1
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Electron-Vibration Couplings Open New Channels for Energy Redistribution of Self-Assembled Monolayers on Plasmonic Nanoparticles. J Phys Chem Lett 2025; 16:3571-3578. [PMID: 40172294 DOI: 10.1021/acs.jpclett.4c02930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Unveiling how the interaction between self-assembled monolayers and plasmonic nanoparticles (PNPs) impacts molecular vibrational energy redistribution (VER) is crucial for optimizing plasmon-mediated chemical reactions (PMCRs). However, direct experimental evidence for molecule-PNP interactions opening new energy channels, such as up-pumping energy transfer and self-trapping of vibrational excitation, for VER has yet to be validated. Here, we demonstrate that electron-vibration coupling (EVC) induced by molecule-PNP interactions can open these new pathways for VER by utilizing femtosecond time-resolved sum-frequency generation vibrational spectroscopy. Using self-assembled 4-nitrothiophenol (4-NTP) monolayers on PNPs as a model, we observed that EVC opens a "forbidden" up-pumping energy transfer channel from 4-NTP nitro symmetric stretching (νNO2) to phenyl ring C═C stretching (νC═C) modes. The self-trapped state of excited νC═C modes is found, which originates from EVC-driven intermolecular coupling. These findings contribute to a better understanding of PMCR mechanisms and help guide the design of plasmonic catalysts with excellent performance.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
2
|
Cao S, Jin F, Zhao J, Long YZ, Luo J, Zhang Q, Chen ZG. Enhanced Phonon-Phonon Interactions and Weakened Electron-Phonon Coupling in Charge Density Wave Topological Semimetal EuAl 4 with a Possible Intermediate Electronic State. J Phys Chem Lett 2025; 16:1909-1915. [PMID: 39960101 DOI: 10.1021/acs.jpclett.5c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The origin of the charge density wave (CDW) is a long-term open issue. Furthermore, the evolution of phonon-phonon interactions (PPIs) across CDW transitions has rarely been investigated. Whether electron-phonon coupling (EPC) would be weakened or enhanced after CDW transitions is still under debate. Additionally, CDW provides fertile ground for uncovering intriguing intermediate electronic states. Here, we report a Raman spectroscopy study of the PPI and EPC in topological semimetal EuAl4 exhibiting a CDW phase below temperature Tc ≈ 145 K. The free-charge-carrier-density (nc) and temperature dependences of the Fano asymmetric factors (1/|q|) of the two phonon modes A1g and B1g indicate that below Tc, the EPC becomes weakened probably due to the reduction of the nc. Interestingly, in the temperature range of 50-145 K, the steep growth of the 1/|q| leading to the significant deviation from the linear dependence on the nc, together with the shoulder-like features in the temperature evolutions of the 1/|q| and the nc around 50 K, implies the possible existence of an intermediate electronic state with the EPC distinctly larger than the CDW ground state in EuAl4. Furthermore, below Tc, the faster decrease in the full width at half maximum of the B1g phonon mode representing the collective vibrations of the CDW-modulated Al1 atoms suggests remarkable growth of the PPI for the B1g phonon mode after the CDW phase transition, which is in contrast to the weakening of the EPC and thus may mainly arise from the strengthening of lattice anharmonicity in EuAl4. Our results not only highlight the significance of the enhanced PPI and the weakened EPC in completely understanding the formation of the CDW phase but also initiate the exploration of novel intermediate electronic states in EuAl4.
Collapse
Affiliation(s)
- Shize Cao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianzhou Zhao
- Co-Innovation Center for New Energetic Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China
| | - Jianlin Luo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Guo Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
3
|
Maier P, Xavier NF, Truscott CL, Hansen T, Fouquet P, Sacchi M, Tamtögl A. How does tuning the van der Waals bonding strength affect adsorbate structure? Phys Chem Chem Phys 2022; 24:29371-29380. [PMID: 36448738 PMCID: PMC9749083 DOI: 10.1039/d2cp03468a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Organic molecular thin-films are employed for manufacturing a wide variety of electronic devices, including memory devices and transistors. A precise description of the atomic-scale interactions in aromatic carbon systems is of paramount importance for the design of organic thin-films and carbon-based nanomaterials. Here we investigate the binding and structure of pyrazine on graphite with neutron diffraction and spin-echo measurements. Diffraction data of the ordered phase of deuterated pyrazine, (C4D4N2), adsorbed on the graphite (0001) basal plane surface are compared to scattering simulations and complemented by van der Waals corrected density functional theory calculations. The lattice constant of pyrazine on graphite is found to be (6.06 ± 0.02) Å. Compared to benzene (C6D6) adsorption on graphite, the pyrazine overlayer appears to be much more thermodynamically stable, up to 320 K, and continues in layer-by-layer growth. Both findings suggest a direct correlation between the intensity of van der Waals bonding and the stability of the self-assembled overlayer because the nitrogen atoms in the six-membered ring of pyrazine increase the van der Waals bonding in comparison to benzene, which only contains carbon atoms.
Collapse
Affiliation(s)
- Philipp Maier
- Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria.
| | - Neubi F Xavier
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Chris L Truscott
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Thomas Hansen
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Peter Fouquet
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Marco Sacchi
- Department of Chemistry, University of Surrey, Guildford GU2 7XH, UK
| | - Anton Tamtögl
- Institute of Experimental Physics, Graz University of Technology, 8010 Graz, Austria.
| |
Collapse
|
4
|
Koval NE, Sánchez-Portal D, Borisov AG, Díez Muiño R. Time-dependent density functional theory calculations of electronic friction in non-homogeneous media. Phys Chem Chem Phys 2022; 24:20239-20248. [PMID: 35996966 DOI: 10.1039/d2cp01972h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The excitation of low-energy electron-hole pairs is one of the most relevant processes in the gas-surface interaction. An efficient tool to account for these excitations in simulations of atomic and molecular dynamics at surfaces is the so-called local density friction approximation (LDFA). The LDFA is based on a strong approximation that simplifies the dynamics of the electronic system: a local friction coefficient is defined using the value of the electronic density for the unperturbed system at each point of the dynamics. In this work, we apply real-time time-dependent density functional theory to the problem of the electronic friction of a negative point charge colliding with spherical jellium metal clusters. Our non-adiabatic, parameter-free results provide a benchmark for the widely used LDFA approximation and allow the discussion of various processes relevant to the electronic response of the system in the presence of the projectile.
Collapse
Affiliation(s)
- Natalia E Koval
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain.,CIC Nanogune BRTA, Tolosa Hiribidea 76, E-20018 San Sebastián, Spain
| | - Daniel Sánchez-Portal
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| | - Andrei G Borisov
- Institut des Sciences Moléculaires d'Orsay (ISMO), UMR 8214, CNRS-Université Paris-Saclay, Bât. 520, F-91405 Orsay CEDEX, France
| | - Ricardo Díez Muiño
- Centro de Física de Materiales (CFM) CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain. .,Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián, Spain
| |
Collapse
|
5
|
Diesen E, Wang HY, Schreck S, Weston M, Ogasawara H, LaRue J, Perakis F, Dell'Angela M, Capotondi F, Giannessi L, Pedersoli E, Naumenko D, Nikolov I, Raimondi L, Spezzani C, Beye M, Cavalca F, Liu B, Gladh J, Koroidov S, Miedema PS, Costantini R, Heinz TF, Abild-Pedersen F, Voss J, Luntz AC, Nilsson A. Ultrafast Adsorbate Excitation Probed with Subpicosecond-Resolution X-Ray Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2021; 127:016802. [PMID: 34270277 DOI: 10.1103/physrevlett.127.016802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/07/2021] [Indexed: 06/13/2023]
Abstract
We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime. The ∼100 fs initial excitation of these CO vibrational modes is not readily rationalized by traditional theories of nonadiabatic coupling of adsorbates to metal surfaces, e.g., electronic frictions based on first order electron-phonon coupling or transient population of adsorbate resonances. We suggest that coupling of the adsorbate to nonthermalized electron-hole pairs is responsible for the ultrafast initial excitation of the modes.
Collapse
Affiliation(s)
- Elias Diesen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Hsin-Yi Wang
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Simon Schreck
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Matthew Weston
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Hirohito Ogasawara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Jerry LaRue
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | | | - Flavio Capotondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Luca Giannessi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Emanuele Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Denys Naumenko
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Ivaylo Nikolov
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Lorenzo Raimondi
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Carlo Spezzani
- FERMI, Elettra-Sincrotrone Trieste, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
| | - Martin Beye
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Boyang Liu
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jörgen Gladh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Sergey Koroidov
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Piter S Miedema
- DESY Photon Science, Notkestrasse 85, Hamburg 22607, Germany
| | - Roberto Costantini
- CNR-IOM, SS 14-km 163.5, 34149 Basovizza, Trieste, Italy
- Physics Department, University of Trieste, Via Valerio 2, 34127 Trieste, Italy
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Johannes Voss
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Alan C Luntz
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
6
|
Box C, Zhang Y, Yin R, Jiang B, Maurer RJ. Determining the Effect of Hot Electron Dissipation on Molecular Scattering Experiments at Metal Surfaces. JACS AU 2021; 1:164-173. [PMID: 34467282 PMCID: PMC8395621 DOI: 10.1021/jacsau.0c00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Nonadiabatic effects that arise from the concerted motion of electrons and atoms at comparable energy and time scales are omnipresent in thermal and light-driven chemistry at metal surfaces. Excited (hot) electrons can measurably affect molecule-metal reactions by contributing to state-dependent reaction probabilities. Vibrational state-to-state scattering of NO on Au(111) has been one of the most studied examples in this regard, providing a testing ground for developing various nonadiabatic theories. This system is often cited as the prime example for the failure of electronic friction theory, a very efficient model accounting for dissipative forces on metal-adsorbed molecules due to the creation of hot electrons in the metal. However, the exact failings compared to experiment and their origin from theory are not established for any system because dynamic properties are affected by many compounding simulation errors of which the quality of nonadiabatic treatment is just one. We use a high-dimensional machine learning representation of electronic structure theory to minimize errors that arise from quantum chemistry. This allows us to perform a comprehensive quantitative analysis of the performance of nonadiabatic molecular dynamics in describing vibrational state-to-state scattering of NO on Au(111) and compare directly to adiabatic results. We find that electronic friction theory accurately predicts elastic and single-quantum energy loss but underestimates multiquantum energy loss and overestimates molecular trapping at high vibrational excitation. Our analysis reveals that multiquantum energy loss can potentially be remedied within friction theory whereas the overestimation of trapping constitutes a genuine breakdown of electronic friction theory. Addressing this overestimation for dynamic processes in catalysis and surface chemistry will likely require more sophisticated theories.
Collapse
Affiliation(s)
- Connor
L. Box
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Yaolong Zhang
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rongrong Yin
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Jiang
- Hefei
National Laboratory for Physical Science at the Microscale, Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Reinhard J. Maurer
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
7
|
Gu L, Wu R. Density functional study of relaxation of adsorbate vibration modes: Dominance of anharmonic interaction. J Chem Phys 2020; 153:184109. [PMID: 33187426 DOI: 10.1063/5.0027915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Formulation and density functional workflow for calculating the lifetime of vibrational modes of molecular adsorbates on solid surfaces due to vibration-phonon coupling are presented. The anharmonic coupling is invoked to give the correct description of the origin of temperature dependence. Using pyrrolidine (C4H9N) absorbed on the Cu(001) surface as a concrete example, we show that the anharmonic coupling can be one to two orders more significant than the harmonic interaction for the broadening of vibrational spectra, especially as temperature increases. These results challenge the common assumption that the anharmonic interaction is weak and call for attention of considering its effect in quantum relaxation and related problems.
Collapse
Affiliation(s)
- Lei Gu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
8
|
Serwatka T, Füchsel G, Tremblay JC. Scattering of NO(ν = 3) from Au(111): a stochastic dissipative quantum dynamical perspective. Phys Chem Chem Phys 2020; 22:6584-6594. [PMID: 32159168 DOI: 10.1039/c9cp06084g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we present a theoretical study of the scattering dynamics of NO(ν = 3) from an ideal unreconstructed Au(111) surface. The simulations are performed in reduced dimensions at the three high-symmetry sites employing our recent modification to the stochastic wave packet approach for diatomic-metal scattering [J. Chem. Phys., 2019, 150, 184105]. Energy exchange between molecular vibrational degrees of freedom and the electron-hole pairs (EHP) of the metal is accounted for by quantized stochastic jump operators, with associated rates obtained from a microscopic model based on Fermi's golden rule. The simulations are found to reproduce the experimentally observed trend of enhanced vibrational relaxation probabilities with increasing initial translational energy. Molecular dynamics simulations with electronic friction (MDEF) in the independent atom approximation were performed to compare classical and quantum dynamical descriptions of that system. Significant differences between these two descriptions were found indicating that intermode coupling must be described accurately by using a good potential energy surface, and pointing out at the potentially important influence of a quantized description of energy relaxation in describing the scattering of NO from Au(111).
Collapse
Affiliation(s)
- Tobias Serwatka
- Institut für Chemie und Biochemie, Freie Universität Berlin, D-14195, Germany.
| | | | | |
Collapse
|
9
|
Alducin M, Camillone N, Hong SY, Juaristi JI. Electrons and Phonons Cooperate in the Laser-Induced Desorption of CO from Pd(111). PHYSICAL REVIEW LETTERS 2019; 123:246802. [PMID: 31922860 DOI: 10.1103/physrevlett.123.246802] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 06/10/2023]
Abstract
Femtosecond laser induced desorption of CO from a CO-covered Pd(111) surface is investigated with ab initio molecular dynamics with electronic friction that incorporates effects due to the excited electronic and phononic systems, as well as out-of-phase coadsorbate interactions. Our simulations show evidence of an important electron-phonon synergy in promoting CO desorption that has largely been neglected in other similar systems. At the saturated coverage of 0.75 ML, effects due to CO-CO interadsorbate energy exchange are also important. Our dynamics simulations, in concert with site-specific desorption energy calculations, allow us to understand the large coverage dependence of the desorption yields observed in experiments.
Collapse
Affiliation(s)
- Maite Alducin
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - Nicholas Camillone
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - Sung-Young Hong
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - J Iñaki Juaristi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián, Spain
| |
Collapse
|
10
|
Spiering P, Shakouri K, Behler J, Kroes GJ, Meyer J. Orbital-Dependent Electronic Friction Significantly Affects the Description of Reactive Scattering of N 2 from Ru(0001). J Phys Chem Lett 2019; 10:2957-2962. [PMID: 31088059 PMCID: PMC6558642 DOI: 10.1021/acs.jpclett.9b00523] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/15/2019] [Indexed: 05/18/2023]
Abstract
Electron-hole pair (ehp) excitation is thought to substantially affect the dynamics of molecules on metal surfaces, but it is not clear whether this can be better addressed by orbital-dependent friction (ODF) or the local density friction approximation (LDFA). We investigate the effect of ehp excitation on the dissociative chemisorption of N2 on and its inelastic scattering from Ru(0001), which is the benchmark system of highly activated dissociation, with these two different models. ODF is in better agreement with the best experimental estimates for the reaction probabilities than LDFA, yields results for vibrational excitation in better agreement with experiment, but slightly overestimates the translational energy loss during scattering. N2 on Ru(0001) is thus the first system for which the ODF and LDFA approaches are shown to yield substantially different results for easily accessible experimental observables, including reaction probabilities.
Collapse
Affiliation(s)
- Paul Spiering
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Khosrow Shakouri
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jörg Behler
- Universität Göttingen , Institut für Physikalische Chemie, Theoretische Chemie, Tammannstr. 6 , 37077 Göttingen , Germany
| | - Geert-Jan Kroes
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| | - Jörg Meyer
- Gorlaeus Laberatories, Leiden Institute of Chemistry , Leiden University , P.O. Box 9502, 2300 RA Leiden , The Netherlands
| |
Collapse
|
11
|
García Rey N, Arnolds H. Ultrafast dynamics of the dipole moment reversal in a polar organic monolayer. J Chem Phys 2019; 150:174702. [PMID: 31067873 DOI: 10.1063/1.5066551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Pyridine layers on Cu(110) possess a strong electric field due to the large dipole of adsorbed pyridine. This electric field is visible as an enhanced sum frequency response from both the copper surface electrons and the aromatic C-H stretch of pyridine via a third order susceptibility. In response to a visible pump pulse, both surface electron and C-H stretch sum frequency signals are reduced on a subpicosecond time scale. In addition, the relative phase between the two signals changes over a few hundred femtoseconds, which indicates a change in the electronic structure of the adsorbate. We explain the transients as a consequence of the previously observed pyridine dipole field reversal when the pump pulse excites electrons into the pyridine π* orbital. The pyridine anions in the pyridine layer cause a large-scale structural change which alters the pyridine-copper bond, reflected in the altered sum frequency response.
Collapse
Affiliation(s)
- Natalia García Rey
- Institute of Physical Chemistry, Westfälische Wilhelms-Universität Münster Corrensstraße 28/30, 48149 Münster, Germany
| | - Heike Arnolds
- Surface Science Research Center, Department of Chemistry, University of Liverpool, Oxford Road, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
12
|
Lončarić I, Alducin M, Juaristi JI, Novko D. CO Stretch Vibration Lives Long on Au(111). J Phys Chem Lett 2019; 10:1043-1047. [PMID: 30776894 DOI: 10.1021/acs.jpclett.9b00069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Measured lifetimes of the CO internal stretch mode on various metal surfaces routinely lie in the picosecond regime. These short vibrational lifetimes, which are actually reproduced by current first-principles nonadiabatic calculations, are attributed to the rapid vibrational energy loss that is caused by the facile excitation of electron-hole pairs in metals. However, this explanation was recently questioned by the huge discrepancy that exists for CO on Au(111) between the experimental vibrational lifetime that is larger than 100 ps and the previous theoretical predictions of 4.8 and 1.6 ps. Here, we show that the state-of-the-art nonadiabatic theory does reproduce the long CO lifetime measured in Au(111) provided the molecule-surface interaction is properly described. Importantly, our new results confirm that the current understanding of the adsorbates' vibrational relaxation at metal surfaces is indeed valid.
Collapse
Affiliation(s)
- Ivor Lončarić
- Ruđer Bošković Institute , Bijenička 54 , HR-10000 Zagreb , Croatia
- Donostia International Physics Center DIPC , P. Manuel de Lardizabal 4 , 20018 Donostia-San Sebastián , Spain
| | - M Alducin
- Donostia International Physics Center DIPC , P. Manuel de Lardizabal 4 , 20018 Donostia-San Sebastián , Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) , P. Manuel de Lardizabal 5 , 20018 Donostia-San Sebastián , Spain
| | - J I Juaristi
- Donostia International Physics Center DIPC , P. Manuel de Lardizabal 4 , 20018 Donostia-San Sebastián , Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) , P. Manuel de Lardizabal 5 , 20018 Donostia-San Sebastián , Spain
- Departamento de Física de Materiales, Facultad de Químicas , Universidad del País Vasco (UPV/EHU) , Apartado 1072 , 20080 Donostia-San Sebastián , Spain
| | - D Novko
- Donostia International Physics Center DIPC , P. Manuel de Lardizabal 4 , 20018 Donostia-San Sebastián , Spain
- Center of Excellence for Advanced Materials and Sensing Devices , Institute of Physics , Bijenička 46 , 10000 Zagreb , Croatia
| |
Collapse
|
13
|
Ultrafast Vibrational Dynamics of CO Ligands on RuTPP/Cu(110) under Photodesorption Conditions. SURFACES 2019. [DOI: 10.3390/surfaces2010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have studied CO coordinated to ruthenium tetraphenylporphyrin (RuTPP)/Cu(110) and directly adsorbed to Cu(110), using femtosecond pump-sum frequency probe spectroscopy, to alter the degree of electron-vibration coupling between the metal substrate and CO. We observe the facile femtosecond laser-induced desorption of CO from RuTPP/Cu(110), but not from Cu(110). A change in the vibrational transients, in the first few picoseconds, from a red- to blue-shift of the C–O stretching vibration under photodesorption conditions, was also observed. This drastic change can be explained, if the cause of the C–O frequency redshift of Cu(110) is not the usually-assumed anharmonic coupling to low frequency vibrational modes, but a charge transfer from hot electrons to the CO 2π* state. This antibonding state shifts to higher energies on RuTPP, removing the C–O redshift and, instead, reveals a blueshift, predicted to arise from electron-mediated coupling between the coherently excited internal stretch and low frequency modes in the system.
Collapse
|
14
|
Zhang Y, Maurer RJ, Guo H, Jiang B. Hot-electron effects during reactive scattering of H 2 from Ag(111): the interplay between mode-specific electronic friction and the potential energy landscape. Chem Sci 2019; 10:1089-1097. [PMID: 30774906 PMCID: PMC6346630 DOI: 10.1039/c8sc03955k] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/07/2018] [Indexed: 01/29/2023] Open
Abstract
The breakdown of the Born-Oppenheimer approximation gives rise to nonadiabatic effects in gas-surface reactions at metal surfaces. However, for a given reaction, it remains unclear which factors quantitatively determine whether these effects measurably contribute to surface reactivity in catalysis and photo/electrochemistry. Here, we systematically investigate hot electron effects during H2 scattering from Ag(111) using electronic friction theory. We combine first-principles calculations of tensorial friction by time-dependent perturbation theory based on density functional theory and an analytical neural network representation, to overcome the limitations of existing approximations and explicitly simulate mode-specific nonadiabatic energy loss during molecular dynamics. Despite sizable hot-electron-induced energy loss, no measurable nonadiabatic effects can be found for H2 scattering on Ag(111). This is in stark contrast to previous reports for vibrationally excited H2 scattering on Cu(111). By detailed analysis of the two systems, we attribute this discrepancy to a subtle interplay between the magnitude of electronic friction along intramolecular vibration and the shape of the potential energy landscape that controls the molecular velocity at impact. On the basis of this characterization, we offer guidance for the search of highly nonadiabatic surface reactions.
Collapse
Affiliation(s)
- Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale , Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| | - Reinhard J Maurer
- Department of Chemistry and Centre for Scientific Computing , University of Warwick , Gibbet Hill Road , Coventry , CV4 7AL , UK .
- Department of Chemistry , Yale University , New Haven , Connecticut 06520 , USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology , University of New Mexico , Albuquerque , New Mexico 87131 , USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale , Department of Chemical Physics , University of Science and Technology of China , Hefei , Anhui 230026 , China .
| |
Collapse
|
15
|
Novko D, Tremblay JC, Alducin M, Juaristi JI. Ultrafast Transient Dynamics of Adsorbates on Surfaces Deciphered: The Case of CO on Cu(100). PHYSICAL REVIEW LETTERS 2019; 122:016806. [PMID: 31012646 DOI: 10.1103/physrevlett.122.016806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Time-resolved vibrational spectroscopy constitutes an invaluable experimental tool for monitoring hot-carrier-induced surface reactions. However, the absence of a full understanding of the precise microscopic mechanisms causing the transient spectral changes has limited its applicability. Here we introduce a robust first-principles theoretical framework that successfully explains both the nonthermal frequency and linewidth changes of the CO internal stretch mode on Cu(100) induced by femtosecond laser pulses. Two distinct processes engender the changes: electron-hole pair excitations underlie the nonthermal frequency shifts, while electron-mediated vibrational mode coupling gives rise to linewidth changes. Furthermore, the origin and precise sequence of coupling events are finally identified.
Collapse
Affiliation(s)
- D Novko
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000 Zagreb, Croatia
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
| | - J C Tremblay
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - M Alducin
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - J I Juaristi
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián, Spain
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
- Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 Donostia-San Sebastián, Spain
| |
Collapse
|
16
|
Maurer RJ, Zhang Y, Guo H, Jiang B. Hot electron effects during reactive scattering of H2 from Ag(111): assessing the sensitivity to initial conditions, coupling magnitude, and electronic temperature. Faraday Discuss 2019; 214:105-121. [DOI: 10.1039/c8fd00140e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use an analytical representation of electronic friction for H2 on Ag(111) to assess the validity and robustness of the MDEF method based on TDPT.
Collapse
Affiliation(s)
- Reinhard J. Maurer
- Department of Chemistry
- Centre for Scientific Computing
- University of Warwick
- Coventry
- UK
| | - Yaolong Zhang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| | - Hua Guo
- Department of Chemistry and Chemical Biology
- University of New Mexico
- Albuquerque
- USA
| | - Bin Jiang
- Hefei National Laboratory for Physical Science at the Microscale
- Department of Chemical Physics
- University of Science and Technology of China
- Hefei
- China
| |
Collapse
|
17
|
Galparsoro O, Busnengo HF, Martinez AE, Juaristi JI, Alducin M, Larregaray P. Energy dissipation to tungsten surfaces upon hot-atom and Eley–Rideal recombination of H2. Phys Chem Chem Phys 2018; 20:21334-21344. [DOI: 10.1039/c8cp03690j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adiabatic and nonadiabatic quasi-classical molecular dynamics simulations are performed to investigate the role of electron–hole pair excitations in hot-atom and Eley–Rideal H2 recombination mechanisms on H-covered W(100). The influence of the surface structure is analyzed by comparing with previous results for W(110).
Collapse
Affiliation(s)
| | - H. Fabio Busnengo
- Instituto de Física Rosario (IFIR)
- CONICET-UNR
- Esmeralda y Ocampo
- 2000 Rosario
- Argentina
| | - Alejandra E. Martinez
- Instituto de Física Rosario (IFIR)
- CONICET-UNR
- Esmeralda y Ocampo
- 2000 Rosario
- Argentina
| | - Joseba Iñaki Juaristi
- Donostia International Physics Center (DIPC)
- Paseo Manuel de Lardizabal 4
- 20018 Donostia-San Sebastián
- Spain
- Departamento de Física de Materiales
| | - Maite Alducin
- Donostia International Physics Center (DIPC)
- Paseo Manuel de Lardizabal 4
- 20018 Donostia-San Sebastián
- Spain
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU)
| | | |
Collapse
|