1
|
Wu LY, Zhang KY, Peng M, Gong J, Yan H. New Limits on Exotic Spin-Dependent Interactions at Astronomical Distances. PHYSICAL REVIEW LETTERS 2023; 131:091002. [PMID: 37721836 DOI: 10.1103/physrevlett.131.091002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/14/2023] [Accepted: 07/18/2023] [Indexed: 09/20/2023]
Abstract
Exotic spin-dependent interactions involving new light particles address key questions in modern physics. Interactions between polarized neutrons (n) and unpolarized nucleons (N) occur in three forms: g_{S}^{N}g_{P}^{n}σ·r, g_{V}^{N}g_{A}^{n}σ·v, and g_{A}^{N}g_{A}^{n}σ·v×r, where σ is the spin and g's are the corresponding coupling constants for scalar, pseudoscalar, vector, and axial-vector vertexes. If such interactions exist, the Sun and Moon could induce sidereal variations of effective fields in laboratories. By analyzing existing data from laboratory measurements on Lorentz and CPT violation, we derive new experimental upper limits on these exotic spin-dependent interactions at astronomical ranges. Our limits on g_{S}^{N}g_{P}^{n} surpass the previous combined astrophysical-laboratory limits, setting the most stringent experimental constraints to date. We also report new constraints on vector-axial-vector and axial-axial-vector interactions at astronomical scales, with vector-axial-vector limits improved by ∼12 orders of magnitude. We extend our analysis to Hari Dass interactions and obtain new constraints.
Collapse
Affiliation(s)
- L Y Wu
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China
| | - K Y Zhang
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China
| | - M Peng
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China
| | - J Gong
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China
| | - H Yan
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, Sichuan, China
| |
Collapse
|
2
|
Wu D, Liang H, Jiao M, Cai YF, Duan CK, Wang Y, Rong X, Du J. Improved Limits on an Exotic Spin- and Velocity-Dependent Interaction at the Micrometer Scale with an Ensemble-NV-Diamond Magnetometer. PHYSICAL REVIEW LETTERS 2023; 131:071801. [PMID: 37656856 DOI: 10.1103/physrevlett.131.071801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 07/19/2023] [Indexed: 09/03/2023]
Abstract
Searching for exotic interactions provides a path for exploring new particles beyond the standard model. Here, we used an ensemble-NV-diamond magnetometer to search for an exotic spin- and velocity-dependent interaction between polarized electron spins and unpolarized nucleons at the micrometer scale. A thin layer of nitrogen-vacancy electronic spin ensemble in diamond is utilized as both the solid-state spin quantum sensor and the polarized electron source, and a vibrating lead sphere serves as the moving unpolarized nucleon source. The exotic interaction is searched by detecting the possible effective magnetic field induced by the moving unpolarized nucleon source using the ensemble-NV-diamond magnetometer. Our result establishes new bounds for the coupling parameter f_{⊥} within the force range from 5 to 400 μm. The upper limit of the coupling parameter at 100 μm is |f_{⊥}|≤1.1×10^{-11}, which is 3 orders of magnitude more stringent than the previous constraint. This result shows that NV ensemble can be a promising platform to search for hypothetical particles beyond the standard model.
Collapse
Affiliation(s)
- Diguang Wu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Hang Liang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Man Jiao
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Fu Cai
- CAS Key Laboratory for Researches in Galaxies and Cosmology, School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Astronomy, School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chang-Kui Duan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
3
|
Liang H, Jiao M, Huang Y, Yu P, Ye X, Wang Y, Xie Y, Cai YF, Rong X, Du J. New constraints on exotic spin-dependent interactions with an ensemble-NV-diamond magnetometer. Natl Sci Rev 2023; 10:nwac262. [PMID: 37266553 PMCID: PMC10232048 DOI: 10.1093/nsr/nwac262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 09/25/2022] [Accepted: 10/23/2022] [Indexed: 09/03/2023] Open
Abstract
Laboratory search of exotic interactions is crucial for exploring physics beyond the standard model. We report new experimental constraints on two exotic spin-dependent interactions at the micrometer scale based on ensembles of nitrogen-vacancy (NV) centers in diamond. A thin layer of NV electronic spin ensembles is synthesized as the solid-state spin quantum sensor, and a lead sphere is taken as the interacting nucleon source. Our result establishes new bounds for two types of exotic spin interactions at the micrometer scale. For an exotic parity-odd spin- and velocity-dependent interaction, improved bounds are set within the force range from 5 to 500 μm. The upper limit of the corresponding coupling constant [Formula: see text] at 330 μm is more than 1000-fold more stringent than the previous constraint. For the P, T-violating scalar-pseudoscalar nucleon-electron interaction, improved constraints are established within the force range from 6 to 45 μm. The limit of the corresponding coupling constant [Formula: see text] is improved by more than one order of magnitude at 30 μm. This work demonstrates that a solid-state NV ensemble can be a powerful platform for probing exotic spin-dependent interactions.
Collapse
Affiliation(s)
- Hang Liang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Man Jiao
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yue Huang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Pei Yu
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiangyu Ye
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ya Wang
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yijin Xie
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Fu Cai
- CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026, China
- School of Astronomy and Space Science, University of Science and Technology of China, Hefei 230026, China
| | - Xing Rong
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jiangfeng Du
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
4
|
Ji W, Li W, Fadeev P, Ficek F, Qin J, Wei K, Liu YC, Budker D. Constraints on Spin-Spin Velocity-Dependent Interactions. PHYSICAL REVIEW LETTERS 2023; 130:133202. [PMID: 37067299 DOI: 10.1103/physrevlett.130.133202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
The existence of exotic spin-dependent forces may shine light on new physics beyond the standard model. We utilize two iron shielded SmCo_{5} electron-spin sources and two optically pumped magnetometers to search for exotic long-range spin-spin velocity-dependent force. The orientations of spin sources and magnetometers are optimized such that the exotic force is enhanced and common-mode noise is effectively subtracted. We set direct limit on proton-electron interaction in the force range from 1 cm to 1 km. Our experiment represents more than 10 orders of magnitude improvement than previous works.
Collapse
Affiliation(s)
- Wei Ji
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Weipeng Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Pavel Fadeev
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
| | - Filip Ficek
- Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Jianan Qin
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Key Laboratory of Geophysical Exploration Equipment, Ministry of Education of China, Jilin University, Changchun 130012, China
| | - Kai Wei
- School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing 100191, China
- Hangzhou Innovation Institute, Beihang University, Hangzhou 310051, China
- Hangzhou Extremely Weak Magnetic Field Major Science and Technology Infrastructure Research Institute, Hangzhou 310051, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Dmitry Budker
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany
- Department of Physics, University of California, Berkeley, California 94720-7300, USA
| |
Collapse
|
5
|
Wu KY, Chen SY, Sun GA, Peng SM, Peng M, Yan H. Experimental Limits on Exotic Spin and Velocity Dependent Interactions Using Rotationally Modulated Source Masses and an Atomic-Magnetometer Array. PHYSICAL REVIEW LETTERS 2022; 129:051802. [PMID: 35960570 DOI: 10.1103/physrevlett.129.051802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Various theories beyond the standard model predict new interactions mediated by new light particles with very weak couplings to ordinary matter. Interactions between polarized electrons and unpolarized nucleons proportional to g_{V}^{N}g_{A}^{e}σ[over →]·v[over →] and g_{A}^{N}g_{A}^{e}σ[over →]·v[over →]×r[over →] are two such examples, where σ[over →] is the spin of the electrons, r[over →] and v[over →] are position and relative velocity between the polarized electrons and nucleons, g_{V}^{N}/g_{A}^{N} is the vector or axial-vector coupling constant of the nucleon, and g_{A}^{e} is the axial-vector coupling constant of the electron. Such interactions involving a vector or axial-vector coupling g_{V}^{N}/g_{A}^{N} at one vertex and an axial-vector coupling g_{A}^{e} at the polarized electron vertex can be induced by the exchange of spin-1 bosons. We report new experimental upper limits on such exotic spin-velocity-dependent interactions of the electron with nucleons from dedicated experiments based on a recently proposed scheme. We rotationally modulated two ∼6 Kg source masses at a frequency of 20 Hz. We used four identical atomic magnetometers in an array form to increase the statistics and cancel the common-mode noise. We applied a data processing method based on high precision numerical integration for the four harmonic frequencies of the signal. We reverse the rotation direction of the source masses to flip the signal due to the new interactions; thus, we can apply the [+1,-3,+3,-1] weighting method to remove possible slow drifting. Our constraint on the product of vector and axial-vector couplings is |g_{V}^{N}g_{A}^{e}|<2.1×10^{-34} and on the product of axial-vector and axial-vector couplings is |g_{A}^{N}g_{A}^{e}|<2.4×10^{-22} for an interaction range of 10 m. The new constraints on vector-axial-vector interaction improved by as much as more than 4 orders of magnitude and on axial-axial interaction by as much as 2 orders of magnitude in the corresponding interaction range, respectively.
Collapse
Affiliation(s)
- K Y Wu
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - S Y Chen
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - G A Sun
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - S M Peng
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - M Peng
- Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| | - H Yan
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China and Institute of Nuclear Physics and Chemistry, CAEP, Mianyang, Sichuan 621900, China
| |
Collapse
|
6
|
Hori M, Aghai-Khozani H, Sótér A, Dax A, Barna D. Recent progress of laser spectroscopy measurements of pionic helium. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We review the results of recent laser spectroscopy experiments on metastable pionic helium atoms at the Paul Scherrer Institute’s 590 MeV cyclotron facility that was carried out by the PiHe collaboration. Some future perspectives are briefly discussed.
Collapse
|
7
|
Su H, Wang Y, Jiang M, Ji W, Fadeev P, Hu D, Peng X, Budker D. Search for exotic spin-dependent interactions with a spin-based amplifier. SCIENCE ADVANCES 2021; 7:eabi9535. [PMID: 34788098 PMCID: PMC8597990 DOI: 10.1126/sciadv.abi9535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/28/2021] [Indexed: 05/06/2023]
Abstract
Development of new techniques to search for particles beyond the standard model is crucial for understanding the ultraviolet completion of particle physics. Several hypothetical particles are predicted to mediate exotic spin-dependent interactions between standard-model particles that may be accessible to laboratory experiments. However, laboratory searches are mostly conducted for static spin-dependent interactions, with a few experiments addressing spin- and velocity-dependent interactions. Here, we demonstrate a search for these interactions with a spin-based amplifier. Our technique uses hyperpolarized nuclear spins as an amplifier for pseudo-magnetic fields produced by exotic interactions by a factor of more than 100. Using this technique, we establish constraints on the spin- and velocity-dependent interactions between polarized neutrons and unpolarized nucleons for the force range of 0.03 to 100 meters, improving previous constraints by at least two orders of magnitude in partial force range. This technique can be further extended to investigate other exotic spin-dependent interactions.
Collapse
Affiliation(s)
- Haowen Su
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuanhong Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Ji
- Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Pavel Fadeev
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Johannes Gutenberg University, Mainz 55128, Germany
| | - Dongdong Hu
- State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinhua Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dmitry Budker
- Helmholtz-Institut, GSI Helmholtzzentrum für Schwerionenforschung, Mainz 55128, Germany
- Johannes Gutenberg University, Mainz 55128, Germany
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720-7300, USA
| |
Collapse
|
8
|
Ren X, Wang J, Luo R, Yin L, Ding J, Zeng G, Luo P. Search for an exotic parity-odd spin- and velocity-dependent interaction using a magnetic force microscope. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.032008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Hori M, Aghai-Khozani H, Sótér A, Dax A, Barna D. Laser Spectroscopy Measurements of Metastable Pionic Helium Atoms at Paul Scherrer Institute. FEW-BODY SYSTEMS 2021; 62:63. [PMID: 34720287 PMCID: PMC8550253 DOI: 10.1007/s00601-021-01630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
We review recent experiments carried out by the PiHe collaboration of the Paul Scherrer Institute (PSI) that observed an infrared transition of three-body pionic helium atoms by laser spectroscopy. These measurements may lead to a precise determination of the charged pion mass, and complement experiments of antiprotonic helium atoms carried out at the new ELENA facility of CERN.
Collapse
Affiliation(s)
- M. Hori
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
| | - H. Aghai-Khozani
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Present Address: McKinsey and Company, Munich, Germany
| | - A. Sótér
- Present Address: ETH Zürich, IPA, Zurich, Switzerland
| | - A. Dax
- Present Address: Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - D. Barna
- CERN, CH-1211 Geneva, Switzerland
- Present Address: Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
| |
Collapse
|
10
|
Almasi A, Lee J, Winarto H, Smiciklas M, Romalis MV. New Limits on Anomalous Spin-Spin Interactions. PHYSICAL REVIEW LETTERS 2020; 125:201802. [PMID: 33258645 DOI: 10.1103/physrevlett.125.201802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 07/14/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
We report the results of a new search for long-range spin-dependent interactions using a Rb-^{21}Ne atomic comagnetometer and a rotatable electron spin source based on a SmCo_{5} magnet with an iron flux return. By looking for signal correlations with the orientation of the spin source we set new constraints on the product of the pseudoscalar electron and neutron couplings g_{p}^{e}g_{p}^{n}/ℏc<1.7×10^{-14} and on the product of their axial couplings g_{A}^{e}g_{A}^{n}/ℏc<5×10^{-42} to a new particle with a mass of less than about 1 μeV. Our measurements improve by about 2 orders of magnitude previous constraints on such spin-dependent interactions.
Collapse
Affiliation(s)
- Attaallah Almasi
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Junyi Lee
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Himawan Winarto
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Marc Smiciklas
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Michael V Romalis
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Abstract
Charged pions1 are the lightest and longest-lived mesons. Mesonic atoms are formed when an orbital electron in an atom is replaced by a negatively charged meson. Laser spectroscopy of these atoms should permit the mass and other properties of the meson to be determined with high precision and could place upper limits on exotic forces involving mesons (as has been done in other experiments on antiprotons2-9). Determining the mass of the π- meson in particular could help to place direct experimental constraints on the mass of the muon antineutrino10-13. However, laser excitations of mesonic atoms have not been previously achieved because of the small number of atoms that can be synthesized and their typically short (less than one picosecond) lifetimes against absorption of the mesons into the nuclei1. Metastable pionic helium (π4He+) is a hypothetical14-16 three-body atom composed of a helium-4 nucleus, an electron and a π- occupying a Rydberg state of large principal (n ≈ 16) and orbital angular momentum (l ≈ n - 1) quantum numbers. The π4He+ atom is predicted to have an anomalously long nanosecond-scale lifetime, which could allow laser spectroscopy to be carried out17. Its atomic structure is unique owing to the absence of hyperfine interactions18,19 between the spin-0 π- and the 4He nucleus. Here we synthesize π4He+ in a superfluid-helium target and excite the transition (n, l) = (17, 16) → (17, 15) of the π--occupied π4He+ orbital at a near-infrared resonance frequency of 183,760 gigahertz. The laser initiates electromagnetic cascade processes that end with the nucleus absorbing the π- and undergoing fission20,21. The detection of emerging neutron, proton and deuteron fragments signals the laser-induced resonance in the atom, thereby confirming the presence of π4He+. This work enables the use of the experimental techniques of quantum optics to study a meson.
Collapse
|
12
|
Ding J, Wang J, Zhou X, Liu Y, Sun K, Adeyeye AO, Fu H, Ren X, Li S, Luo P, Lan Z, Yang S, Luo J. Constraints on the Velocity and Spin Dependent Exotic Interaction at the Micrometer Range. PHYSICAL REVIEW LETTERS 2020; 124:161801. [PMID: 32383957 DOI: 10.1103/physrevlett.124.161801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
We report on an experimental test of the velocity and spin dependent exotic interaction that can be mediated by new light bosons. The interaction is searched by measuring the force between a gold sphere and a microfabricated magnetic structure using a cantilever. The magnetic structure consists of stripes with antiparallel electron spin polarization so that the exotic interaction between the polarized electrons in the magnetic structure and the unpolarized nucleons in the gold sphere varies periodically, which helps to suppress the spurious background signals. The experiment sets the strongest laboratory constraints on the coupling constant between electrons and nucleons at the micrometer range with f_{⊥}<5.3×10^{-8} at λ=5 μm.
Collapse
Affiliation(s)
- Jihua Ding
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianbo Wang
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xue Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yu Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ke Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Adekunle Olusola Adeyeye
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- Department of Physics, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Huixing Fu
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofang Ren
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sumin Li
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Pengshun Luo
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongwen Lan
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shanqing Yang
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- TIANQIN Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
| | - Jun Luo
- MOE Key Laboratory of Fundamental Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- TIANQIN Research Center for Gravitational Physics, School of Physics and Astronomy, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
13
|
Kim YJ, Chu PH, Savukov I, Newman S. Experimental limit on an exotic parity-odd spin- and velocity-dependent interaction using an optically polarized vapor. Nat Commun 2019; 10:2245. [PMID: 31113943 PMCID: PMC6529407 DOI: 10.1038/s41467-019-10169-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 11/09/2022] Open
Abstract
Exotic spin-dependent interactions between fermions have recently attracted attention in relation to theories beyond the Standard Model. The exotic interactions can be mediated by hypothetical fundamental bosons which may explain several unsolved mysteries in physics. Here we expand this area of research by probing an exotic parity-odd spin- and velocity-dependent interaction between the axial-vector electron coupling and the vector nucleon coupling for polarized electrons. This experiment utilizes a high-sensitivity atomic magnetometer, based on an optically polarized vapor that is a source of polarized electrons, and a solid-state mass containing unpolarized nucleons. The atomic magnetometer can detect an effective magnetic field induced by the exotic interaction between unpolarized nucleons and polarized electrons. We set an experimental limit on the electron-nucleon coupling \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$g_{\mathrm{A}}^{\mathrm{e}}g_{\mathrm{V}}^{\mathrm{N}} \, < \, 10^{ - 30}$$\end{document}gAegVN<10-30 at the mediator boson mass below 10−4 eV, significantly improving the current limit by up to 17 orders of magnitude. Symmetry breaking is an important process in fundamental understanding of matter and dark matter. Here the authors discuss an experimental bound on an exotic parity odd spin- and velocity-dependent interaction between electron and nucleon by using a sensitive spin-exchange relaxation-free atomic magnetometer.
Collapse
Affiliation(s)
- Young Jin Kim
- P-21, Los Alamos National Laboratory, P.O. Box 1663, MS-D454, Los Alamos, NM, 87545, USA.
| | - Ping-Han Chu
- P-21, Los Alamos National Laboratory, P.O. Box 1663, MS-D454, Los Alamos, NM, 87545, USA.
| | - Igor Savukov
- P-21, Los Alamos National Laboratory, P.O. Box 1663, MS-D454, Los Alamos, NM, 87545, USA
| | - Shaun Newman
- P-21, Los Alamos National Laboratory, P.O. Box 1663, MS-D454, Los Alamos, NM, 87545, USA
| |
Collapse
|
14
|
Kim YJ, Chu PH, Savukov I. Experimental Constraint on an Exotic Spin- and Velocity-Dependent Interaction in the Sub-meV Range of Axion Mass with a Spin-Exchange Relaxation-Free Magnetometer. PHYSICAL REVIEW LETTERS 2018; 121:091802. [PMID: 30230894 DOI: 10.1103/physrevlett.121.091802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/30/2018] [Indexed: 06/08/2023]
Abstract
We conducted a search for an exotic spin- and velocity-dependent interaction for polarized electrons with an experimental approach based on a high-sensitivity spin-exchange relaxation-free (SERF) magnetometer, which serves as both a source of polarized electrons and a magnetic-field sensor. The experiment aims to sensitively detect magnetic-fieldlike effects from the exotic interaction between the polarized electrons in a SERF vapor cell and unpolarized nucleons of a closely located solid-state mass. We report experimental results on the interaction with 82 h of data averaging, which sets an experimental limit on the coupling strength around 10^{-19} for the axion mass m_{a}≲10^{-3} eV, within the important axion window.
Collapse
Affiliation(s)
- Young Jin Kim
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Ping-Han Chu
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Igor Savukov
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|