1
|
Gievers M, Wagner M, Schmidt R. Probing Polaron Clouds by Rydberg Atom Spectroscopy. PHYSICAL REVIEW LETTERS 2024; 132:053401. [PMID: 38364123 DOI: 10.1103/physrevlett.132.053401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
In recent years, Rydberg excitations in atomic quantum gases have become a successful platform to explore quantum impurity problems. A single impurity immersed in a Fermi gas leads to the formation of a polaron, a quasiparticle consisting of the impurity being dressed by the surrounding medium. With a radius of about the Fermi wavelength, the density profile of a polaron cannot be explored using in situ optical imaging techniques. In this Letter, we propose a new experimental measurement technique that enables the in situ imaging of the polaron cloud in ultracold quantum gases. The impurity atom induces the formation of a polaron cloud and is then excited to a Rydberg state. Because of the mesoscopic interaction range of Rydberg excitations, which can be tuned by the principal numbers of the Rydberg state, atoms extracted from the polaron cloud form dimers with the impurity. By performing first principle calculations of the absorption spectrum based on a functional determinant approach, we show how the occupation of the dimer state can be directly observed in spectroscopy experiments and can be mapped onto the density profile of the gas particles, hence providing a direct, real-time, and in situ measure of the polaron cloud.
Collapse
Affiliation(s)
- Marcel Gievers
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- Max Planck Institute of Quantum Optics, 85748 Garching, Germany
| | - Marcel Wagner
- Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Richard Schmidt
- Institut für Theoretische Physik, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Astrakharchik GE, Ardila LAP, Jachymski K, Negretti A. Many-body bound states and induced interactions of charged impurities in a bosonic bath. Nat Commun 2023; 14:1647. [PMID: 36964151 PMCID: PMC10039032 DOI: 10.1038/s41467-023-37153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/03/2023] [Indexed: 03/26/2023] Open
Abstract
Induced interactions and bound states of charge carriers immersed in a quantum medium are crucial for the investigation of quantum transport. Ultracold atom-ion systems can provide a convenient platform for studying this problem. Here, we investigate the static properties of one and two ionic impurities in a bosonic bath using quantum Monte Carlo methods. We identify three bipolaronic regimes depending on the strength of the atom-ion potential and the number of its two-body bound states: a perturbative regime resembling the situation of a pair of neutral impurities, a non-perturbative regime that loses the quasi-particle character of the former, and a many-body bound state regime that can arise only in the presence of a bound state in the two-body potential. We further reveal strong bath-induced interactions between the two ionic polarons. Our findings show that numerical simulations are indispensable for describing highly correlated impurity models.
Collapse
Affiliation(s)
- Grigory E Astrakharchik
- Department de Física, Universitat Politécnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain.
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E-08028, Barcelona, Spain.
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Martí i Franquès 1, E-08028, Barcelona, Spain.
| | - Luis A Peña Ardila
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167, Hannover, Germany.
| | - Krzysztof Jachymski
- Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
| | - Antonio Negretti
- Zentrum für Optische Quantentechnologien, Fachbereich Physik, Luruper Chaussee 149, D-22761, Hamburg, Germany
| |
Collapse
|
3
|
Ding S, Drewsen M, Arlt JJ, Bruun GM. Mediated Interaction between Ions in Quantum Degenerate Gases. PHYSICAL REVIEW LETTERS 2022; 129:153401. [PMID: 36269954 DOI: 10.1103/physrevlett.129.153401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We explore the interaction between two trapped ions mediated by a surrounding quantum degenerate Bose or Fermi gas. Using perturbation theory valid for weak atom-ion interaction, we show analytically that the interaction mediated by a Bose gas has a power-law behavior for large distances whereas it has a Yukawa form for intermediate distances. For a Fermi gas, the mediated interaction is given by a power law for large density and by a Ruderman-Kittel-Kasuya-Yosida form for low density. For strong atom-ion interaction, we use a diagrammatic theory to demonstrate that the mediated interaction can be a significant addition to the bare Coulomb interaction between the ions, when an atom-ion bound state is close to threshold. Finally, we show that the induced interaction leads to substantial and observable shifts in the ion phonon frequencies.
Collapse
Affiliation(s)
- Shanshan Ding
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Michael Drewsen
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Jan J Arlt
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - G M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Observation of a molecular bond between ions and Rydberg atoms. Nature 2022; 605:453-456. [PMID: 35585342 DOI: 10.1038/s41586-022-04577-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/23/2022] [Indexed: 11/08/2022]
Abstract
Atoms with a highly excited electron, called Rydberg atoms, can form unusual types of molecular bonds1-4. The bonds differ from the well-known ionic and covalent bonds5,6 not only by their binding mechanisms, but also by their bond lengths ranging up to several micrometres. Here we observe a new type of molecular ion based on the interaction between the ionic charge and a flipping-induced dipole of a Rydberg atom with a bond length of several micrometres. We measure the vibrational spectrum and spatially resolve the bond length and the angular alignment of the molecule using a high-resolution ion microscope7. As a consequence of the large bond length, the molecular dynamics is extremely slow. These results pave the way for future studies of spatio-temporal effects in molecular dynamics (for example, beyond Born-Oppenheimer physics).
Collapse
|
5
|
Donovan RJ, Kirrander A, Lawley KP. Heavy Rydberg and ion-pair states: chemistry, spectroscopy and theory. INT REV PHYS CHEM 2022. [DOI: 10.1080/0144235x.2022.2077024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Robert J. Donovan
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Kirrander
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - Kenneth P. Lawley
- School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Schnabel J, Cheng L, Köhn A. Limitations of perturbative coupled-cluster approximations for highly accurate investigations of Rb 2. J Chem Phys 2021; 155:124101. [PMID: 34598557 DOI: 10.1063/5.0062098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We reveal limitations of several standard coupled-cluster (CC) methods with perturbation-theory based noniterative or approximate iterative treatments of triple excitations when applied to the determination of highly accurate potential energy curves (PECs) of ionic dimers, such as the XΣg+2 electronic ground state of Rb2 +. Such computations are of current interest for the understanding of ion-atom interactions in the ultracold regime. We demonstrate that these CC methods lead to an unphysical long-range barrier for the Rb2 + system. The barrier is small but spoils the long-range behavior of the PEC. The effect is also found for other X2 + systems, such as X = Li, Na, and K. Calculations using a flexible framework for obtaining leading perturbative triples corrections derived using an analytic CC singles and doubles energy derivative formulation demonstrate that the origin of this problem lies in the use of T̂3 amplitudes obtained from approximate CC singles, doubles, and triples amplitude equations. It is shown that the unphysical barrier is related to a symmetry instability of the underlying Hartree-Fock mean-field solution, leading to orbitals representing two +0.5-fold charged ions in the limit of separated fragments. This, in turn, leads to a wrong 1/R asymptote of the interaction potential computed by perturbation-based CC approximations. Physically meaningful perturbative corrections in the long-range tail of the PEC may instead be obtained using symmetry-broken reference determinants.
Collapse
Affiliation(s)
- Jan Schnabel
- Institute for Theoretical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Andreas Köhn
- Institute for Theoretical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
7
|
Interactions of Ions and Ultracold Neutral Atom Ensembles in Composite Optical Dipole Traps: Developments and Perspectives. ATOMS 2021. [DOI: 10.3390/atoms9030039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ion–atom interactions are a comparatively recent field of research that has drawn considerable attention due to its applications in areas including quantum chemistry and quantum simulations. In first experiments, atomic ions and neutral atoms have been successfully overlapped by devising hybrid apparatuses combining established trapping methods, Paul traps for ions and optical or magneto-optical traps for neutral atoms, respectively. Since then, the field has seen considerable progress, but the inherent presence of radiofrequency (rf) fields in such hybrid traps was found to have a limiting impact on the achievable collision energies. Recently, it was shown that suitable combinations of optical dipole traps (ODTs) can be used for trapping both atoms and atomic ions alike, allowing to carry out experiments in absence of any rf fields. Here, we show that the expected cooling in such bichromatic traps is highly sensitive to relative position fluctuations between the two optical trapping beams, suggesting that this is the dominant mechanism limiting the currently observed cooling performance. We discuss strategies for mitigating these effects by using optimized setups featuring adapted ODT configurations. This includes proposed schemes that may mitigate three-body losses expected at very low temperatures, allowing to access the quantum dominated regime of interaction.
Collapse
|
8
|
Christensen ER, Camacho-Guardian A, Bruun GM. Charged Polarons and Molecules in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2021; 126:243001. [PMID: 34213934 DOI: 10.1103/physrevlett.126.243001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Ultracold hybrid ion-atom gases represent an exciting frontier for quantum simulation offering a new set of functionalities and control. Here, we study a mobile ion immersed in a Bose-Einstein condensate and show that the long-range nature of the ion-atom interaction gives rise to an intricate interplay between few- and many-body physics. This leads to the existence of several polaronic and molecular states due to the binding of an increasing number of bosons to the ion, which is well beyond what can be described by a short-range pseudopotential. We use a complementary set of techniques including a variational ansatz and field theory to describe this rich physics and calculate the full spectral response of the ion. It follows from thermodynamic arguments that the ion-atom interaction leads to a mesoscopic dressing cloud of the polarons, and a simplified model demonstrates that the spectral weight of the molecules scale with increasing powers of the density. We finally calculate the quantum dynamics of the ion after a quench experiment.
Collapse
Affiliation(s)
- Esben Rohan Christensen
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
| | - Arturo Camacho-Guardian
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Georg M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Pérez-Ríos J. Cold chemistry: a few-body perspective on impurity physics of a single ion in an ultracold bath. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1881637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- J. Pérez-Ríos
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| |
Collapse
|
10
|
Dieterle T, Berngruber M, Hölzl C, Löw R, Jachymski K, Pfau T, Meinert F. Transport of a Single Cold Ion Immersed in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2021; 126:033401. [PMID: 33543963 DOI: 10.1103/physrevlett.126.033401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
We investigate transport dynamics of a single low-energy ionic impurity in a Bose-Einstein condensate. The impurity is implanted into the condensate starting from a single Rydberg excitation, which is ionized by a sequence of fast electric field pulses aiming to minimize the ion's initial kinetic energy. Using a small electric bias field, we study the subsequent collisional dynamics of the impurity subject to an external force. The fast ion-atom collision rate, stemming from the dense degenerate host gas and the large ion-atom scattering cross section, allow us to study a regime of frequent collisions of the impurity within only tens of microseconds. Comparison of our measurements with stochastic trajectory simulations based on sequential Langevin collisions indicate diffusive transport properties of the impurity and allows us to measure its mobility. Our results open a novel path to study dynamics of charged quantum impurities in ultracold matter.
Collapse
Affiliation(s)
- T Dieterle
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - M Berngruber
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - C Hölzl
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - R Löw
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - K Jachymski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Meinert
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Teixeira RC, Larrouy A, Muni A, Lachaud L, Raimond JM, Gleyzes S, Brune M. Preparation of Long-Lived, Non-Autoionizing Circular Rydberg States of Strontium. PHYSICAL REVIEW LETTERS 2020; 125:263001. [PMID: 33449789 DOI: 10.1103/physrevlett.125.263001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Alkaline earth Rydberg atoms are very promising tools for quantum technologies. Their highly excited outer electron provides them with the remarkable properties of Rydberg atoms and, notably, with a huge coupling to external fields or to other Rydberg atoms while the ionic core retains an optically active electron. However, low angular-momentum Rydberg states suffer almost immediate autoionization when the core is excited. Here, we demonstrate that strontium circular Rydberg atoms with a core excited in a 4D metastable level are impervious to autoionization over more than a few millisecond time scale. This makes it possible to trap and laser-cool Rydberg atoms. Moreover, we observe singlet to triplet transitions due to the core optical manipulations, opening the way to a microwave to optical quantum interface.
Collapse
Affiliation(s)
- R C Teixeira
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
- Departamento de Física, Universidade Federal de São Carlos, Rodovia Washington Luís, km 235-SP-310, 13565-905 São Carlos, São Paulo, Brazil
| | - A Larrouy
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
| | - A Muni
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
| | - L Lachaud
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
| | - J-M Raimond
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
| | - S Gleyzes
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
| | - M Brune
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11, place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
12
|
Giannakeas P, Eiles MT, Robicheaux F, Rost JM. Dressed Ion-Pair States of an Ultralong-Range Rydberg Molecule. PHYSICAL REVIEW LETTERS 2020; 125:123401. [PMID: 33016746 DOI: 10.1103/physrevlett.125.123401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
We predict the existence of a universal class of ultralong-range Rydberg molecular states whose vibrational spectra form trimmed Rydberg series. A dressed ion-pair model captures the physical origin of these exotic molecules, accurately predicts their properties, and reveals features of ultralong-range Rydberg molecules and heavy Rydberg states with a surprisingly small Rydberg constant. The latter is determined by the small effective charge of the dressed anion, which outweighs the contribution of the molecule's large reduced mass. This renders these molecules the only known few-body systems to have a Rydberg constant smaller than R_{∞}/2.
Collapse
Affiliation(s)
- P Giannakeas
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Street 38, D-01187 Dresden, Germany
| | - Matthew T Eiles
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Street 38, D-01187 Dresden, Germany
| | - F Robicheaux
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Jan M Rost
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Street 38, D-01187 Dresden, Germany
| |
Collapse
|
13
|
Vibrational Quenching of Weakly Bound Cold Molecular Ions Immersed in Their Parent Gas. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hybrid ion–atom systems provide an excellent platform for studies of state-resolved quantum chemistry at low temperatures, where quantum effects may be prevalent. Here we study theoretically the process of vibrational relaxation of an initially weakly bound molecular ion due to collisions with the background gas atoms. We show that this inelastic process is governed by the universal long-range part of the interaction potential, which allows for using simplified model potentials applicable to multiple atomic species. The product distribution after the collision can be estimated by making use of the distorted wave Born approximation. We find that the inelastic collisions lead predominantly to small changes in the binding energy of the molecular ion.
Collapse
|
14
|
Schmidt J, Weckesser P, Thielemann F, Schaetz T, Karpa L. Optical Traps for Sympathetic Cooling of Ions with Ultracold Neutral Atoms. PHYSICAL REVIEW LETTERS 2020; 124:053402. [PMID: 32083894 DOI: 10.1103/physrevlett.124.053402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
We report the trapping of ultracold neutral Rb atoms and Ba^{+} ions in a common optical potential in absence of any radio frequency (rf) fields. We prepare Ba^{+} at 370 μK and demonstrate efficient sympathetic cooling by 100 μK after one collision. Our approach is currently limited by the Rb density and related three-body losses, but it overcomes the fundamental limitation in rf traps set by rf-driven, micromotion-induced heating. It is applicable to a wide range of ion-atom species, and may enable novel ultracold chemistry experiments and complex many-body dynamics.
Collapse
Affiliation(s)
- J Schmidt
- Laboratoire Kastler Brossel, UPMC-Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, Paris 75005, France
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - P Weckesser
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - F Thielemann
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - T Schaetz
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - L Karpa
- Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Ashida Y, Shi T, Schmidt R, Sadeghpour HR, Cirac JI, Demler E. Quantum Rydberg Central Spin Model. PHYSICAL REVIEW LETTERS 2019; 123:183001. [PMID: 31763913 DOI: 10.1103/physrevlett.123.183001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 06/10/2023]
Abstract
We consider dynamics of a Rydberg impurity in a cloud of ultracold bosonic atoms in which the Rydberg electron undergoes spin-changing collisions with surrounding atoms. This system realizes a new type of quantum impurity problems that compounds essential features of the Kondo model, the Bose polaron, and the central spin model. To capture the interplay of the Rydberg-electron spin dynamics and the orbital motion of atoms, we employ a new variational method that combines an impurity-decoupling transformation with a Gaussian ansatz for the bath particles. We find several unexpected features of this model that are not present in traditional impurity problems, including interaction-induced renormalization of the absorption spectrum that eludes simple explanations from molecular bound states, and long-lasting oscillations of the Rydberg-electron spin. We discuss generalizations of our analysis to other systems in atomic physics and quantum chemistry, where an electron excitation of high orbital quantum number interacts with a spinful quantum bath.
Collapse
Affiliation(s)
- Yuto Ashida
- Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tao Shi
- CAS Key Laboratory of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Richard Schmidt
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| | - H R Sadeghpour
- ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| | - Eugene Demler
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
16
|
Affiliation(s)
- Christian Fey
- Fachbereich Physik, Zentrum für Optische Quantentechnologien, Universität Hamburg, Hamburg, Germany
- Max-Planck-Institute of Quantum Optics, Garching, Germany
| | - Frederic Hummel
- Fachbereich Physik, Zentrum für Optische Quantentechnologien, Universität Hamburg, Hamburg, Germany
| | - Peter Schmelcher
- Fachbereich Physik, Zentrum für Optische Quantentechnologien, Universität Hamburg, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Ewald NV, Feldker T, Hirzler H, Fürst HA, Gerritsma R. Observation of Interactions between Trapped Ions and Ultracold Rydberg Atoms. PHYSICAL REVIEW LETTERS 2019; 122:253401. [PMID: 31347879 DOI: 10.1103/physrevlett.122.253401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Indexed: 06/10/2023]
Abstract
We report on the observation of interactions between ultracold Rydberg atoms and ions in a Paul trap. The rate of observed inelastic collisions, which manifest themselves as charge transfer between the Rydberg atoms and ions, exceeds that of Langevin collisions for ground state atoms by about 3 orders of magnitude. This indicates a huge increase in interaction strength. We study the effect of the vacant Paul trap's electric fields on the Rydberg excitation spectra. To quantitatively describe the exhibited shape of the ion loss spectra, we need to include the ion-induced Stark shift on the Rydberg atoms. Furthermore, we demonstrate Rydberg excitation on a dipole-forbidden transition with the aid of the electric field of a single trapped ion. Our results confirm that interactions between ultracold atoms and trapped ions can be controlled by laser coupling to Rydberg states. Adding dynamic Rydberg dressing may allow for the creation of spin-spin interactions between atoms and ions, and the elimination of collisional heating due to ionic micromotion in atom-ion mixtures.
Collapse
Affiliation(s)
- N V Ewald
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - T Feldker
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - H Hirzler
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - H A Fürst
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| | - R Gerritsma
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, 1098 XH Amsterdam, the Netherlands
| |
Collapse
|
18
|
Whalen JD, Ding R, Kanungo SK, Killian TC, Yoshida S, Burgdörfer J, Dunning FB. Formation of ultralong-range fermionic Rydberg molecules in 87Sr: role of quantum statistics. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1575485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- J. D. Whalen
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - R. Ding
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - S. K. Kanungo
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - T. C. Killian
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - S. Yoshida
- Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria
| | - J. Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, Vienna, Austria
| | - F. B. Dunning
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| |
Collapse
|
19
|
Schmidt F, Mayer D, Bouton Q, Adam D, Lausch T, Nettersheim J, Tiemann E, Widera A. Tailored Single-Atom Collisions at Ultralow Energies. PHYSICAL REVIEW LETTERS 2019; 122:013401. [PMID: 31012719 DOI: 10.1103/physrevlett.122.013401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
We employ collisions of individual atomic cesium (Cs) impurities with an ultracold rubidium (Rb) gas to probe atomic interaction with hyperfine- and Zeeman-state sensitivity. Controlling the Rb bath's internal state yields access to novel phenomena observed in interatomic spin exchange. These can be tailored at ultralow energies, owing to the excellent experimental control over all relevant energy scales. First, detecting spin-exchange dynamics in the Cs hyperfine-state manifold, we resolve a series of previously unreported Feshbach resonances at magnetic fields below 300 mG, separated by energies as low as h×15 kHz. The series originates from a coupling to molecular states with binding energies below h×1 kHz and wave function extensions in the micrometer range. Second, at magnetic fields below ≈100 mG, we observe the emergence of a new reaction path for alkali atoms, where in a single, direct collision between two atoms two quanta of angular momentum can be transferred. This path originates from the hyperfine analog of dipolar spin-spin relaxation. Our work yields control of subtle ultralow-energy features of atomic collision dynamics, opening new routes for advanced state-to-state chemistry, for controlling spin exchange in quantum many-body systems for solid-state simulations, or for determination of high-precision molecular potentials.
Collapse
Affiliation(s)
- Felix Schmidt
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Mayer
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Quentin Bouton
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Adam
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Tobias Lausch
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jens Nettersheim
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Eberhard Tiemann
- Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
- Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany
| |
Collapse
|
20
|
Kirrander A, Jungen C, Donovan RJ, Lawley KP. Heavy Rydberg states: large amplitude vibrations. Faraday Discuss 2018; 212:175-190. [PMID: 30318538 DOI: 10.1039/c8fd00096d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Extremely large vibrational amplitude (≈8700 a.u.) heavy Rydberg levels in the HH[combining macron]1Σ+g state, located only 25 cm-1 below the ion-pair dissociation limit, are reported. The calculations are done using a hybrid log derivative/multichannel quantum defect approach that accounts for predissociation and is capable of dealing with any number of long-range closed channels, and of providing positions and widths for the heavy Rydberg resonances. In this case, resonance positions can be reproduced qualitatively using a simple diabatic model (however, the resonance widths cannot). Absolute quantum defects are derived for the vibrational series ranging from ν = 0 to ν = 2010. The influence of the Coulomb potential and continuity of heavy Rydberg behavior throughout the 1Σ+g manifold of states is demonstrated.
Collapse
Affiliation(s)
- Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Christian Jungen
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Robert J Donovan
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| | - Kenneth P Lawley
- EaStCHEM, School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ Edinburgh, UK.
| |
Collapse
|
21
|
Schmidt F, Mayer D, Bouton Q, Adam D, Lausch T, Spethmann N, Widera A. Quantum Spin Dynamics of Individual Neutral Impurities Coupled to a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2018; 121:130403. [PMID: 30312071 DOI: 10.1103/physrevlett.121.130403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 06/08/2023]
Abstract
We report on spin dynamics of individual, localized neutral impurities immersed in a Bose-Einstein condensate. Single cesium atoms are transported into a cloud of rubidium atoms and thermalize with the bath, and the ensuing spin exchange between localized impurities with quasispin F_{i}=3 and bath atoms with F_{b}=1 is resolved. Comparing our data to numerical simulations of spin dynamics, we find that, for gas densities in the Bose-Einstein condensate regime, the dynamics is dominated by the condensed fraction of the cloud. We spatially resolve the density overlap of impurities and gas by the spin population of impurities. Finally, we trace the coherence of impurities prepared in a coherent superposition of internal states when coupled to a gas of different densities. For our choice of states, we show that, despite high bath densities and, thus, fast thermalization rates, the impurity coherence is not affected by the bath, realizing a regime of sympathetic cooling while maintaining internal state coherence. Our work paves the way toward the nondestructive probing of quantum many-body systems via localized impurities.
Collapse
Affiliation(s)
- Felix Schmidt
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Daniel Mayer
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Quentin Bouton
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Daniel Adam
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Tobias Lausch
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Nicolas Spethmann
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
| | - Artur Widera
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Germany
- Graduate School Materials Science in Mainz, Gottlieb-Daimler-Strasse 47, 67663 Kaiserslautern, Germany
| |
Collapse
|
22
|
Dunning FB, Buathong S. Collisions of Rydberg atoms with neutral targets. INT REV PHYS CHEM 2018. [DOI: 10.1080/0144235x.2018.1512201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- F. B. Dunning
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - S. Buathong
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| |
Collapse
|