1
|
Herrera Romero R, Bastarrachea-Magnani MA. Phase and Amplitude Modes in the Anisotropic Dicke Model with Matter Interactions. ENTROPY (BASEL, SWITZERLAND) 2024; 26:574. [PMID: 39056936 PMCID: PMC11276390 DOI: 10.3390/e26070574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/29/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Phase and amplitude modes, also called polariton modes, are emergent phenomena that manifest across diverse physical systems, from condensed matter and particle physics to quantum optics. We study their behavior in an anisotropic Dicke model that includes collective matter interactions. We study the low-lying spectrum in the thermodynamic limit via the Holstein-Primakoff transformation and contrast the results with the semi-classical energy surface obtained via coherent states. We also explore the geometric phase for both boson and spin contours in the parameter space as a function of the phases in the system. We unveil novel phenomena due to the unique critical features provided by the interplay between the anisotropy and matter interactions. We expect our results to serve the observation of phase and amplitude modes in current quantum information platforms.
Collapse
Affiliation(s)
| | - Miguel Angel Bastarrachea-Magnani
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Mexico City C.P. 09310, Mexico
| |
Collapse
|
2
|
Masalaeva N, Ritsch H, Mivehvar F. Tuning Photon-Mediated Interactions in a Multimode Cavity: From Supersolid to Insulating Droplets Hosting Phononic Excitations. PHYSICAL REVIEW LETTERS 2023; 131:173401. [PMID: 37955466 DOI: 10.1103/physrevlett.131.173401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/27/2023] [Indexed: 11/14/2023]
Abstract
Ultracold atoms trapped in laser-generated optical lattices serve as a versatile platform for quantum simulations. However, as these lattices are infinitely stiff, they do not allow to emulate phonon degrees of freedom. This restriction can be lifted in emerged optical lattices inside multimode cavities. Motivated by recent experimental progress in multimode cavity QED, we propose a scheme to implement and study supersolid and droplet states with phononlike lattice excitations by coupling a Bose gas to many longitudinal modes of a ring cavity. The interplay between contact collisional and tunable-range cavity-mediated interactions leads to a rich phase diagram, which includes elastic supersolid as well as insulating droplet phases exhibiting roton-type mode softening for a continuous range of momenta across the superradiant phase transition. The nontrivial dynamic response of the system to a local density perturbation further proves the existence of phononlike modes.
Collapse
Affiliation(s)
- Natalia Masalaeva
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Xu X, Krisnanda T, Liew TCH. Limit cycles and chaos in the hybrid atom-optomechanics system. Sci Rep 2022; 12:15288. [PMID: 36088462 PMCID: PMC9464193 DOI: 10.1038/s41598-022-15249-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
We consider atoms in two different periodic potentials induced by different lasers, one of which is coupled to a mechanical membrane via radiation pressure force. The atoms are intrinsically two-level systems that can absorb or emit photons, but the dynamics of their position and momentum are treated classically. On the other hand, the membrane, the cavity field, and the intrinsic two-level atoms are treated quantum mechanically. We show that the mean excitation of the three systems can be stable, periodically oscillating, or in a chaotic state depending on the strength of the coupling between them. We define regular, limit cycle, and chaotic phases, and present a phase diagram where the three phases can be achieved by manipulating the field-membrane and field-atom coupling strengths. We also computed other observable quantities that can reflect the system's phase such as position, momentum, and correlation functions. Our proposal offers a new way to generate and tune the limit cycle and chaotic phases in a well-established atom-optomechanics system.
Collapse
Affiliation(s)
- Xingran Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tanjung Krisnanda
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Timothy C H Liew
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
- MajuLab, International Joint Research Unit UMI 3654, CNRS, Université Côte d'Azur, Sorbonne Université, National University of Singapore, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
4
|
Qin J, Zhou L. Supersolid gap soliton in a Bose-Einstein condensate and optical ring cavity coupling system. Phys Rev E 2022; 105:054214. [PMID: 35706219 DOI: 10.1103/physreve.105.054214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The system of a transversely pumped Bose-Einstein condensate (BEC) coupled to a lossy ring cavity can favor a supersolid steady state. Here we find the existence of supersolid gap soliton in such a driven-dissipative system. By numerically solving the mean-field atom-cavity field coupling equations, gap solitons of a few different families have been identified. Their dynamical properties, including stability, propagation, and soliton collision, are also studied. Due to the feedback atom-intracavity field interaction, these supersolid gap solitons show numerous new features compared with the usual BEC gap solitons in static optical lattices.
Collapse
Affiliation(s)
- Jieli Qin
- School of Physics and Materials Science, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lu Zhou
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
5
|
Karpov P, Piazza F. Light-Induced Quantum Droplet Phases of Lattice Bosons in Multimode Cavities. PHYSICAL REVIEW LETTERS 2022; 128:103201. [PMID: 35333068 DOI: 10.1103/physrevlett.128.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Multimode optical cavities can be used to implement interatomic interactions which are highly tunable in strength and range. For bosonic atoms trapped in an optical lattice we show that, for any finite range of the cavity-mediated interaction, quantum self-bound droplets dominate the ground state phase diagram. Their size and in turn density is not externally fixed but rather emerges from the competition between local repulsion and finite-range cavity-mediated attraction. We identify two different regimes of the phase diagram. In the strongly glued regime, the interaction range exceeds the droplet size and the physics resembles the one of the standard Bose-Hubbard model in a (self-consistent) external potential, where in the phase diagram two incompressible droplet phases with different filling are separated by one with a superfluid core. In the opposite weakly glued regime, we find instead direct first order transitions between the two incompressible phases, as well as pronounced metastability. The cavity field leaking out of the mirrors can be measured to distinguish between the various types of droplets.
Collapse
Affiliation(s)
- P Karpov
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden 01187, Germany
- Arnold Sommerfeld Center for Theoretical Physics, Ludwig Maximilian University of Munich, Theresienstr. 37, Munich 80333, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, Munich 80799, Germany
- National University of Science and Technology "MISiS", Moscow 119991, Russia
| | - F Piazza
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden 01187, Germany
| |
Collapse
|
6
|
Qin J, Zhou L. Collision of two self-trapped atomic matter wave packets in an optical ring cavity. Phys Rev E 2021; 104:044201. [PMID: 34781552 DOI: 10.1103/physreve.104.044201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
The interaction between atomic Bose-Einstein condensate (BEC) and light field in an optical ring cavity gives rise to many interesting phenomena such as supersolid and movable self-trapped matter wave packets. Here we examined the collision of two self-trapped atomic matter wave packets in an optical ring cavity, and abundant colliding phenomena have been found in the system. Depending on the magnitude of colliding velocity, the collision dynamics exhibit very different features compared with the cavity-free case. When the initial colliding velocities of the two wave packets are small, they correlatedly oscillate around their initial equilibrium positions with a small amplitude. Increasing the collision velocity leads to severe scattering of the BEC atoms; after the collision, the two self-trapped wave packets usually break into small pieces. Interestingly, we found that such a medium velocity collision is of great phase sensitivity, which may make the system useful in precision matter wave interferometry. When the colliding velocity is further increased, in the bad cavity limit, the two wave packets collide phenomenally similar to two classical particles-they first approach each other, then separate with their shape virtually maintained. However, beyond the bad cavity limit, they experience severe spatial spreading.
Collapse
Affiliation(s)
- Jieli Qin
- School of Physics and Materials Science, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lu Zhou
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
7
|
Abstract
Quantized sound waves-phonons-govern the elastic response of crystalline materials, and also play an integral part in determining their thermodynamic properties and electrical response (for example, by binding electrons into superconducting Cooper pairs)1-3. The physics of lattice phonons and elasticity is absent in simulators of quantum solids constructed of neutral atoms in periodic light potentials: unlike real solids, traditional optical lattices are silent because they are infinitely stiff4. Optical-lattice realizations of crystals therefore lack some of the central dynamical degrees of freedom that determine the low-temperature properties of real materials. Here, we create an optical lattice with phonon modes using a Bose-Einstein condensate (BEC) coupled to a confocal optical resonator. Playing the role of an active quantum gas microscope, the multimode cavity QED system both images the phonons and induces the crystallization that supports phonons via short-range, photon-mediated atom-atom interactions. Dynamical susceptibility measurements reveal the phonon dispersion relation, showing that these collective excitations exhibit a sound speed dependent on the BEC-photon coupling strength. Our results pave the way for exploring the rich physics of elasticity in quantum solids, ranging from quantum melting transitions5 to exotic 'fractonic' topological defects6 in the quantum regime.
Collapse
|
8
|
Wang HY, Zheng Z, Zhuang L, Tai YH, Shi JS, Liu WM. Topological supersolidity of dipolar Fermi gases in a spin-dependent optical lattice. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:235701. [PMID: 32079005 DOI: 10.1088/1361-648x/ab7871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigate the topological supersolid states of dipolar Fermi gases trapped in a spin-dependent 2D optical lattice. Our results show that topological supersolid states can be achieved via the combination of topological superfluid states with the stripe order. Different from the general held belief that supersolid state in fermionic system can only survive with simultaneous coexistence of the repulsive and attractive dipolar interaction. We demonstrate that it can be maintained when the dipolar interaction is attractive in both x and y direction. By adjusting the ratio of hopping amplitude between different directions and dipolar interaction strength U, the system will undergo a phase transition among p x + ip y superfluid state, p y -wave superfluid state, and the topological supersolid state. The supersolid state in the attractive environment is proved to be stable by the positive sign of the inverse compressibility. We also design an experimental protocol to realize the staggered next-next-nearest-neighbor hopping via the laser assisted tunneling technique, which is the key to simulate the spin-dependent potential.
Collapse
Affiliation(s)
- Huan-Yu Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
9
|
Schuster SC, Wolf P, Ostermann S, Slama S, Zimmermann C. Supersolid Properties of a Bose-Einstein Condensate in a Ring Resonator. PHYSICAL REVIEW LETTERS 2020; 124:143602. [PMID: 32338967 DOI: 10.1103/physrevlett.124.143602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 06/11/2023]
Abstract
We investigate the dynamics of a Bose-Einstein condensate interacting with two noninterfering and counterpropagating modes of a ring resonator. Superfluid, supersolid, and dynamic phases are identified experimentally and theoretically. The supersolid phase is obtained for sufficiently equal pump strengths for the two modes. In this regime we observe the emergence of a steady state with crystalline order, which spontaneously breaks the continuous translational symmetry of the system. The supersolidity of this state is demonstrated by the conservation of global phase coherence at the superfluid to supersolid phase transition. Above a critical pump asymmetry the system evolves into a dynamic runaway instability commonly known as collective atomic recoil lasing. We present a phase diagram and characterize the individual phases by comparing theoretical predictions with experimental observations.
Collapse
Affiliation(s)
- S C Schuster
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - P Wolf
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - S Ostermann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstaße 21a, A-6020 Innsbruck, Austria
| | - S Slama
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - C Zimmermann
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| |
Collapse
|
10
|
Ostermann S, Niedenzu W, Ritsch H. Unraveling the Quantum Nature of Atomic Self-Ordering in a Ring Cavity. PHYSICAL REVIEW LETTERS 2020; 124:033601. [PMID: 32031825 DOI: 10.1103/physrevlett.124.033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Atomic self-ordering to a crystalline phase in optical resonators is a consequence of the intriguing nonlinear dynamics of strongly coupled atom motion and photons. Generally the resulting phase diagrams and atomic states can be largely understood on a mean-field level. However, close to the phase transition point, quantum fluctuations and atom-field entanglement play a key role and initiate the symmetry breaking. Here we propose a modified ring cavity geometry, in which the asymmetry imposed by a tilted pump beam reveals clear signatures of quantum dynamics even in a larger regime around the phase transition point. Quantum fluctuations become visible both in the dynamic and steady-state properties. Most strikingly we can identify a regime where a mean-field approximation predicts a runaway instability, while in the full quantum model the quantum fluctuations of the light field modes stabilize uniform atomic motion. The proposed geometry thus allows to unveil the "quantumness" of atomic self-ordering via experimentally directly accessible quantities.
Collapse
Affiliation(s)
- Stefan Ostermann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| | - Wolfgang Niedenzu
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| |
Collapse
|
11
|
Mivehvar F, Ritsch H, Piazza F. Emergent Quasicrystalline Symmetry in Light-Induced Quantum Phase Transitions. PHYSICAL REVIEW LETTERS 2019; 123:210604. [PMID: 31809187 DOI: 10.1103/physrevlett.123.210604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
The discovery of quasicrystals with crystallographically forbidden rotational symmetries has changed the notion of the ordering in materials, yet little is known about the dynamical emergence of such exotic forms of order. Here we theoretically study a nonequilibrium cavity-QED setup realizing a zero-temperature quantum phase transition from a homogeneous Bose-Einstein condensate to a quasicrystalline phase via collective superradiant light scattering. Across the superradiant phase transition, collective light scattering creates a dynamical, quasicrystalline optical potential for the atoms. Remarkably, the quasicrystalline potential is "emergent" as its eightfold rotational symmetry is not present in the Hamiltonian of the system, rather appears solely in the low-energy states. For sufficiently strong two-body contact interactions between atoms, a quasicrystalline order is stabilized in the system, while for weakly interacting atoms the condensate is localized in one or few of the deepest minima of the quasicrystalline potential.
Collapse
Affiliation(s)
- Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Francesco Piazza
- Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
| |
Collapse
|
12
|
Gietka K, Mivehvar F, Ritsch H. Supersolid-Based Gravimeter in a Ring Cavity. PHYSICAL REVIEW LETTERS 2019; 122:190801. [PMID: 31144935 DOI: 10.1103/physrevlett.122.190801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 06/09/2023]
Abstract
We propose a novel type of composite light-matter interferometer based on a supersolidlike phase of a driven Bose-Einstein condensate coupled to a pair of degenerate counterpropagating electromagnetic modes of an optical ring cavity. The supersolidlike condensate under the influence of the gravity drags the cavity optical potential with itself, thereby changing the relative phase of the two cavity electromagnetic fields. Monitoring the phase evolution of the cavity output fields thus allows for a nondestructive measurement of the gravitational acceleration. We show that the sensitivity of the proposed gravimeter exhibits Heisenberg-like scaling with respect to the atom number. As the relative phase of the cavity fields is insensitive to photon losses, the gravimeter is robust against these deleterious effects. For state-of-the-art experimental parameters, the relative sensitivity Δg/g of such a gravimeter could be of the order of 10^{-10}-10^{-8} for a condensate of a half a million atoms and interrogation time of the order of a few seconds.
Collapse
Affiliation(s)
- Karol Gietka
- Faculty of Physics, University of Warsaw, ul. Pasteura 5, 02-093 Warsaw, Poland
| | - Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
13
|
Mivehvar F, Ritsch H, Piazza F. Cavity-Quantum-Electrodynamical Toolbox for Quantum Magnetism. PHYSICAL REVIEW LETTERS 2019; 122:113603. [PMID: 30951329 DOI: 10.1103/physrevlett.122.113603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 06/09/2023]
Abstract
The recent experimental observation of spinor self-ordering of ultracold atoms in optical resonators has set the stage for the exploration of emergent magnetic orders in quantum-gas-cavity systems. Based on this platform, we introduce a generic scheme for the implementation of long-range quantum spin Hamiltonians composed of various types of couplings, including Heisenberg and Dzyaloshinskii-Moriya interactions. Our model is composed of an effective two-component Bose-Einstein condensate, driven by two classical pump lasers and coupled to a single dynamic mode of a linear cavity in a double Λ scheme. Cavity photons mediate the long-range spin-spin interactions with spatially modulated coupling coefficients, where the latter ones can be tuned by modifying spatial profiles of the pump lasers. As experimentally relevant examples, we demonstrate that by properly choosing the spatial profiles of the pump lasers achiral domain-wall antiferromagnetic and chiral spin-spiral orders emerge beyond critical laser strengths. The transition between these two phases can be observed in a single experimental setup by tuning the reflectivity of a mirror. We also discuss extensions of our scheme for the implementation of other classes of spin Hamiltonians.
Collapse
Affiliation(s)
- Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Francesco Piazza
- Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
| |
Collapse
|
14
|
Schuster SC, Wolf P, Schmidt D, Slama S, Zimmermann C. Pinning Transition of Bose-Einstein Condensates in Optical Ring Resonators. PHYSICAL REVIEW LETTERS 2018; 121:223601. [PMID: 30547603 DOI: 10.1103/physrevlett.121.223601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 06/09/2023]
Abstract
We experimentally investigate the dynamic instability of Bose-Einstein condensates in an optical ring resonator that is asymmetrically pumped in both directions. We find that, beyond a critical resonator-pump detuning, the system becomes stable regardless of the pump strength. Phase diagrams and quenching curves are presented and described by numerical simulations. We discuss a physical explanation based on a geometric interpretation of the underlying nonlinear equations of motion.
Collapse
Affiliation(s)
- S C Schuster
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - P Wolf
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - D Schmidt
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - S Slama
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| | - C Zimmermann
- Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 14, D-72076 Tübingen, Germany
| |
Collapse
|
15
|
Cosme JG, Georges C, Hemmerich A, Mathey L. Dynamical Control of Order in a Cavity-BEC System. PHYSICAL REVIEW LETTERS 2018; 121:153001. [PMID: 30362802 DOI: 10.1103/physrevlett.121.153001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate dynamical control of the superradiant transition of cavity-BEC system via periodic driving of the pump laser. We show that the dominant density wave order of the superradiant state can be suppressed, and that the subdominant competing order of Bose-Einstein condensation emerges in the steady state. Furthermore, we show that additional, nonequilibrium density wave orders, which do not exist in equilibrium, can be stabilized dynamically. Finally, for strong driving, chaotic dynamics emerge.
Collapse
Affiliation(s)
- Jayson G Cosme
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Christoph Georges
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
| | - Andreas Hemmerich
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Ludwig Mathey
- Zentrum für Optische Quantentechnologien, Universität Hamburg, 22761 Hamburg, Germany
- Institut für Laserphysik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
16
|
Zhang YC, Walther V, Pohl T. Long-Range Interactions and Symmetry Breaking in Quantum Gases through Optical Feedback. PHYSICAL REVIEW LETTERS 2018; 121:073604. [PMID: 30169082 DOI: 10.1103/physrevlett.121.073604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 06/08/2023]
Abstract
We consider a quasi-two-dimensional atomic Bose-Einstein condensate interacting with a near-resonant laser field that is backreflected onto the condensate by a planar mirror. We show that this single-mirror optical feedback leads to an unusual type of effective interaction between the ultracold atoms giving rise to a rich spectrum of ground states. In particular, we find that it can cause the spontaneous contraction of the quasi-two-dimensional condensate to form a self-bound one-dimensional chain of mesoscopic quantum droplets, and demonstrate that the observation of this exotic effect is within reach of current experiments.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Valentin Walther
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Thomas Pohl
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|