1
|
Kolchinsky A, Marvian I, Gokler C, Liu ZW, Shor P, Shtanko O, Thompson K, Wolpert D, Lloyd S. Maximizing Free Energy Gain. ENTROPY (BASEL, SWITZERLAND) 2025; 27:91. [PMID: 39851711 PMCID: PMC11765171 DOI: 10.3390/e27010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
Maximizing the amount of work harvested from an environment is important for a wide variety of biological and technological processes, from energy-harvesting processes such as photosynthesis to energy storage systems such as fuels and batteries. Here, we consider the maximization of free energy-and by extension, the maximum extractable work-that can be gained by a classical or quantum system that undergoes driving by its environment. We consider how the free energy gain depends on the initial state of the system while also accounting for the cost of preparing the system. We provide simple necessary and sufficient conditions for increasing the gain of free energy by varying the initial state. We also derive simple formulae that relate the free energy gained using the optimal initial state rather than another suboptimal initial state. Finally, we demonstrate that the problem of finding the optimal initial state may have two distinct regimes, one easy and one difficult, depending on the temperatures used for preparation and work extraction. We illustrate our results on a simple model of an information engine.
Collapse
Affiliation(s)
- Artemy Kolchinsky
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - Iman Marvian
- Physics and Electrical Engineering, Duke University, Durham, NC 27708, USA;
| | - Can Gokler
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA;
| | - Zi-Wen Liu
- Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China;
| | - Peter Shor
- Department of Mathematics, Center for Theoretical Physics and CSAIL, MIT, Cambridge, MA 02139, USA;
| | - Oles Shtanko
- IBM Quantum Almaden, San Jose, CA 95120, USA;
- Department of Physics, MIT, Cambridge, MA 02139, USA
| | | | - David Wolpert
- Santa Fe Institute, Santa Fe, NM 87501, USA;
- Center for Bio-Social Complex Systems, Arizona State University, Tempe, AZ 85287, USA
| | - Seth Lloyd
- Department of Physics, MIT, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
2
|
Berx J, Proesmans K. Trade-offs and thermodynamics of energy-relay proofreading. J R Soc Interface 2024; 21:20240232. [PMID: 39378983 PMCID: PMC11461052 DOI: 10.1098/rsif.2024.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 10/10/2024] Open
Abstract
Biological processes that are able to discriminate between different molecules consume energy and dissipate heat, using a mechanism known as proofreading. In this work, we thoroughly analyse the thermodynamic properties of one of the most important proofreading mechanisms, namely Hopfield's energy-relay proofreading. We discover several trade-off relations and scaling laws between several kinetic and thermodynamic observables. These trade-off relations are obtained both analytically and numerically through Pareto optimal fronts. We show that the scheme is able to operate in three distinct regimes: an energy-relay regime, a mixed relay-Michaelis-Menten (MM) regime and a Michaelis-Menten regime, depending on the kinetic and energetic parameters that tune transitions between states. The mixed regime features a dynamical phase transition in the error-entropy production Pareto trade-off, while the pure energy-relay regime contains a region where this type of proofreading energetically outperforms standard kinetic proofreading.
Collapse
Affiliation(s)
- Jonas Berx
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen2100, Denmark
| | - Karel Proesmans
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen2100, Denmark
| |
Collapse
|
3
|
Guarnieri G, Eisert J, Miller HJD. Generalized Linear Response Theory for the Full Quantum Work Statistics. PHYSICAL REVIEW LETTERS 2024; 133:070405. [PMID: 39213553 DOI: 10.1103/physrevlett.133.070405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/17/2024] [Indexed: 09/04/2024]
Abstract
We consider a quantum system driven out of equilibrium via a small Hamiltonian perturbation. Building on the paradigmatic framework of linear response theory (LRT), we derive an expression for the full generating function of the dissipated work. Remarkably, we find that all information about the distribution can be encoded in a single quantity, the standard relaxation function in LRT, thus opening up new ways to use phenomenological models to study nonequilibrium fluctuations in complex quantum systems. Our results establish a number of refined quantum thermodynamic constraints on the work statistics that apply to regimes of perturbative but arbitrarily fast protocols, and do not rely on assumptions such as slow driving or weak coupling. Finally, our approach uncovers a distinctly quantum signature in the work statistics that originates from underlying zero-point energy fluctuations. This causes an increased dispersion of the probability distribution at short driving times, a feature that can be probed in efforts to witness nonclassical effects in quantum thermodynamics.
Collapse
|
4
|
Werner P, Hartmann AK. Optimized finite-time work protocols for the Higgs RNA model with external force. Phys Rev E 2024; 109:044127. [PMID: 38755889 DOI: 10.1103/physreve.109.044127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/27/2024] [Indexed: 05/18/2024]
Abstract
The Higgs RNA model with an added term for a coupling to an external force is studied in regard to finite-time force-driving protocols with a minimal-work requirement. In this paper, RNA sequences which at low temperature exhibit hairpins are considered, which are often cited as typical template systems in stochastic thermodynamics. The optimized work protocols for this glassy many-particle system are determined numerically using the parallel tempering method. The protocols show distinct jumps at the beginning and end, which have been observed for single-particle systems and are proven to be optimal in the fast protocol limit generally. Optimality seems to be achieved by staying close to the equilibrium unfolding transition point, in agreement with experimental and theoretical observations. The change of work distributions, compared to those resulting from a naive linear driving protocol, are discussed generally and in terms of free energy estimation as well as the effect of optimized protocols on rare work process starting conditions.
Collapse
Affiliation(s)
- Peter Werner
- Institut für Physik, Universität Oldenburg, 26111 Oldenburg, Germany
| | | |
Collapse
|
5
|
Erdman PA, Noé F. Model-free optimization of power/efficiency tradeoffs in quantum thermal machines using reinforcement learning. PNAS NEXUS 2023; 2:pgad248. [PMID: 37593201 PMCID: PMC10427747 DOI: 10.1093/pnasnexus/pgad248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/13/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023]
Abstract
A quantum thermal machine is an open quantum system that enables the conversion between heat and work at the micro or nano-scale. Optimally controlling such out-of-equilibrium systems is a crucial yet challenging task with applications to quantum technologies and devices. We introduce a general model-free framework based on reinforcement learning to identify out-of-equilibrium thermodynamic cycles that are Pareto optimal tradeoffs between power and efficiency for quantum heat engines and refrigerators. The method does not require any knowledge of the quantum thermal machine, nor of the system model, nor of the quantum state. Instead, it only observes the heat fluxes, so it is both applicable to simulations and experimental devices. We test our method on a model of an experimentally realistic refrigerator based on a superconducting qubit, and on a heat engine based on a quantum harmonic oscillator. In both cases, we identify the Pareto-front representing optimal power-efficiency tradeoffs, and the corresponding cycles. Such solutions outperform previous proposals made in the literature, such as optimized Otto cycles, reducing quantum friction.
Collapse
Affiliation(s)
- Paolo A Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Microsoft Research AI4Science, Karl-Liebknecht Str. 32, 10178 Berlin, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
- Department of Chemistry, Rice University, Houston, TX 77005, USA
| |
Collapse
|
6
|
Guéry-Odelin D, Jarzynski C, Plata CA, Prados A, Trizac E. Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:035902. [PMID: 36535018 DOI: 10.1088/1361-6633/acacad] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes-which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems.
Collapse
Affiliation(s)
- David Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, Toulouse, France
| | - Christopher Jarzynski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, United States of America
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States of America
- Department of Physics, University of Maryland, College Park, MD, United States of America
| | - Carlos A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| | | |
Collapse
|
7
|
Whitelam S, Schmit JD. Low-dissipation self-assembly protocols of active sticky particles. JOURNAL OF CRYSTAL GROWTH 2022; 600:126912. [PMID: 36968622 PMCID: PMC10035568 DOI: 10.1016/j.jcrysgro.2022.126912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We use neuroevolutionary learning to identify time-dependent protocols for low-dissipation self-assembly in a model of generic active particles with interactions. When the time allotted for assembly is sufficiently long, low-dissipation protocols use only interparticle attractions, producing an amount of entropy that scales as the number of particles. When time is too short to allow assembly to proceed via diffusive motion, low-dissipation assembly protocols instead require particle self-propulsion, producing an amount of entropy that scales with the number of particles and the swim length required to cause assembly. Self-propulsion therefore provides an expensive but necessary mechanism for inducing assembly when time is of the essence.
Collapse
Affiliation(s)
- Stephen Whitelam
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
8
|
Van Vu T, Saito K. Finite-Time Quantum Landauer Principle and Quantum Coherence. PHYSICAL REVIEW LETTERS 2022; 128:010602. [PMID: 35061471 DOI: 10.1103/physrevlett.128.010602] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The Landauer principle states that any logically irreversible information processing must be accompanied by dissipation into the environment. In this Letter, we investigate the heat dissipation associated with finite-time information erasure and the effect of quantum coherence in such processes. By considering a scenario wherein information is encoded in an open quantum system whose dynamics are described by the Markovian Lindblad equation, we show that the dissipated heat is lower bounded by the conventional Landauer cost, as well as a correction term inversely proportional to the operational time. To clarify the relation between quantum coherence and dissipation, we derive a lower bound for heat dissipation in terms of quantum coherence. This bound quantitatively implies that the creation of quantum coherence in the energy eigenbasis during the erasure process inevitably leads to additional heat costs. The obtained bounds hold for arbitrary operational time and control protocol. By following an optimal control theory, we numerically present an optimal protocol and illustrate our findings by using a single-qubit system.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
9
|
Lucero JNE, Ehrich J, Bechhoefer J, Sivak DA. Maximal fluctuation exploitation in Gaussian information engines. Phys Rev E 2021; 104:044122. [PMID: 34781582 DOI: 10.1103/physreve.104.044122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/20/2021] [Indexed: 11/07/2022]
Abstract
Understanding the connections between information and thermodynamics has been among the most visible applications of stochastic thermodynamics. While recent theoretical advances have established that the second law of thermodynamics sets limits on information-to-energy conversion, it is currently unclear to what extent real systems can achieve the predicted theoretical limits. Using a simple model of an information engine that has recently been experimentally implemented, we explore the limits of information-to-energy conversion when an information engine's benefit is limited to output energy that can be stored. We find that restricting the engine's output in this way can limit its ability to convert information to energy. Nevertheless, a feedback control that inputs work can allow the engine to store energy at the highest achievable rate. These results sharpen our theoretical understanding of the limits of real systems that convert information to energy.
Collapse
Affiliation(s)
- Joseph N E Lucero
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
| |
Collapse
|
10
|
Abstract
Information-driven engines that rectify thermal fluctuations are a modern realization of the Maxwell-demon thought experiment. We introduce a simple design based on a heavy colloidal particle, held by an optical trap and immersed in water. Using a carefully designed feedback loop, our experimental realization of an "information ratchet" takes advantage of favorable "up" fluctuations to lift a weight against gravity, storing potential energy without doing external work. By optimizing the ratchet design for performance via a simple theory, we find that the rate of work storage and velocity of directed motion are limited only by the physical parameters of the engine: the size of the particle, stiffness of the ratchet spring, friction produced by the motion, and temperature of the surrounding medium. Notably, because performance saturates with increasing frequency of observations, the measurement process is not a limiting factor. The extracted power and velocity are at least an order of magnitude higher than in previously reported engines.
Collapse
|
11
|
Miller HJD, Mehboudi M. Geometry of Work Fluctuations versus Efficiency in Microscopic Thermal Machines. PHYSICAL REVIEW LETTERS 2020; 125:260602. [PMID: 33449720 DOI: 10.1103/physrevlett.125.260602] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
When engineering microscopic machines, increasing efficiency can often come at a price of reduced reliability due to the impact of stochastic fluctuations. Here we develop a general method for performing multiobjective optimization of efficiency and work fluctuations in thermal machines operating close to equilibrium in either the classical or quantum regime. Our method utilizes techniques from thermodynamic geometry, whereby we match optimal solutions to protocols parametrized by their thermodynamic length. We characterize the optimal protocols for continuous-variable Gaussian machines, which form a crucial class in the study of thermodynamics for microscopic systems.
Collapse
Affiliation(s)
- Harry J D Miller
- Department of Physics and Astronomy, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Mohammad Mehboudi
- Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
12
|
Blaber S, Sivak DA. Skewed thermodynamic geometry and optimal free energy estimation. J Chem Phys 2020; 153:244119. [PMID: 33380076 DOI: 10.1063/5.0033405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Free energy differences are a central quantity of interest in physics, chemistry, and biology. We develop design principles that improve the precision and accuracy of free energy estimators, which have potential applications to screening for targeted drug discovery. Specifically, by exploiting the connection between the work statistics of time-reversed protocol pairs, we develop near-equilibrium approximations for moments of the excess work and analyze the dominant contributions to the precision and accuracy of standard nonequilibrium free-energy estimators. Within linear response, minimum-dissipation protocols follow the geodesics of the Riemannian metric induced by the Stokes friction tensor. We find that the next-order contribution arises from the rank-3 supra-Stokes tensor that skews the geometric structure such that minimum-dissipation protocols follow the geodesics of a generalized cubic Finsler metric. Thus, near equilibrium, the supra-Stokes tensor determines the leading-order contribution to the bias of bidirectional free-energy estimators.
Collapse
Affiliation(s)
- Steven Blaber
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - David A Sivak
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
13
|
Proesmans K, Ehrich J, Bechhoefer J. Optimal finite-time bit erasure under full control. Phys Rev E 2020; 102:032105. [PMID: 33075986 DOI: 10.1103/physreve.102.032105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/11/2020] [Indexed: 05/25/2023]
Abstract
We study the finite-time erasure of a one-bit memory consisting of a one-dimensional double-well potential, with each well encoding a memory macrostate. We focus on setups that provide full control over the form of the potential-energy landscape and derive protocols that minimize the average work needed to erase the bit over a fixed amount of time. We allow for cases where only some of the information encoded in the bit is erased. For systems required to end up in a local-equilibrium state, we calculate the minimum amount of work needed to erase a bit explicitly, in terms of the equilibrium Boltzmann distribution corresponding to the system's initial potential. The minimum work is inversely proportional to the duration of the protocol. The erasure cost may be further reduced by relaxing the requirement for a local-equilibrium final state and allowing for any final distribution compatible with constraints on the probability to be in each memory macrostate. We also derive upper and lower bounds on the erasure cost.
Collapse
Affiliation(s)
- Karel Proesmans
- Department of Physics, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
- Hasselt University, B-3590 Diepenbeek, Belgium
| | - Jannik Ehrich
- Department of Physics, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, B.C., V5A 1S6, Canada
| |
Collapse
|
14
|
Plata CA, Guéry-Odelin D, Trizac E, Prados A. Finite-time adiabatic processes: Derivation and speed limit. Phys Rev E 2020; 101:032129. [PMID: 32289944 DOI: 10.1103/physreve.101.032129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 03/03/2020] [Indexed: 11/07/2022]
Abstract
Obtaining adiabatic processes that connect equilibrium states in a given time represents a challenge for mesoscopic systems. In this paper, we explicitly show how to build these finite-time adiabatic processes for an overdamped Brownian particle in an arbitrary potential, a system that is relevant at both the conceptual and the practical level. This is achieved by jointly engineering the time evolutions of the binding potential and the fluid temperature. Moreover, we prove that the second principle imposes a speed limit for such adiabatic transformations: there appears a minimum time to connect the initial and final states. This minimum time can be explicitly calculated for a general compression or decompression situation.
Collapse
Affiliation(s)
- Carlos A Plata
- Dipartimento di Fisica e Astronomia "Galileo Galilei," Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - David Guéry-Odelin
- Laboratoire Collisions, Agrégats, Réactivité, IRSAMC, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Antonio Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
15
|
Gupta D, Plata CA, Pal A. Work Fluctuations and Jarzynski Equality in Stochastic Resetting. PHYSICAL REVIEW LETTERS 2020; 124:110608. [PMID: 32242734 DOI: 10.1103/physrevlett.124.110608] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/03/2020] [Indexed: 05/27/2023]
Abstract
We consider the paradigm of an overdamped Brownian particle in a potential well, which is modulated through an external protocol, in the presence of stochastic resetting. Thus, in addition to the short range diffusive motion, the particle also experiences intermittent long jumps that reset the particle back at a preferred location. Due to the modulation of the trap, work is done on the system and we investigate the statistical properties of the work fluctuations. We find that the distribution function of the work typically, in asymptotic times, converges to a universal Gaussian form for any protocol as long as that is also renewed after each resetting event. When observed for a finite time, we show that the system does not generically obey the Jarzynski equality that connects the finite time work fluctuations to the difference in free energy. Nonetheless, we identify herein a restricted set of protocols which embraces the relation. In stark contrast, the Jarzynski equality is always fulfilled when the protocols continue to evolve without being reset. We present a set of exactly solvable models, demonstrate the validation of our theory and carry out numerical simulations to illustrate these findings. Finally, we have pointed out possible realistic implementations for resetting in experiments using the so-called engineered swift equilibration.
Collapse
Affiliation(s)
- Deepak Gupta
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Carlos A Plata
- Dipartimento di Fisica "G. Galilei," INFN, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Arnab Pal
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- Center for the Physics and Chemistry of Living Systems. Tel Aviv University, 6997801, Tel Aviv, Israel
- The Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
16
|
Brandner K, Saito K. Thermodynamic Geometry of Microscopic Heat Engines. PHYSICAL REVIEW LETTERS 2020; 124:040602. [PMID: 32058746 DOI: 10.1103/physrevlett.124.040602] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 06/10/2023]
Abstract
We develop a general framework to describe the thermodynamics of microscopic heat engines driven by arbitrary periodic temperature variations and modulations of a mechanical control parameter. Within the slow-driving regime, our approach leads to a universal trade-off relation between efficiency and power, which follows solely from geometric arguments and holds for any thermodynamically consistent microdynamics. Focusing on Lindblad dynamics, we derive a second bound showing that coherence as a genuine quantum effect inevitably reduces the performance of slow engine cycles regardless of the driving amplitudes. To show how our theory can be applied in practice, we work out a specific example, which lies within the range of current solid-state technologies.
Collapse
Affiliation(s)
- Kay Brandner
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Keiji Saito
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| |
Collapse
|
17
|
Miller HJD, Scandi M, Anders J, Perarnau-Llobet M. Work Fluctuations in Slow Processes: Quantum Signatures and Optimal Control. PHYSICAL REVIEW LETTERS 2019; 123:230603. [PMID: 31868503 DOI: 10.1103/physrevlett.123.230603] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/24/2019] [Indexed: 06/10/2023]
Abstract
An important result in classical stochastic thermodynamics is the work fluctuation-dissipation relation (FDR), which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations. We show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated along the protocol, and we derive a quantum generalization of the work FDR. The additional quantum terms in the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum fluctuations prohibit finding slow protocols that minimize both dissipation and fluctuations simultaneously, in contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with an optimal trade-off between the two quantities.
Collapse
Affiliation(s)
- Harry J D Miller
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | - Matteo Scandi
- Max-Planck-Institut für Quantenoptik, D-85748 Garching, Germany
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona) 08860, Spain
| | - Janet Anders
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
| | | |
Collapse
|
18
|
Abstract
Biomolecular machines are protein complexes that convert between different forms of free energy. They are utilized in nature to accomplish many cellular tasks. As isothermal nonequilibrium stochastic objects at low Reynolds number, they face a distinct set of challenges compared with more familiar human-engineered macroscopic machines. Here we review central questions in their performance as free energy transducers, outline theoretical and modeling approaches to understand these questions, identify both physical limits on their operational characteristics and design principles for improving performance, and discuss emerging areas of research.
Collapse
Affiliation(s)
- Aidan I Brown
- Department of Physics , University of California, San Diego , La Jolla , California 92093 , United States
| | - David A Sivak
- Department of Physics , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
19
|
Salazar DSP, Lira SA. Stochastic thermodynamics of nonharmonic oscillators in high vacuum. Phys Rev E 2019; 99:062119. [PMID: 31330744 DOI: 10.1103/physreve.99.062119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Indexed: 06/10/2023]
Abstract
We perform an analytic study on the stochastic thermodynamics of a small classical particle trapped in a time-dependent single-well potential in the highly underdamped limit. It is shown that the nonequilibrium probability density function for the system's energy is a Maxwell-Boltzmann distribution (as in equilibrium) with a closed form time-dependent effective temperature and fractional degrees of freedom. We also find that the solvable model satisfies the Crooks fluctuation theorem, as expected. Moreover, we compute the average work in this isothermal process and characterize analytically the optimal protocol for minimum work. The optimal protocol presents an initial and a final jump which correspond to adiabatic processes linked by a smooth exponential time-dependent part for all kinds of single-well potentials. Furthermore, we argue that this result connects two distinct relevant experimental setups for trapped nanoparticles, the levitated particle in a harmonic trap, and the free particle in a box, as they are limiting cases of the general single-well potential and display the time-dependent optimal protocols. Finally, we highlight the connection between our system and an equivalent model of a gas of Brownian particles.
Collapse
Affiliation(s)
- Domingos S P Salazar
- Unidade Acadêmica de Educacão a Distância e Tecnologia, Universidade Federal Rural de Pernambuco, Recife, Pernambuco 52171-900 Brazil
| | - Sérgio A Lira
- Instituto de Física, Universidade Federal de Alagoas, Maceió, Alagoas 57072-900 Brazil
| |
Collapse
|
20
|
Maillet O, Erdman PA, Cavina V, Bhandari B, Mannila ET, Peltonen JT, Mari A, Taddei F, Jarzynski C, Giovannetti V, Pekola JP. Optimal Probabilistic Work Extraction beyond the Free Energy Difference with a Single-Electron Device. PHYSICAL REVIEW LETTERS 2019; 122:150604. [PMID: 31050528 DOI: 10.1103/physrevlett.122.150604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We experimentally realize protocols that allow us to extract work beyond the free energy difference from a single-electron transistor at the single thermodynamic trajectory level. With two carefully designed out-of-equilibrium driving cycles featuring kicks of the control parameter, we demonstrate work extraction up to large fractions of k_{B}T or with probabilities substantially greater than 1/2, despite the zero free energy difference over the cycle. Our results are explained in the framework of nonequilibrium fluctuation relations. We thus show that irreversibility can be used as a resource for optimal work extraction even in the absence of feedback from an external operator.
Collapse
Affiliation(s)
- Olivier Maillet
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Paolo A Erdman
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Vasco Cavina
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Bibek Bhandari
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Elsa T Mannila
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Joonas T Peltonen
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| | - Andrea Mari
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Fabio Taddei
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | | | - Vittorio Giovannetti
- NEST, Scuola Normale Superiore and Instituto Nanoscienze-CNR, I-56127 Pisa, Italy
| | - Jukka P Pekola
- QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 13500, 00076 Aalto, Finland
| |
Collapse
|
21
|
Day AGR, Bukov M, Weinberg P, Mehta P, Sels D. Glassy Phase of Optimal Quantum Control. PHYSICAL REVIEW LETTERS 2019; 122:020601. [PMID: 30720331 DOI: 10.1103/physrevlett.122.020601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/09/2023]
Abstract
We study the problem of preparing a quantum many-body system from an initial to a target state by optimizing the fidelity over the family of bang-bang protocols. We present compelling numerical evidence for a universal spin-glasslike transition controlled by the protocol time duration. The glassy critical point is marked by a proliferation of protocols with close-to-optimal fidelity and with a true optimum that appears exponentially difficult to locate. Using a machine learning (ML) inspired framework based on the manifold learning algorithm t-distributed stochastic neighbor embedding, we are able to visualize the geometry of the high-dimensional control landscape in an effective low-dimensional representation. Across the transition, the control landscape features an exponential number of clusters separated by extensive barriers, which bears a strong resemblance with replica symmetry breaking in spin glasses and random satisfiability problems. We further show that the quantum control landscape maps onto a disorder-free classical Ising model with frustrated nonlocal, multibody interactions. Our work highlights an intricate but unexpected connection between optimal quantum control and spin glass physics, and shows how tools from ML can be used to visualize and understand glassy optimization landscapes.
Collapse
Affiliation(s)
- Alexandre G R Day
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Marin Bukov
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Phillip Weinberg
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Dries Sels
- Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
- Theory of Quantum and Complex Systems, Universiteit Antwerpen, B-2610 Antwerpen, Belgium
| |
Collapse
|
22
|
Plata CA, Guéry-Odelin D, Trizac E, Prados A. Optimal work in a harmonic trap with bounded stiffness. Phys Rev E 2019; 99:012140. [PMID: 30780256 DOI: 10.1103/physreve.99.012140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Indexed: 06/09/2023]
Abstract
We apply Pontryagin's principle to drive rapidly a trapped overdamped Brownian particle in contact with a thermal bath between two equilibrium states corresponding to different trap stiffness κ. We work out the optimal time dependence κ(t) by minimizing the work performed on the particle under the nonholonomic constraint 0≤κ≤κ_{max}, an experimentally relevant situation. Several important differences arise, as compared with the case of unbounded stiffness that has been analyzed in the literature. First, two arbitrary equilibrium states may not always be connected. Second, depending on the operating time t_{f} and the desired compression ratio κ_{f}/κ_{i}, different types of solutions emerge. Finally, the differences in the minimum value of the work brought about by the bounds may become quite large, which may have a relevant impact on the optimization of heat engines.
Collapse
Affiliation(s)
- Carlos A Plata
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
- Dipartimento di Fisica e Astronomia "Galileo Galilei", Istituto Nazionale di Fisica Nucleare, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - David Guéry-Odelin
- Laboratoire de Collisions Agrégats Réactivité, CNRS, UMR 5589, IRSAMC, France
| | - E Trizac
- LPTMS, UMR 8626, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - A Prados
- Física Teórica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain
| |
Collapse
|
23
|
Holubec V, Ryabov A. Cycling Tames Power Fluctuations near Optimum Efficiency. PHYSICAL REVIEW LETTERS 2018; 121:120601. [PMID: 30296120 DOI: 10.1103/physrevlett.121.120601] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Indexed: 06/08/2023]
Abstract
According to the laws of thermodynamics, no heat engine can beat the efficiency of a Carnot cycle. This efficiency traditionally comes with vanishing power output and practical designs, optimized for power, generally achieve far less. Recently, various strategies to obtain Carnot's efficiency at large power were proposed. However, a thermodynamic uncertainty relation implies that steady-state heat engines can operate in this regime only at the cost of large fluctuations that render them immensely unreliable. Here, we demonstrate that this unfortunate trade-off can be overcome by designs operating cyclically under quasistatic conditions. The experimentally relevant yet exactly solvable model of an overdamped Brownian heat engine is used to illustrate the formal result. Our study highlights that work in cyclic heat engines and that in quasistatic ones are different stochastic processes.
Collapse
Affiliation(s)
- Viktor Holubec
- Institut für Theoretische Physik, Universität Leipzig, Postfach 100 920, D-04009 Leipzig, Germany
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-180 00 Praha, Czech Republic
| |
Collapse
|