1
|
Chang MH, Backes S, Lu D, Gauthier N, Hashimoto M, Chen GY, Wen HH, Mo SK, Valentí R, Pfau H. Dispersion kinks from electronic correlations in an unconventional iron-based superconductor. Nat Commun 2024; 15:9958. [PMID: 39551803 PMCID: PMC11570641 DOI: 10.1038/s41467-024-54330-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
The attractive interaction in conventional BCS superconductors is provided by a bosonic mode. However, the pairing glue of most unconventional superconductors is unknown. The effect of electron-boson coupling is therefore extensively studied in these materials. A key signature is dispersion kinks that can be observed in the spectral function as abrupt changes in velocity and lifetime of quasiparticles. Here, we show the existence of two kinks in the unconventional iron-based superconductor RbFe2As2 using angle-resolved photoemission spectroscopy (ARPES) and dynamical mean field theory (DMFT). In addition, we observe the formation of a Hubbard band multiplet due to the combination of Coulomb interaction and Hund's rule coupling in this multiorbital system. We demonstrate that the two dispersion kinks are a consequence of these strong many-body interactions. This interpretation is in line with a growing number of theoretical predictions for kinks in various general models of correlated materials. Our results provide a unifying link between iron-based superconductors and different classes of correlated, unconventional superconductors such as cuprates and heavy-fermion materials.
Collapse
Affiliation(s)
- M-H Chang
- Department of Physics, The Pennsylvania State University, University Park, PA, USA
| | - S Backes
- RIKEN iTHEMS, Wako, Saitama 351-0198, Japan; Center for Emergent Matter Science, RIKEN, Wako, Saitama, Japan
| | - D Lu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - N Gauthier
- Institut National de la Recherche Scientifique - Energie Matériaux Télécommunications, Varennes, Canada
| | - M Hashimoto
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - G-Y Chen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - H-H Wen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - S-K Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - R Valentí
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, Frankfurt am Main, Germany.
| | - H Pfau
- Department of Physics, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
2
|
Samani N, Zhang G, Pavarini E. Map of Crystal-Field Effects in Correlated Layered t_{2g}^{n} Perovskites. PHYSICAL REVIEW LETTERS 2024; 132:236505. [PMID: 38905685 DOI: 10.1103/physrevlett.132.236505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 06/23/2024]
Abstract
Correlated metallic layered t_{2g}^{n} perovskites are intensively studied and yet their low-energy electronic properties remain hotly debated. Important elements of the puzzle, beside the on-site Coulomb repulsion, are the tetragonal crystal-field splitting and the spin-orbit interaction. Here, we show that they control the electronic properties principally via form and occupations of natural orbitals. We discuss consequences for shape and topology of the Fermi surface, effective masses, and metal-insulator transition, building a map of crystal-field effects. The emerging picture captures electronic-structure trends in this family of systems within a single framework.
Collapse
Affiliation(s)
| | - Guoren Zhang
- Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany
- School of Physics and Technology, Nantong University, Nantong 226019, People's Republic of China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | | |
Collapse
|
3
|
Kim M, Choi S, Brito WH, Kotliar G. Orbital-Selective Mott Transition Effects and Nontrivial Topology of Iron Chalcogenide. PHYSICAL REVIEW LETTERS 2024; 132:136504. [PMID: 38613298 DOI: 10.1103/physrevlett.132.136504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
The iron-based superconductor FeSe_{1-x}Te_{x} has recently gained significant attention as a host of two distinct physical phenomena: (i) Majorana zero modes that can serve as potential topologically protected qubits, and (ii) a realization of the orbital-selective Mott transition. In this Letter, we connect these two phenomena and provide new insights into the interplay between strong electronic correlations and nontrivial topology in FeSe_{1-x}Te_{x}. Using linearized quasiparticle self-consistent GW plus dynamical mean-field theory, we show that the topologically protected Dirac surface state has substantial Fe(d_{xy}) character. The proximity to the orbital-selective Mott transition plays a dual role: it facilitates the appearance of the topological surface state by bringing the Dirac cone close to the chemical potential but destroys the Z_{2} topological superconductivity when the system is too close to the orbital-selective Mott phase. We derive a reduced effective Hamiltonian that describes the topological band. Its parameters capture all the chemical trends found in the first principles calculation. Our findings provide a framework for further study of the interplay between strong electronic correlations and nontrivial topology in other iron-based superconductors.
Collapse
Affiliation(s)
- Minjae Kim
- Korea Institute for Advanced Study, Seoul 02455, South Korea
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sangkook Choi
- Korea Institute for Advanced Study, Seoul 02455, South Korea
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Walber Hugo Brito
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- Departamento de Física, Universidade Federal de Minas Gerais, C. P. 702, 30123-970 Belo Horizonte, MG, Brazil
| | - Gabriel Kotliar
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
4
|
Hunter A, Beck S, Cappelli E, Margot F, Straub M, Alexanian Y, Gatti G, Watson MD, Kim TK, Cacho C, Plumb NC, Shi M, Radović M, Sokolov DA, Mackenzie AP, Zingl M, Mravlje J, Georges A, Baumberger F, Tamai A. Fate of Quasiparticles at High Temperature in the Correlated Metal Sr_{2}RuO_{4}. PHYSICAL REVIEW LETTERS 2023; 131:236502. [PMID: 38134803 DOI: 10.1103/physrevlett.131.236502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/08/2023] [Indexed: 12/24/2023]
Abstract
We study the temperature evolution of quasiparticles in the correlated metal Sr_{2}RuO_{4}. Our angle resolved photoemission data show that quasiparticles persist up to temperatures above 200 K, far beyond the Fermi liquid regime. Extracting the quasiparticle self-energy, we demonstrate that the quasiparticle residue Z increases with increasing temperature. Quasiparticles eventually disappear on approaching the bad metal state of Sr_{2}RuO_{4} not by losing weight but via excessive broadening from super-Planckian scattering. We further show that the Fermi surface of Sr_{2}RuO_{4}-defined as the loci where the spectral function peaks-deflates with increasing temperature. These findings are in semiquantitative agreement with dynamical mean field theory calculations.
Collapse
Affiliation(s)
- A Hunter
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - S Beck
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
| | - E Cappelli
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - F Margot
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - M Straub
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Y Alexanian
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - G Gatti
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - M D Watson
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - T K Kim
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - C Cacho
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - N C Plumb
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - M Shi
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - M Radović
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - D A Sokolov
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
| | - A P Mackenzie
- Max Planck Institute for Chemical Physics of Solids, 01187 Dresden, Germany
- Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, United Kingdom
| | - M Zingl
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
| | - J Mravlje
- Department of Theoretical Physics, Institute Jozef Stefan, Jamova 39, SI-1001 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana
| | - A Georges
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Center for Computational Quantum Physics, Flatiron Institute, 162 Fifth Avenue, New York, New York 10010, USA
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France
- Centre de Physique Théorique, Ecole Polytechnique, CNRS, Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France
| | - F Baumberger
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| | - A Tamai
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
5
|
Ko EK, Hahn S, Sohn C, Lee S, Lee SSB, Sohn B, Kim JR, Son J, Song J, Kim Y, Kim D, Kim M, Kim CH, Kim C, Noh TW. Tuning orbital-selective phase transitions in a two-dimensional Hund's correlated system. Nat Commun 2023; 14:3572. [PMID: 37328474 DOI: 10.1038/s41467-023-39188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/30/2023] [Indexed: 06/18/2023] Open
Abstract
Hund's rule coupling (J) has attracted much attention recently for its role in the description of the novel quantum phases of multi-orbital materials. Depending on the orbital occupancy, J can lead to various intriguing phases. However, experimental confirmation of the orbital occupancy dependency has been difficult as controlling the orbital degrees of freedom normally accompanies chemical inhomogeneities. Here, we demonstrate a method to investigate the role of orbital occupancy in J related phenomena without inducing inhomogeneities. By growing SrRuO3 monolayers on various substrates with symmetry-preserving interlayers, we gradually tune the crystal field splitting and thus the orbital degeneracy of the Ru t2g orbitals. It effectively varies the orbital occupancies of two-dimensional (2D) ruthenates. Via in-situ angle-resolved photoemission spectroscopy, we observe a progressive metal-insulator transition (MIT). It is found that the MIT occurs with orbital differentiation: concurrent opening of a band insulating gap in the dxy band and a Mott gap in the dxz/yz bands. Our study provides an effective experimental method for investigation of orbital-selective phenomena in multi-orbital materials.
Collapse
Affiliation(s)
- Eun Kyo Ko
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungsoo Hahn
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Basic Sciences (RIBS), Seoul National University, Seoul, 08826, Republic of Korea
| | - Changhee Sohn
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sangmin Lee
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung-Sup B Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Theoretical Physics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byungmin Sohn
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Rae Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeseok Son
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongkeun Song
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youngdo Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghan Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Miyoung Kim
- Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong H Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Changyoung Kim
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Tae Won Noh
- Center for Correlated Electron Systems, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
6
|
Designing light-element materials with large effective spin-orbit coupling. Nat Commun 2022; 13:919. [PMID: 35177611 PMCID: PMC8854432 DOI: 10.1038/s41467-022-28534-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Spin-orbit coupling (SOC), which is the core of many condensed-matter phenomena such as nontrivial band gap and magnetocrystalline anisotropy, is generally considered appreciable only in heavy elements. This is detrimental to the synthesis and application of functional materials. Therefore, amplifying the SOC effect in light elements is crucial. Herein, focusing on 3d and 4d systems, we demonstrate that the interplay between crystal symmetry and electron correlation can significantly enhance the SOC effect in certain partially occupied orbital multiplets through the self-consistently reinforced orbital polarization as a pivot. Thereafter, we provide design principles and comprehensive databases, where we list all the Wyckoff positions and site symmetries in all two-dimensional (2D) and three-dimensional crystals that could have enhanced SOC effect. Additionally, we predict nine material candidates from our selected 2D material pool as high-temperature quantum anomalous Hall insulators with large nontrivial band gaps of hundreds of meV. Our study provides an efficient and straightforward way for predicting promising SOC-active materials, relieving the use of heavy elements for next-generation spin-orbitronic materials and devices.
Collapse
|
7
|
Direct observation of kink evolution due to Hund's coupling on approach to metal-insulator transition in NiS 2-xSe x. Nat Commun 2021; 12:1208. [PMID: 33623023 PMCID: PMC7902648 DOI: 10.1038/s41467-021-21460-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022] Open
Abstract
Understanding characteristic energy scales is a fundamentally important issue in the study of strongly correlated systems. In multiband systems, an energy scale is affected not only by the effective Coulomb interaction but also by the Hund’s coupling. Direct observation of such energy scale has been elusive so far in spite of extensive studies. Here, we report the observation of a kink structure in the low energy dispersion of NiS2−xSex and its characteristic evolution with x, by using angle resolved photoemission spectroscopy. Dynamical mean field theory calculation combined with density functional theory confirms that this kink originates from Hund’s coupling. We find that the abrupt deviation from the Fermi liquid behavior in the electron self-energy results in the kink feature at low energy scale and that the kink is directly related to the coherence-incoherence crossover temperature scale. Our results mark the direct observation of the evolution of the characteristic temperature scale via kink features in the spectral function, which is the hallmark of Hund’s physics in the multiorbital system. A decisive spectroscopic evidence of the Hund’s coupling energy scale in multi-orbital correlated systems has been lacking. Here, the authors identify a kink feature due to Hund´s coupling in the spectral function of NiS2xSex as they track its evolution across the Mott-insulator transition.
Collapse
|
8
|
Petsch AN, Zhu M, Enderle M, Mao ZQ, Maeno Y, Mazin II, Hayden SM. Reduction of the Spin Susceptibility in the Superconducting State of Sr_{2}RuO_{4} Observed by Polarized Neutron Scattering. PHYSICAL REVIEW LETTERS 2020; 125:217004. [PMID: 33275021 DOI: 10.1103/physrevlett.125.217004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/01/2020] [Accepted: 10/14/2020] [Indexed: 06/12/2023]
Abstract
Recent observations [A. Pustogow et al., Nature (London) 574, 72 (2019).NATUAS0028-083610.1038/s41586-019-1596-2] of a drop of the ^{17}O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr_{2}RuO_{4} challenged the popular picture of a chiral odd-parity paired state in this compound. Here we use polarized neutron scattering (PNS) to show that there is a 34±6% drop in the magnetic susceptibility at the Ru site below the superconducting transition temperature. We measure at lower fields H∼1/3H_{c2} than a previous PNS study allowing the suppression to be observed. The PNS measurements show a smaller susceptibility suppression than NMR measurements performed at similar field and temperature. Our results rule out the chiral odd-parity d=z[over ^](k_{x}±ik_{y}) state and are consistent with several recent proposals for the order parameter including even-parity B_{1g} and odd-parity helical states.
Collapse
Affiliation(s)
- A N Petsch
- H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - M Zhu
- H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | | | - Z Q Mao
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Y Maeno
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - I I Mazin
- Department of Physics and Astronomy, George Mason University and Quantum Science and Engineering Center, Fairfax, Virginia 22030, USA
| | - S M Hayden
- H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
9
|
Karp J, Bramberger M, Grundner M, Schollwöck U, Millis AJ, Zingl M. Sr_{2}MoO_{4} and Sr_{2}RuO_{4}: Disentangling the Roles of Hund's and van Hove Physics. PHYSICAL REVIEW LETTERS 2020; 125:166401. [PMID: 33124840 DOI: 10.1103/physrevlett.125.166401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Sr_{2}MoO_{4} is isostructural to the unconventional superconductor Sr_{2}RuO_{4} but with two electrons instead of two holes in the Mo/Ru-t_{2g} orbitals. Both materials are Hund's metals, but while Sr_{2}RuO_{4} has a van Hove singularity in close proximity to the Fermi surface, the van Hove singularity of Sr_{2}MoO_{4} is far from the Fermi surface. By using density functional plus dynamical mean-field theory, we determine the relative influence of van Hove and Hund's metal physics on the correlation properties. We show that theoretically predicted signatures of Hund's metal physics occur on the occupied side of the electronic spectrum of Sr_{2}MoO_{4}, identifying Sr_{2}MoO_{4} as an ideal candidate system for a direct experimental confirmation of the theoretical concept of Hund's metals via photoemission spectroscopy.
Collapse
Affiliation(s)
- Jonathan Karp
- Department of Applied Physics and Applied Math, Columbia University, New York, New York 10027, USA
| | - Max Bramberger
- Arnold Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 Munich, Germany
| | - Martin Grundner
- Arnold Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 Munich, Germany
| | - Ulrich Schollwöck
- Arnold Sommerfeld Center of Theoretical Physics, Department of Physics, University of Munich, Theresienstrasse 37, 80333 Munich, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 Munich, Germany
| | - Andrew J Millis
- Department of Physics, Columbia University, New York, New York 10027, USA
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| | - Manuel Zingl
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| |
Collapse
|
10
|
Wang Y, Walter E, Lee SSB, Stadler KM, von Delft J, Weichselbaum A, Kotliar G. Global Phase Diagram of a Spin-Orbital Kondo Impurity Model and the Suppression of Fermi-Liquid Scale. PHYSICAL REVIEW LETTERS 2020; 124:136406. [PMID: 32302177 DOI: 10.1103/physrevlett.124.136406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Many correlated metallic materials are described by Landau Fermi-liquid theory at low energies, but for Hund metals the Fermi-liquid coherence scale T_{FL} is found to be surprisingly small. In this Letter, we study the simplest impurity model relevant for Hund metals, the three-channel spin-orbital Kondo model, using the numerical renormalization group (NRG) method and compute its global phase diagram. In this framework, T_{FL} becomes arbitrarily small close to two new quantum critical points that we identify by tuning the spin or spin-orbital Kondo couplings into the ferromagnetic regimes. We find quantum phase transitions to a singular Fermi-liquid or a novel non-Fermi-liquid phase. The new non-Fermi-liquid phase shows frustrated behavior involving alternating overscreenings in spin and orbital sectors, with universal power laws in the spin (ω^{-1/5}), orbital (ω^{1/5}) and spin-orbital (ω^{1}) dynamical susceptibilities. These power laws, and the NRG eigenlevel spectra, can be fully understood using conformal field theory arguments, which also clarify the nature of the non-Fermi-liquid phase.
Collapse
Affiliation(s)
- Y Wang
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Walter
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - S-S B Lee
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - K M Stadler
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - J von Delft
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - A Weichselbaum
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - G Kotliar
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08856, USA
| |
Collapse
|
11
|
Sharma R, Edkins SD, Wang Z, Kostin A, Sow C, Maeno Y, Mackenzie AP, Davis JCS, Madhavan V. Momentum-resolved superconducting energy gaps of Sr 2RuO 4 from quasiparticle interference imaging. Proc Natl Acad Sci U S A 2020; 117:5222-5227. [PMID: 32094178 PMCID: PMC7071898 DOI: 10.1073/pnas.1916463117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sr2RuO4 has long been the focus of intense research interest because of conjectures that it is a correlated topological superconductor. It is the momentum space (k-space) structure of the superconducting energy gap [Formula: see text] on each band i that encodes its unknown superconducting order parameter. However, because the energy scales are so low, it has never been possible to directly measure the [Formula: see text] of Sr2RuO4 Here, we implement Bogoliubov quasiparticle interference (BQPI) imaging, a technique capable of high-precision measurement of multiband [Formula: see text] At T = 90 mK, we visualize a set of Bogoliubov scattering interference wavevectors [Formula: see text] consistent with eight gap nodes/minima that are all closely aligned to the [Formula: see text] crystal lattice directions on both the α and β bands. Taking these observations in combination with other very recent advances in directional thermal conductivity [E. Hassinger et al., Phys. Rev. X 7, 011032 (2017)], temperature-dependent Knight shift [A. Pustogow et al., Nature 574, 72-75 (2019)], time-reversal symmetry conservation [S. Kashiwaya et al., Phys. Rev B, 100, 094530 (2019)], and theory [A. T. Rømer et al., Phys. Rev. Lett. 123, 247001 (2019); H. S. Roising, T. Scaffidi, F. Flicker, G. F. Lange, S. H. Simon, Phys. Rev. Res. 1, 033108 (2019); and O. Gingras, R. Nourafkan, A. S. Tremblay, M. Côté, Phys. Rev. Lett. 123, 217005 (2019)], the BQPI signature of Sr2RuO4 appears most consistent with [Formula: see text] having [Formula: see text] [Formula: see text] symmetry.
Collapse
Affiliation(s)
- Rahul Sharma
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853
- Condensed Matter Physics and Material Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Stephen D Edkins
- Department of Applied Physics, Stanford University, Stanford, CA 94305
| | - Zhenyu Wang
- Department of Physics, University of Illinois, Urbana, IL 61801
| | - Andrey Kostin
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853
- Condensed Matter Physics and Material Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Chanchal Sow
- Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
- Department of Physics, Indian Institute of Technology-Kanpur, 208016 Uttar Pradesh, India
| | - Yoshiteru Maeno
- Department of Physics, Kyoto University, 606-8502 Kyoto, Japan
| | - Andrew P Mackenzie
- Physics of Quantum Materials Department, Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
- School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS, United Kingdom
| | - J C Séamus Davis
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853;
- Physics of Quantum Materials Department, Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
- Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
- Department of Physics, University College Cork, T12R5C Cork, Ireland
| | - Vidya Madhavan
- Department of Physics, University of Illinois, Urbana, IL 61801;
| |
Collapse
|
12
|
Wei S, Lian L, Liu Y, Li D, Liu Z, Cui T. Pressure-stabilized polymerization of nitrogen in alkaline-earth-metal strontium nitrides. Phys Chem Chem Phys 2020; 22:5242-5248. [PMID: 32091052 DOI: 10.1039/c9cp05745e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-pressure technology can help us to obtain excellent materials. We have explored alkaline-earth-metal strontium nitrides under different pressures, theoretically. A variety of stable Sr-N structures were predicted by the structure searching method using CALYPSO code. Six new stoichiometries, SrN, Sr2N3, SrN2, SrN3, SrN4, and SrN5, were predicted. And our calculation proved that all these compounds were stable existing under ambient pressure up to 100 GPa. A rich variety of poly-nitrogen forms appeared in the newly predicted SrNx compounds, including four nitrogen polymerization forms: ranging from N2, N3, N4, and N5 molecules, to zig-zag nitrogen chains and extended chains connected by puckered "N6" rings. Significantly, the 1D extended polymeric chain of puckered "N6" rings was firstly identified in the P1[combining macron]-SrN3 structure at 60 GPa. Another N-rich C2/c-SrN4 was stable only under the relatively high-pressure of 20 GPa, but this phase can be quenched under atmospheric pressure. The N-rich phase SrN5 maintained structural stability when the pressure reached 50-70 GPa. The delocalization of π electrons from N atoms was the principal cause for its metallicity in SrN5. In this paper, our calculated results indicated that the energetic poly-nitrides in alkaline-earth-metal nitrides can be obtained by the high-pressure method.
Collapse
Affiliation(s)
- Shuli Wei
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, 250049 Zibo, China.
| | | | | | | | | | | |
Collapse
|
13
|
Kugler FB, Zingl M, Strand HUR, Lee SSB, von Delft J, Georges A. Strongly Correlated Materials from a Numerical Renormalization Group Perspective: How the Fermi-Liquid State of Sr_{2}RuO_{4} Emerges. PHYSICAL REVIEW LETTERS 2020; 124:016401. [PMID: 31976705 DOI: 10.1103/physrevlett.124.016401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The crossover from fluctuating atomic constituents to a collective state as one lowers temperature or energy is at the heart of the dynamical mean-field theory description of the solid state. We demonstrate that the numerical renormalization group is a viable tool to monitor this crossover in a real-materials setting. The renormalization group flow from high to arbitrarily small energy scales clearly reveals the emergence of the Fermi-liquid state of Sr_{2}RuO_{4}. We find a two-stage screening process, where orbital fluctuations are screened at much higher energies than spin fluctuations, and Fermi-liquid behavior, concomitant with spin coherence, below a temperature of 25 K. By computing real-frequency correlation functions, we directly observe this spin-orbital scale separation and show that the van Hove singularity drives strong orbital differentiation. We extract quasiparticle interaction parameters from the low-energy spectrum and find an effective attraction in the spin-triplet sector.
Collapse
Affiliation(s)
- Fabian B Kugler
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Manuel Zingl
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| | - Hugo U R Strand
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
| | - Seung-Sup B Lee
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Jan von Delft
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Antoine Georges
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, New York 10010, USA
- Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
- Centre de Physique Théorique, CNRS, Ecole Polytechnique, IP Paris, 91128 Palaiseau, France
- Department of Quantum Matter Physics, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
14
|
Rømer AT, Scherer DD, Eremin IM, Hirschfeld PJ, Andersen BM. Knight Shift and Leading Superconducting Instability from Spin Fluctuations in Sr_{2}RuO_{4}. PHYSICAL REVIEW LETTERS 2019; 123:247001. [PMID: 31922834 DOI: 10.1103/physrevlett.123.247001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 06/10/2023]
Abstract
Recent nuclear magnetic resonance studies [A. Pustogow et al., Nature 574, 72 (2019)] have challenged the prevalent chiral triplet pairing scenario proposed for Sr_{2}RuO_{4}. To provide guidance from microscopic theory as to which other pair states might be compatible with the new data, we perform a detailed theoretical study of spin fluctuation mediated pairing for this compound. We map out the phase diagram as a function of spin-orbit coupling, interaction parameters, and band structure properties over physically reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on the proximity of the γ band to the van Hove points. A surprising near degeneracy of the nodal s^{'} and d_{x^{2}-y^{2}} wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken s^{'}+id_{x^{2}-y^{2}} pair state. Predictions for the temperature dependence of the Knight shift for fields in and out of plane are presented for all states.
Collapse
Affiliation(s)
- A T Rømer
- Niels Bohr Institute, University of Copenhagen, Vibenhuset, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
- Institut Laue-Langevin, 71 avenue des Martyrs CS 20156, 38042 Grenoble Cedex 9, France
| | - D D Scherer
- Niels Bohr Institute, University of Copenhagen, Vibenhuset, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
| | - I M Eremin
- Institut für Theoretische Physik III, Ruhr-Universität Bochum, D-44801 Bochum, Germany
- National University of Science and Technology MISiS, 119049 Moscow, Russia
| | - P J Hirschfeld
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
| | - B M Andersen
- Niels Bohr Institute, University of Copenhagen, Vibenhuset, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
15
|
Gingras O, Nourafkan R, Tremblay AMS, Côté M. Superconducting Symmetries of Sr_{2}RuO_{4} from First-Principles Electronic Structure. PHYSICAL REVIEW LETTERS 2019; 123:217005. [PMID: 31809152 DOI: 10.1103/physrevlett.123.217005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Indexed: 06/10/2023]
Abstract
Although correlated electronic-structure calculations explain very well the normal state of Sr_{2}RuO_{4}, its superconducting symmetry is still unknown. Here we construct the spin and charge fluctuation pairing interactions based on its correlated normal state. Correlations significantly reduce ferromagnetic in favor of antiferromagnetic fluctuations and increase interorbital pairing. From the normal-state Eliashberg equations, we find spin-singlet d-wave pairing close to magnetic instabilities. Away from these instabilities, where charge fluctuations increase, we find two time-reversal symmetry-breaking spin triplets: an odd-frequency s wave, and a doubly degenerate interorbital pairing between d_{xy} and (d_{yz},d_{xz}).
Collapse
Affiliation(s)
- O Gingras
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | - R Nourafkan
- Département de Physique, Institut quantique, Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - A-M S Tremblay
- Département de Physique, Institut quantique, Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8
| | - M Côté
- Département de Physique and Regroupement Québécois sur les Matériaux de Pointe, Université de Montréal, C. P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
16
|
Bertinshaw J, Gurung N, Jorba P, Liu H, Schmid M, Mantadakis DT, Daghofer M, Krautloher M, Jain A, Ryu GH, Fabelo O, Hansmann P, Khaliullin G, Pfleiderer C, Keimer B, Kim BJ. Unique Crystal Structure of Ca_{2}RuO_{4} in the Current Stabilized Semimetallic State. PHYSICAL REVIEW LETTERS 2019; 123:137204. [PMID: 31697510 DOI: 10.1103/physrevlett.123.137204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2019] [Indexed: 06/10/2023]
Abstract
The electric-current stabilized semimetallic state in the quasi-two-dimensional Mott insulator Ca_{2}RuO_{4} exhibits an exceptionally strong diamagnetism. Through a comprehensive study using neutron and x-ray diffraction, we show that this nonequilibrium phase assumes a crystal structure distinct from those of equilibrium metallic phases realized in the ruthenates by chemical doping, high pressure, and epitaxial strain, which in turn leads to a distinct electronic band structure. Dynamical mean field theory calculations based on the crystallographically refined atomic coordinates and realistic Coulomb repulsion parameters indicate a semimetallic state with partially gapped Fermi surface. Our neutron diffraction data show that the nonequilibrium behavior is homogeneous, with antiferromagnetic long-range order completely suppressed. These results provide a new basis for theoretical work on the origin of the unusual nonequilibrium diamagnetism in Ca_{2}RuO_{4}.
Collapse
Affiliation(s)
- J Bertinshaw
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - N Gurung
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - P Jorba
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
| | - H Liu
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Schmid
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
- Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - D T Mantadakis
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Daghofer
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
- Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - M Krautloher
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - A Jain
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Solid State Physics Division, Bhabha Atomic Research Center, Mumbai 400 085, India
| | - G H Ryu
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - O Fabelo
- Institut Laue Langevin, BP 156, F-38042 Grenoble cedex 9, France
| | - P Hansmann
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzerstr Straße 40, D-01187 Dresden, Germany
| | - G Khaliullin
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - C Pfleiderer
- Physik-Department, Technische Universität München, D-85748 Garching, Germany
| | - B Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - B J Kim
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
- Department of Physics, Pohang University of Science and Technology, Pohang 790-784, South Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), 77 Cheongam-Ro, Pohang 790-784, South Korea
| |
Collapse
|
17
|
Steffens P, Sidis Y, Kulda J, Mao ZQ, Maeno Y, Mazin II, Braden M. Spin Fluctuations in Sr_{2}RuO_{4} from Polarized Neutron Scattering: Implications for Superconductivity. PHYSICAL REVIEW LETTERS 2019; 122:047004. [PMID: 30768293 DOI: 10.1103/physrevlett.122.047004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 06/09/2023]
Abstract
Triplet pairing in Sr_{2}RuO_{4} was initially suggested based on the hypothesis of strong ferromagnetic spin fluctuations. Using polarized inelastic neutron scattering, we accurately determine the full spectrum of spin fluctuations in Sr_{2}RuO_{4}. Besides the well-studied incommensurate magnetic fluctuations, we do find a sizable quasiferromagnetic signal, quantitatively consistent with all macroscopic and microscopic probes. We use this result to address the possibility of magnetically driven triplet superconductivity in Sr_{2}RuO_{4}. We conclude that, even though the quasiferromagnetic signal is stronger and sharper than previously anticipated, spin fluctuations alone are not enough to generate a triplet state strengthening the need for additional interactions or an alternative pairing scenario.
Collapse
Affiliation(s)
- P Steffens
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Y Sidis
- Laboratoire Léon Brillouin, C.E.A./C.N.R.S., F-91191 Gif-sur-Yvette CEDEX, France
| | - J Kulda
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France
| | - Z Q Mao
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Department of Physics, Tulane University, New Orleans, Louisiana 70118, USA
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Y Maeno
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - I I Mazin
- Code 6393, Naval Research Laboratory, Washington, DC 20375, USA
| | - M Braden
- II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany
| |
Collapse
|
18
|
|
19
|
In situ strain tuning of the metal-insulator-transition of Ca 2RuO 4 in angle-resolved photoemission experiments. Nat Commun 2018; 9:4535. [PMID: 30382088 PMCID: PMC6208396 DOI: 10.1038/s41467-018-06945-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/01/2018] [Indexed: 11/28/2022] Open
Abstract
Pressure plays a key role in the study of quantum materials. Its application in angle resolved photoemission (ARPES) studies, however, has so far been limited. Here, we report the evolution of the k-space electronic structure of bulk Ca2RuO4, lightly doped with Pr, under uniaxial strain. Using ultrathin plate-like crystals, we achieve uniaxial strain levels up to −4.1%, sufficient to suppress the insulating Mott phase and access the previously unexplored electronic structure of the metallic state at low temperature. ARPES experiments performed while tuning the uniaxial strain reveal that metallicity emerges from a marked redistribution of charge within the Ru t2g shell, accompanied by a sudden collapse of the spectral weight in the lower Hubbard band and the emergence of a well-defined Fermi surface which is devoid of pseudogaps. Our results highlight the profound roles of lattice energetics and of the multiorbital nature of Ca2RuO4 in this archetypal Mott transition and open new perspectives for spectroscopic measurements. The role of the lattice in the correlated metal-insulator transition of Ca2RuO4 has led to significant interest but experiments that are at the same time sensitive to crystal and electronic structure are difficult. Riccò et al. successfully combine ARPES measurements with in situ strain tuning across the Mott transition.
Collapse
|
20
|
Han Q, Millis A. Lattice Energetics and Correlation-Driven Metal-Insulator Transitions: The Case of Ca_{2}RuO_{4}. PHYSICAL REVIEW LETTERS 2018; 121:067601. [PMID: 30141680 DOI: 10.1103/physrevlett.121.067601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/20/2018] [Indexed: 06/08/2023]
Abstract
This Letter uses density functional, dynamical mean field, and Landau-theory methods to elucidate the interplay of electronic and structural energetics in the Mott metal-insulator transition. A Landau-theory free energy is presented that incorporates the electronic energetics, the coupling of the electronic state to local distortions and the coupling of local distortions to long-wavelength strains. The theory is applied to Ca_{2}RuO_{4}. The change in lattice energy across the metal-insulator transition is comparable to the change in electronic energy. Important consequences are a strongly first order transition, a sensitive dependence of the phase boundary on pressure and that the geometrical constraints on in-plane lattice parameter associated with epitaxial growth on a substrate typically change the lattice energetics enough to eliminate the metal-insulator transition entirely.
Collapse
Affiliation(s)
- Qiang Han
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Andrew Millis
- Department of Physics, Columbia University, New York, New York 10027, USA
- The Center for Computational Quantum Physics, The Flatiron Institute, New York, New York 10010, USA
| |
Collapse
|