosion of the centrifuged molecules. The demonstrated technique opens new avenues in optical enantioselective control of chiral molecules with a plethora of potential applications in differentiation, separation, and purification of chiral mixtures.
Collapse
Affiliation(s)
- Alexander A Milner
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Jordan A M Fordyce
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Ian MacPhail-Bartley
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Walter Wasserman
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Valery Milner
- Department of Physics & Astronomy, The University of British Columbia, V6T-1Z1 Vancouver, Canada
| | - Ilia Tutunnikov
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Ilya Sh Averbukh
- AMOS and Department of Chemical and Biological Physics, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
15
|
Barclay AJ, Esteki K, Michaelian KH, McKellar ARW, Moazzen-Ahmadi N. Infrared bands of CS 2 dimer and trimer at 4.5 μm. J Chem Phys 2019; 150:144305. [PMID: 30981255 DOI: 10.1063/1.5091508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report observation of new infrared bands of (CS2)2 and (CS2)3 in the region of the CS2 ν1 + ν3 combination band (at 4.5 µm) using a quantum cascade laser. The complexes are formed in a pulsed supersonic slit-jet expansion of a gas mixture of carbon disulfide in helium. We have previously shown that the most stable isomer of (CS2)2 is a cross-shaped structure with D2d symmetry and that for (CS2)3 is a barrel-shaped structure with D3 symmetry. The dimer has one doubly degenerate infrared-active band in the ν1 + ν3 region of the CS2 monomer. This band is observed to have a rather small vibrational shift of -0.844 cm-1. We expect one parallel and one perpendicular infrared-active band for the trimer but observe two parallel bands and one perpendicular band. Much larger vibrational shifts of -8.953 cm-1 for the perpendicular band and -8.845 cm-1 and +16.681 cm-1 for the parallel bands are observed. Vibrational shifts and possible vibrational assignments, in the case of the parallel bands of the trimer, are discussed using group theoretical arguments.
Collapse
Affiliation(s)
- A J Barclay
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - K Esteki
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - K H Michaelian
- Natural Resources Canada, CanmetENERGY, 1 Oil Patch Drive, Suite A202, Devon, Alberta T9G 1A8, Canada
| | - A R W McKellar
- National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - N Moazzen-Ahmadi
- Department of Physics and Astronomy, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
16
|
Long-lasting field-free alignment of large molecules inside helium nanodroplets. Nat Commun 2019; 10:133. [PMID: 30635554 PMCID: PMC6329814 DOI: 10.1038/s41467-018-07995-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/05/2018] [Indexed: 11/09/2022] Open
Abstract
Molecules with their axes sharply confined in space, available through laser-induced alignment methods, are essential for many current experiments, including ultrafast molecular imaging. For these applications the aligning laser field should ideally be turned-off, to avoid undesired perturbations, and the strong alignment should last long enough that reactions and dynamics can be mapped out. Presently, this is only possible for small, linear molecules and for times less than 1 picosecond. Here, we demonstrate strong, field-free alignment of large molecules inside helium nanodroplets, lasting >10 picoseconds. One-dimensional or three-dimensional alignment is created by a slowly switched-on laser pulse, made field-free through rapid pulse truncation, and retained thanks to the impeding effect of the helium environment on molecular rotation. The opportunities field-free aligned molecules open are illustrated by measuring the alignment-dependent strong-field ionization yield of dibromothiophene oligomers. Our technique will enable molecular frame experiments, including ultrafast excited state dynamics, on a variety of large molecules and complexes.
Collapse
|
17
|
Pickering JD, Shepperson B, Christiansen L, Stapelfeldt H. Femtosecond laser induced Coulomb explosion imaging of aligned OCS oligomers inside helium nanodroplets. J Chem Phys 2018; 149:154306. [DOI: 10.1063/1.5049555] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- James D. Pickering
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Benjamin Shepperson
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Lars Christiansen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Henrik Stapelfeldt
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| |
Collapse
|