1
|
Zheng R, Qin J, Chen B, Yu Z, Zhou L. Improving metrology with quantum scrambling in a spin-1 Bose-Einstein condensate coupled to a cavity. OPTICS EXPRESS 2024; 32:25207-25222. [PMID: 39538938 DOI: 10.1364/oe.527465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 11/16/2024]
Abstract
Spinor Bose-Einstein condensate is an ideal candidate for implementing the many-body entanglement, quantum measurement and quantum information processing owing to its inherent spin-mixing dynamics. Here we present a system of an 87Rb atomic spin-1 Bose-Einstein condensate coupled to an optical ring cavity, in which cavity-mediated nonlinear interactions give rise to saddle points in the semiclassical phase space, providing a general mechanism for exponential fast scrambling and metrological gain augment. We theoretically study metrological gain and fidelity out-of-time-ordered correlator based on time-reversal protocols and demonstrate that exponential rapid scrambling dynamics can enhance quantum metrology. In addition, we use the out-of-time-ordered correlator to probe dynamical phase transitions. This work is useful to understand the intrinsic relation between the concepts from different subfields of quantum science.
Collapse
|
2
|
Finger F, Rosa-Medina R, Reiter N, Christodoulou P, Donner T, Esslinger T. Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and Seeded by Vacuum Fluctuations. PHYSICAL REVIEW LETTERS 2024; 132:093402. [PMID: 38489609 DOI: 10.1103/physrevlett.132.093402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/27/2023] [Accepted: 01/23/2024] [Indexed: 03/17/2024]
Abstract
Engineering pairs of massive particles that are simultaneously correlated in their external and internal degrees of freedom is a major challenge, yet essential for advancing fundamental tests of physics and quantum technologies. In this Letter, we experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes. This mechanism couples atoms from a degenerate Bose gas via a superradiant photon-exchange process in an optical cavity, producing pairs via a single channel or two discernible channels. The scheme is independent of collisional interactions, fast, and tunable. We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space. We characterize the emergent pair statistics and find that the observed dynamics is consistent with being primarily seeded by vacuum fluctuations in the corresponding atomic modes. Together with our observations of coherent many-body oscillations involving well-defined momentum modes, our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments using entangled matter waves.
Collapse
Affiliation(s)
- Fabian Finger
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Rodrigo Rosa-Medina
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicola Reiter
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Tobias Donner
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Mivehvar F. Conventional and Unconventional Dicke Models: Multistabilities and Nonequilibrium Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:073602. [PMID: 38427881 DOI: 10.1103/physrevlett.132.073602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/03/2024]
Abstract
The Dicke model describes the collective behavior of a subwavelength-size ensemble of two-level atoms (i.e., spin-1/2) interacting identically with a single quantized radiation field of a cavity. Across a critical coupling strength it exhibits a zero-temperature phase transition from the normal state to the superradiant phase where the field is populated and the collective spin acquires a nonzero x component, which can be imagined as ferromagnetic ordering of the atomic spins along x. Here we introduce a variant of this model where two subwavelength-size ensembles of spins interact with a single quantized radiation field with different strengths. Subsequently, we restrict ourselves to a special case where the coupling strengths are opposite (which is unitarily equivalent to equal-coupling strengths). Because of the conservation of the total spin in each ensemble individually, the system supports two distinct superradiant states with x-ferromagnetic and x-ferrimagnetic spin ordering, coexisting with each other in a large parameter regime. The stability and dynamics of the system in the thermodynamic limit are examined using a semiclassical approach, which predicts nonstationary behaviors due to the multistabilities. At the end, we also perform small-scale full quantum-mechanical calculations, with results consistent with the semiclassical ones.
Collapse
Affiliation(s)
- Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Guo Y, Yao H, Dhar S, Pizzino L, Horvath M, Giamarchi T, Landini M, Nägerl HC. Anomalous cooling of bosons by dimensional reduction. SCIENCE ADVANCES 2024; 10:eadk6870. [PMID: 38354241 PMCID: PMC10866542 DOI: 10.1126/sciadv.adk6870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/11/2024] [Indexed: 02/16/2024]
Abstract
Cold atomic gases provide a remarkable testbed to study the physics of interacting many-body quantum systems. Temperatures are necessarily nonzero, but cooling to the ultralow temperatures needed for quantum simulation purposes or even simply measuring the temperatures directly on the system can prove to be very challenging tasks. Here, we implement thermometry on strongly interacting two- and one-dimensional Bose gases with high sensitivity in the nanokelvin temperature range. Our method is aided by the fact that the decay of the first-order correlation function is very sensitive to the temperature when interactions are strong. We find that there may be a substantial temperature variation when the three-dimensional quantum gas is cut into two-dimensional slices or into one-dimensional tubes. Notably, the temperature for the one-dimensional case can be much lower than the initial temperature. Our findings show that this decrease results from the interplay of dimensional reduction and strong interactions.
Collapse
Affiliation(s)
- Yanliang Guo
- Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Hepeng Yao
- DQMP, University of Geneva, 24 Quai Ernest-Ansermet, Geneva CH-1211, Switzerland
| | - Sudipta Dhar
- Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Lorenzo Pizzino
- DQMP, University of Geneva, 24 Quai Ernest-Ansermet, Geneva CH-1211, Switzerland
| | - Milena Horvath
- Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Thierry Giamarchi
- DQMP, University of Geneva, 24 Quai Ernest-Ansermet, Geneva CH-1211, Switzerland
| | - Manuele Landini
- Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Hanns-Christoph Nägerl
- Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| |
Collapse
|
5
|
Yan Z, Ho J, Lu YH, Masson SJ, Asenjo-Garcia A, Stamper-Kurn DM. Superradiant and Subradiant Cavity Scattering by Atom Arrays. PHYSICAL REVIEW LETTERS 2023; 131:253603. [PMID: 38181363 DOI: 10.1103/physrevlett.131.253603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 01/07/2024]
Abstract
We realize collective enhancement and suppression of light scattered by an array of tweezer-trapped ^{87}Rb atoms positioned within a strongly coupled Fabry-Pérot optical cavity. We illuminate the array with light directed transverse to the cavity axis, in the low saturation regime, and detect photons scattered into the cavity. For an array with integer-optical-wavelength spacing each atom scatters light into the cavity with nearly identical scattering amplitude, leading to an observed N^{2} scaling of cavity photon number as the atom number increases stepwise from N=1 to N=8. By contrast, for an array with half-integer-wavelength spacing, destructive interference of scattering amplitudes yields a nonmonotonic, subradiant cavity intensity versus N. By analyzing the polarization of light emitted from the cavity, we find that Rayleigh scattering can be collectively enhanced or suppressed with respect to Raman scattering. We observe also that atom-induced shifts and broadenings of the cavity resonance are precisely tuned by varying the atom number and positions. Altogether, tweezer arrays provide exquisite control of atomic cavity QED spanning from the single- to the many-body regime.
Collapse
Affiliation(s)
- Zhenjie Yan
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Jacquelyn Ho
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Yue-Hui Lu
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
| | - Stuart J Masson
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Ana Asenjo-Garcia
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Dan M Stamper-Kurn
- Department of Physics, University of California, Berkeley, California 94720, USA
- Challenge Institute for Quantum Computation, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Chiacchio EIR, Nunnenkamp A, Brunelli M. Nonreciprocal Dicke Model. PHYSICAL REVIEW LETTERS 2023; 131:113602. [PMID: 37774293 DOI: 10.1103/physrevlett.131.113602] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/15/2023] [Indexed: 10/01/2023]
Abstract
We investigate the physics of an open two-component Dicke model, where the light field mediates nonreciprocal interactions between two spin species. We show that the model, which we dub nonreciprocal Dicke model, exhibits a discrete parity-time (PT) symmetry and we characterize the emergence of a nonstationary phase, so far explained in terms of dissipation-induced instability, as spontaneous breaking of PT symmetry. We further show that such PT symmetry breaking embodies an instance of a nonreciprocal phase transition, a concept recently introduced by Fruchart et al. [Nature (London) 592, 363 (2021)NATUAS0028-083610.1038/s41586-021-03375-9]. Remarkably, the phase transition in our model does not necessitate the presence of any underlying broken symmetry or exceptional points in the spectrum, both believed to be essential requirements for nonreciprocal phase transitions. Our results establish driven-dissipative light-matter systems as a new avenue for exploring nonreciprocal phase transitions and contribute to the theory of nonreciprocal collective phenomena.
Collapse
Affiliation(s)
| | - Andreas Nunnenkamp
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Matteo Brunelli
- Department of Physics, University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| |
Collapse
|
7
|
Helson V, Zwettler T, Mivehvar F, Colella E, Roux K, Konishi H, Ritsch H, Brantut JP. Density-wave ordering in a unitary Fermi gas with photon-mediated interactions. Nature 2023:10.1038/s41586-023-06018-3. [PMID: 37225993 DOI: 10.1038/s41586-023-06018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/27/2023] [Indexed: 05/26/2023]
Abstract
A density wave (DW) is a fundamental type of long-range order in quantum matter tied to self-organization into a crystalline structure. The interplay of DW order with superfluidity can lead to complex scenarios that pose a great challenge to theoretical analysis. In the past decades, tunable quantum Fermi gases have served as model systems for exploring the physics of strongly interacting fermions, including most notably magnetic ordering1, pairing and superfluidity2, and the crossover from a Bardeen-Cooper-Schrieffer superfluid to a Bose-Einstein condensate3. Here, we realize a Fermi gas featuring both strong, tunable contact interactions and photon-mediated, spatially structured long-range interactions in a transversely driven high-finesse optical cavity. Above a critical long-range interaction strength, DW order is stabilized in the system, which we identify via its superradiant light-scattering properties. We quantitatively measure the variation of the onset of DW order as the contact interaction is varied across the Bardeen-Cooper-Schrieffer superfluid and Bose-Einstein condensate crossover, in qualitative agreement with a mean-field theory. The atomic DW susceptibility varies over an order of magnitude upon tuning the strength and the sign of the long-range interactions below the self-ordering threshold, demonstrating independent and simultaneous control over the contact and long-range interactions. Therefore, our experimental setup provides a fully tunable and microscopically controllable platform for the experimental study of the interplay of superfluidity and DW order.
Collapse
Affiliation(s)
- Victor Helson
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Timo Zwettler
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria
| | - Elvia Colella
- Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria
| | - Kevin Roux
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Hideki Konishi
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Innsbruck, Austria
| | - Jean-Philippe Brantut
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Center for Quantum Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
8
|
Skulte J, Kongkhambut P, Rao S, Mathey L, Keßler H, Hemmerich A, Cosme JG. Condensate Formation in a Dark State of a Driven Atom-Cavity System. PHYSICAL REVIEW LETTERS 2023; 130:163603. [PMID: 37154637 DOI: 10.1103/physrevlett.130.163603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/14/2023] [Indexed: 05/10/2023]
Abstract
We demonstrate the formation of a condensate in a dark state of momentum states, in a pumped and shaken cavity-BEC system. The system consists of an ultracold quantum gas in a high-finesse cavity, which is pumped transversely by a phase-modulated laser. This phase-modulated pumping couples the atomic ground state to a superposition of excited momentum states, which decouples from the cavity field. We demonstrate how to achieve condensation in this state, supported by time-of-flight and photon emission measurements. With this, we show that the dark state concept provides a general approach to efficiently prepare complex many-body states in an open quantum system.
Collapse
Affiliation(s)
- Jim Skulte
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Phatthamon Kongkhambut
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Sahana Rao
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Ludwig Mathey
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Hans Keßler
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
| | - Andreas Hemmerich
- Zentrum für Optische Quantentechnologien and Institut für Laser-Physik, Universität Hamburg, 22761 Hamburg, Germany
- The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jayson G Cosme
- National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines
| |
Collapse
|
9
|
Marino J, Eckstein M, Foster MS, Rey AM. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:116001. [PMID: 36075190 DOI: 10.1088/1361-6633/ac906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew S Foster
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Rice Center for Quantum Materials, Rice University, Houston, TX 77005, United States of America
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics,University of Colorado, Boulder, CO 80309, United States of America
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
10
|
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 2022; 610:472-477. [PMID: 36261551 PMCID: PMC9581775 DOI: 10.1038/s41586-022-05197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit1–3 set by projections of individual atoms. Large amounts of entanglement4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\,.\,{4}_{-0.9}^{+1.1}$$\end{document}3.4−0.9+1.1 dB and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\,.\,{5}_{-0.6}^{+0.6}$$\end{document}2.5−0.6+0.6 dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\,.\,{7}_{-0.5}^{+0.5}$$\end{document}1.7−0.5+0.5 dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors17,18, searches for new physics, particles and fields19–23, future advanced gravitational wave detectors24,25 and accessing beyond mean-field quantum many-body physics26–30. A matter-wave interferometer is demonstrated with an interferometric phase noise below the standard quantum limit, combining two core concepts of quantum mechanics, that a particle can simultaneously be in two places at once and entanglement between distinct particles.
Collapse
|
11
|
Self-oscillating pump in a topological dissipative atom-cavity system. Nature 2022; 608:494-498. [PMID: 35978131 DOI: 10.1038/s41586-022-04970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Pumps are transport mechanisms in which direct currents result from a cyclic evolution of the potential1,2. As Thouless showed, the pumping process can have topological origins, when considering the motion of quantum particles in spatially and temporally periodic potentials3. However, the periodic evolution that drives these pumps has always been assumed to be imparted from outside, as has been the case in the experimental systems studied so far4-12. Here we report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator, where we observe a particle current without applying a periodic drive. The pumping potential experienced by the atoms is formed by the self-consistent cavity field interfering with the static laser field driving the atoms. Owing to dissipation, the cavity field evolves between its two quadratures13, each corresponding to a different centrosymmetric crystal configuration14. This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models, such as the paradigmatic Rice-Mele pump15. In the experiment, we directly follow the evolution by measuring the phase winding of the cavity field with respect to the driving field and observing the atomic motion in situ. The observed mechanism combines the dynamics of topological and open systems, and features characteristics of continuous dissipative time crystals.
Collapse
|
12
|
Lin R, Rosa-Medina R, Ferri F, Finger F, Kroeger K, Donner T, Esslinger T, Chitra R. Dissipation-Engineered Family of Nearly Dark States in Many-Body Cavity-Atom Systems. PHYSICAL REVIEW LETTERS 2022; 128:153601. [PMID: 35499900 DOI: 10.1103/physrevlett.128.153601] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Three-level atomic systems coupled to light have the capacity to host dark states. We study a system of V-shaped three-level atoms coherently coupled to the two quadratures of a dissipative cavity. The interplay between the atomic level structure and dissipation makes the phase diagram of the open system drastically different from the closed one. In particular, it leads to the stabilization of a continuous family of dark and nearly dark excited many-body states with inverted atomic populations as the steady states. The multistability of these states can be probed via their distinct fluctuations and excitation spectra, as well as the system's Liouvillian dynamics which are highly sensitive to ramp protocols. Our model can be implemented experimentally by encoding the two higher-energy modes in orthogonal density-modulated states in a bosonic quantum gas. This implementation offers prospects for potential applications like the realization of quantum optical random walks and microscopy with subwavelength spatial resolution.
Collapse
Affiliation(s)
- Rui Lin
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| | | | - Francesco Ferri
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Fabian Finger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Katrin Kroeger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Tobias Donner
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zurich, Switzerland
| | - R Chitra
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Rosa-Medina R, Ferri F, Finger F, Dogra N, Kroeger K, Lin R, Chitra R, Donner T, Esslinger T. Observing Dynamical Currents in a Non-Hermitian Momentum Lattice. PHYSICAL REVIEW LETTERS 2022; 128:143602. [PMID: 35476481 DOI: 10.1103/physrevlett.128.143602] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
We report on the experimental realization and detection of dynamical currents in a spin-textured lattice in momentum space. Collective tunneling is implemented via cavity-assisted Raman scattering of photons by a spinor Bose-Einstein condensate into an optical cavity. The photon field inducing the tunneling processes is subject to cavity dissipation, resulting in effective directional dynamics in a non-Hermitian setting. We observe that the individual tunneling events are superradiant in nature and locally resolve them in the lattice by performing real-time, frequency-resolved measurements of the leaking cavity field. The results can be extended to a regime exhibiting a cascade of currents and simultaneous coherences between multiple lattice sites, where numerical simulations provide further understanding of the dynamics. Our observations showcase dynamical tunneling in momentum-space lattices and provide prospects to realize dynamical gauge fields in driven-dissipative settings.
Collapse
Affiliation(s)
| | - Francesco Ferri
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Fabian Finger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Nishant Dogra
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Katrin Kroeger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Rui Lin
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - R Chitra
- Institute for Theoretical Physics, ETH Zürich, 8093 Zürich, Switzerland
| | - Tobias Donner
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
Lozano-Méndez K, Cásares AH, Caballero-Benítez SF. Spin Entanglement and Magnetic Competition via Long-Range Interactions in Spinor Quantum Optical Lattices. PHYSICAL REVIEW LETTERS 2022; 128:080601. [PMID: 35275654 DOI: 10.1103/physrevlett.128.080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Quantum matter at ultralow temperatures offers a test bed for analyzing and controlling desired properties in strongly correlated systems. Under typical conditions the nature of the atoms fixes the magnetic character of the system. Beyond classical light potentials leading to optical lattices and short-range interactions, high-Q cavities introduce novel dynamics into the system via the quantumness of light. Here we propose a theoretical model and we analyze it using exact diagonalization and density matrix renormalization group simulations. We explore the effects of cavity mediated long-range magnetic interactions and optical lattices in ultracold matter. We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios. Antiferromagnetic correlated bosonic matter emerges in conditions beyond what nature typically provides. These allow new alternatives toward the design of robust mechanisms for quantum information purposes, exploiting the properties of magnetic phases of strongly correlated quantum matter.
Collapse
Affiliation(s)
- Karen Lozano-Méndez
- Instituto de Física, LSCSC-LANMAC, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro H Cásares
- Instituto de Física, LSCSC-LANMAC, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | |
Collapse
|
15
|
Qin J, Zhou L. Collision of two self-trapped atomic matter wave packets in an optical ring cavity. Phys Rev E 2021; 104:044201. [PMID: 34781552 DOI: 10.1103/physreve.104.044201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/16/2021] [Indexed: 11/07/2022]
Abstract
The interaction between atomic Bose-Einstein condensate (BEC) and light field in an optical ring cavity gives rise to many interesting phenomena such as supersolid and movable self-trapped matter wave packets. Here we examined the collision of two self-trapped atomic matter wave packets in an optical ring cavity, and abundant colliding phenomena have been found in the system. Depending on the magnitude of colliding velocity, the collision dynamics exhibit very different features compared with the cavity-free case. When the initial colliding velocities of the two wave packets are small, they correlatedly oscillate around their initial equilibrium positions with a small amplitude. Increasing the collision velocity leads to severe scattering of the BEC atoms; after the collision, the two self-trapped wave packets usually break into small pieces. Interestingly, we found that such a medium velocity collision is of great phase sensitivity, which may make the system useful in precision matter wave interferometry. When the colliding velocity is further increased, in the bad cavity limit, the two wave packets collide phenomenally similar to two classical particles-they first approach each other, then separate with their shape virtually maintained. However, beyond the bad cavity limit, they experience severe spatial spreading.
Collapse
Affiliation(s)
- Jieli Qin
- School of Physics and Materials Science, Guangzhou University, 230 Wai Huan Xi Road, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Lu Zhou
- Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
16
|
Abstract
Quantum spin liquids provide paradigmatic examples of highly entangled quantum states of matter. Frustration is the key mechanism to favor spin liquids over more conventional magnetically ordered states. Here we propose to engineer frustration by exploiting the coupling of quantum magnets to the quantized light of an optical cavity. The interplay between the quantum fluctuations of the electro-magnetic field and the strongly correlated electrons results in a tunable long-range interaction between localized spins. This cavity-induced frustration robustly stabilizes spin liquid states, which occupy an extensive region in the phase diagram spanned by the range and strength of the tailored interaction. This occurs even in originally unfrustrated systems, as we showcase for the Heisenberg model on the square lattice.
Collapse
|
17
|
Abstract
This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror. Diffractive dephasing between the pump beam and the spontaneous sidebands selects the lattice period. Spontaneous breaking of the rotational and translational symmetry occur in the 2D plane transverse to the pump. We elucidate how diffractive ripples couple sites on the self-induced atomic lattice. The nonlinear phase shift of the atomic cloud imprinted onto the optical beam is the parameter determining coupling strength. The interaction can be tailored to operate either on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels. Using the light polarization degrees of freedom on the Poincaré sphere (helicity and polarization direction), specific irreducible tensor components of the atomic Zeeman states can be coupled leading to spontaneous magnetic ordering of states of dipolar and quadrupolar nature. The requirements for critical interaction strength are compared for the different situations. Connections and extensions to longitudinally pumped cavities, counterpropagating beam schemes and the CARL instability are discussed.
Collapse
|
18
|
Baio G, Robb GRM, Yao AM, Oppo GL, Ackemann T. Multiple Self-Organized Phases and Spatial Solitons in Cold Atoms Mediated by Optical Feedback. PHYSICAL REVIEW LETTERS 2021; 126:203201. [PMID: 34110195 DOI: 10.1103/physrevlett.126.203201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
We study the transverse self-structuring of cold atomic clouds with effective atomic interactions mediated by a coherent driving beam retroreflected by means of a single mirror. The resulting self-structuring due to optomechanical forces is much richer than that of an effective-Kerr medium, displaying hexagonal, stripe and honeycomb phases depending on the interaction strength parametrized by the linear susceptibility. Phase domains are described by Ginzburg-Landau amplitude equations with real coefficients. In the stripe phase the system recovers inversion symmetry. Moreover, the subcritical character of the honeycomb phase allows for light-density feedback solitons functioning as self-sustained dark atomic traps with motion controlled by phase gradients in the driving beam.
Collapse
Affiliation(s)
- Giuseppe Baio
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Gordon R M Robb
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Alison M Yao
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Gian-Luca Oppo
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| | - Thorsten Ackemann
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, Scotland, United Kingdom
| |
Collapse
|
19
|
Hurst HM, Guo S, Spielman IB. Feedback induced magnetic phases in binary Bose-Einstein condensates. PHYSICAL REVIEW RESEARCH 2020; 2:10.1103/physrevresearch.2.043325. [PMID: 34476407 PMCID: PMC8409225 DOI: 10.1103/physrevresearch.2.043325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Weak measurement in tandem with real-time feedback control is a new route toward engineering novel nonequilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances-spin independent and spin dependent-but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present an analytical model to explain its effectiveness. We showcase our toolbox by studying a two-component BEC using a stochastic mean-field theory, where feedback induces a phase transition between easy-axis ferromagnet and spin-disordered paramagnet phases. We present the steady-state phase diagram as a function of intrinsic and effective spin-dependent interaction strengths. Our result demonstrates that closed-loop quantum control of Bose-Einstein condensates is a powerful tool for quantum engineering in cold-atom systems.
Collapse
Affiliation(s)
- Hilary M Hurst
- Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20899, USA
- Department of Physics and Astronomy, San José State University, San José, California 95192, USA
| | - Shangjie Guo
- Joint Quantum Institute and Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - I B Spielman
- Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
20
|
Halati CM, Sheikhan A, Ritsch H, Kollath C. Numerically Exact Treatment of Many-Body Self-Organization in a Cavity. PHYSICAL REVIEW LETTERS 2020; 125:093604. [PMID: 32915618 DOI: 10.1103/physrevlett.125.093604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
We investigate the full quantum evolution of ultracold interacting bosonic atoms on a chain and coupled to an optical cavity. Extending the time-dependent matrix product state techniques and the many-body adiabatic elimination technique to capture the global coupling to the cavity mode and the open nature of the cavity, we examine the long time behavior of the system beyond the mean-field elimination of the cavity field. We investigate the many-body steady states and the self-organization transition for a wide range of parameters. We show that in the self-organized phase the steady state consists in a mixture of the mean-field predicted density wave states and excited states with additional defects. In particular, for large dissipation strengths a steady state with a fully mixed atomic sector is obtained crucially different from the predicted mean-field state.
Collapse
Affiliation(s)
| | - Ameneh Sheikhan
- Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 21a, A-6020 Innsbruck, Austria
| | - Corinna Kollath
- Physikalisches Institut, University of Bonn, Nussallee 12, 53115 Bonn, Germany
| |
Collapse
|
21
|
Chatterjee B, Lévêque C, Schmiedmayer J, Lode AUJ. Detecting One-Dimensional Dipolar Bosonic Crystal Orders via Full Distribution Functions. PHYSICAL REVIEW LETTERS 2020; 125:093602. [PMID: 32915623 DOI: 10.1103/physrevlett.125.093602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We explore the ground states of a few dipolar bosons in optical lattices with incommensurate filling. The competition of kinetic, potential, and interaction energies leads to the emergence of a variety of crystal state orders with characteristic one- and two-body densities. We probe the transitions between these orders and construct the emergent state diagram as a function of the dipolar interaction strength and the lattice depth. We show that the crystal state orders can be observed using the full distribution functions of the particle number extracted from simulated single-shot images.
Collapse
Affiliation(s)
| | - Camille Lévêque
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
- Wolfgang Pauli Institute c/o Faculty of Mathematics, University of Vienna, Oskar-Morgenstern Platz 1, 1090 Vienna, Austria
| | - Jörg Schmiedmayer
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Axel U J Lode
- Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
- Wolfgang Pauli Institute c/o Faculty of Mathematics, University of Vienna, Oskar-Morgenstern Platz 1, 1090 Vienna, Austria
- Institute of Physics, Albert-Ludwig University of Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| |
Collapse
|
22
|
Davis EJ, Periwal A, Cooper ES, Bentsen G, Evered SJ, Van Kirk K, Schleier-Smith MH. Protecting Spin Coherence in a Tunable Heisenberg Model. PHYSICAL REVIEW LETTERS 2020; 125:060402. [PMID: 32845652 DOI: 10.1103/physrevlett.125.060402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 05/09/2023]
Abstract
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferromagnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the noninteracting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.
Collapse
Affiliation(s)
- Emily J Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Avikar Periwal
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Eric S Cooper
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Gregory Bentsen
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - Simon J Evered
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Katherine Van Kirk
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Monika H Schleier-Smith
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
23
|
Garcia S, Ferri F, Reichel J, Long R. Overlapping two standing waves in a microcavity for a multi-atom photon interface. OPTICS EXPRESS 2020; 28:15515-15528. [PMID: 32403578 DOI: 10.1364/oe.392207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
We develop a light-matter interface enabling strong and uniform coupling between a chain of cold atoms and photons of an optical cavity. This interface is a fiber Fabry-Perot cavity, doubly resonant for both the wavelength of the atomic transition and for a geometrically commensurate red-detuned intracavity trapping lattice. Fulfilling the condition of a strong and uniform atom-photon coupling requires optimization of the spatial overlap between the two standing waves in the cavity. In a strong-coupling cavity, where the mode waists and Rayleigh range are small, we derive the expression of the optimal trapping wavelength, taking into account the Gouy phase. The main parameter controlling the overlap of the standing waves is the relative phase shift at the reflection on the cavity mirrors between the two wavelengths, for which we derive the optimal value. We have built a microcavity optimized according to these results, employing custom-made mirrors with engineered reflection phase for both wavelengths. We present a method to measure with high precision the relative phase shift at reflection, which allows us to determine the spatial overlap of the two modes in this cavity.
Collapse
|
24
|
Exploring dynamical phase transitions with cold atoms in an optical cavity. Nature 2020; 580:602-607. [DOI: 10.1038/s41586-020-2224-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022]
|
25
|
Borish V, Marković O, Hines JA, Rajagopal SV, Schleier-Smith M. Transverse-Field Ising Dynamics in a Rydberg-Dressed Atomic Gas. PHYSICAL REVIEW LETTERS 2020; 124:063601. [PMID: 32109106 DOI: 10.1103/physrevlett.124.063601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/09/2020] [Indexed: 06/10/2023]
Abstract
We report on the realization of long-range Ising interactions in a cold gas of cesium atoms by Rydberg dressing. The interactions are enhanced by coupling to Rydberg states in the vicinity of a Förster resonance. We characterize the interactions by measuring the mean-field shift of the clock transition via Ramsey spectroscopy, observing one-axis twisting dynamics. We furthermore emulate a transverse-field Ising model by periodic application of a microwave field and detect dynamical signatures of the paramagnetic-ferromagnetic phase transition. Our results highlight the power of optical addressing for achieving local and dynamical control of interactions, enabling prospects ranging from investigating Floquet quantum criticality to producing tunable-range spin squeezing.
Collapse
Affiliation(s)
- V Borish
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - O Marković
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - J A Hines
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - S V Rajagopal
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - M Schleier-Smith
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
26
|
Ostermann S, Niedenzu W, Ritsch H. Unraveling the Quantum Nature of Atomic Self-Ordering in a Ring Cavity. PHYSICAL REVIEW LETTERS 2020; 124:033601. [PMID: 32031825 DOI: 10.1103/physrevlett.124.033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Indexed: 06/10/2023]
Abstract
Atomic self-ordering to a crystalline phase in optical resonators is a consequence of the intriguing nonlinear dynamics of strongly coupled atom motion and photons. Generally the resulting phase diagrams and atomic states can be largely understood on a mean-field level. However, close to the phase transition point, quantum fluctuations and atom-field entanglement play a key role and initiate the symmetry breaking. Here we propose a modified ring cavity geometry, in which the asymmetry imposed by a tilted pump beam reveals clear signatures of quantum dynamics even in a larger regime around the phase transition point. Quantum fluctuations become visible both in the dynamic and steady-state properties. Most strikingly we can identify a regime where a mean-field approximation predicts a runaway instability, while in the full quantum model the quantum fluctuations of the light field modes stabilize uniform atomic motion. The proposed geometry thus allows to unveil the "quantumness" of atomic self-ordering via experimentally directly accessible quantities.
Collapse
Affiliation(s)
- Stefan Ostermann
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| | - Wolfgang Niedenzu
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
| |
Collapse
|
27
|
Ivanov DA, Ivanova TY, Caballero-Benitez SF, Mekhov IB. Feedback-Induced Quantum Phase Transitions Using Weak Measurements. PHYSICAL REVIEW LETTERS 2020; 124:010603. [PMID: 31976715 DOI: 10.1103/physrevlett.124.010603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/15/2019] [Indexed: 06/10/2023]
Abstract
We show that applying feedback and weak measurements to a quantum system induces phase transitions beyond the dissipative ones. Feedback enables controlling essentially quantum properties of the transition, i.e., its critical exponent, as it is driven by the fundamental quantum fluctuations due to measurement. Feedback provides the non-Markovianity and nonlinearity to the hybrid quantum-classical system, and enables simulating effects similar to spin-bath problems and Floquet time crystals with tunable long-range (long-memory) interactions.
Collapse
Affiliation(s)
- D A Ivanov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - T Yu Ivanova
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
| | - S F Caballero-Benitez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - I B Mekhov
- Department of Physics, St. Petersburg State University, 198504 St. Petersburg, Russia
- Department of Physics, University of Oxford, Oxford OX1 3PU, United Kingdom
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
28
|
Buča B, Jaksch D. Dissipation Induced Nonstationarity in a Quantum Gas. PHYSICAL REVIEW LETTERS 2019; 123:260401. [PMID: 31951440 DOI: 10.1103/physrevlett.123.260401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 06/10/2023]
Abstract
Nonstationary longtime dynamics was recently observed in a driven two-component Bose-Einstein condensate coupled to an optical cavity [N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, and T. Esslinger, arXiv:1901.05974] and analyzed in mean-field theory. We solve the underlying model in the thermodynamic limit and show that this system is always dynamically unstable-even when mean-field theory predicts stability. Instabilities always occur in higher-order correlation functions leading to squeezing and entanglement induced by cavity dissipation. The dynamics may be understood as the formation of a dissipative time crystal. We use perturbation theory for finite system sizes to confirm the nonstationary behavior.
Collapse
Affiliation(s)
- Berislav Buča
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dieter Jaksch
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
| |
Collapse
|
29
|
Dogra N, Landini M, Kroeger K, Hruby L, Donner T, Esslinger T. Dissipation-induced structural instability and chiral dynamics in a quantum gas. Science 2019; 366:1496-1499. [DOI: 10.1126/science.aaw4465] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 11/06/2019] [Indexed: 01/17/2023]
Affiliation(s)
- Nishant Dogra
- Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Manuele Landini
- Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Katrin Kroeger
- Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Lorenz Hruby
- Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Tobias Donner
- Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Tilman Esslinger
- Institute for Quantum Electronics, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
30
|
Zupancic P, Dreon D, Li X, Baumgärtner A, Morales A, Zheng W, Cooper NR, Esslinger T, Donner T. P-Band Induced Self-Organization and Dynamics with Repulsively Driven Ultracold Atoms in an Optical Cavity. PHYSICAL REVIEW LETTERS 2019; 123:233601. [PMID: 31868492 DOI: 10.1103/physrevlett.123.233601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Indexed: 06/10/2023]
Abstract
We investigate a Bose-Einstein condensate strongly coupled to an optical cavity via a repulsive optical lattice. We detect a stable self-ordered phase in this regime, and show that the atoms order through an antisymmetric coupling to the P band of the lattice, limiting the extent of the phase and changing the geometry of the emergent density modulation. Furthermore, we find a nonequilibrium phase with repeated intense bursts of the intracavity photon number, indicating nontrivial driven-dissipative dynamics.
Collapse
Affiliation(s)
- P Zupancic
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - D Dreon
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - X Li
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - A Baumgärtner
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - A Morales
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - W Zheng
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - N R Cooper
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - T Esslinger
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - T Donner
- Institute for Quantum Electronics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Mivehvar F, Ritsch H, Piazza F. Emergent Quasicrystalline Symmetry in Light-Induced Quantum Phase Transitions. PHYSICAL REVIEW LETTERS 2019; 123:210604. [PMID: 31809187 DOI: 10.1103/physrevlett.123.210604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/24/2019] [Indexed: 06/10/2023]
Abstract
The discovery of quasicrystals with crystallographically forbidden rotational symmetries has changed the notion of the ordering in materials, yet little is known about the dynamical emergence of such exotic forms of order. Here we theoretically study a nonequilibrium cavity-QED setup realizing a zero-temperature quantum phase transition from a homogeneous Bose-Einstein condensate to a quasicrystalline phase via collective superradiant light scattering. Across the superradiant phase transition, collective light scattering creates a dynamical, quasicrystalline optical potential for the atoms. Remarkably, the quasicrystalline potential is "emergent" as its eightfold rotational symmetry is not present in the Hamiltonian of the system, rather appears solely in the low-energy states. For sufficiently strong two-body contact interactions between atoms, a quasicrystalline order is stabilized in the system, while for weakly interacting atoms the condensate is localized in one or few of the deepest minima of the quasicrystalline potential.
Collapse
Affiliation(s)
- Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Francesco Piazza
- Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
| |
Collapse
|
32
|
Bentsen G, Hashizume T, Buyskikh AS, Davis EJ, Daley AJ, Gubser SS, Schleier-Smith M. Treelike Interactions and Fast Scrambling with Cold Atoms. PHYSICAL REVIEW LETTERS 2019; 123:130601. [PMID: 31697527 DOI: 10.1103/physrevlett.123.130601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 06/10/2023]
Abstract
We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on nonlocal interactions that couple sites whose separation is a power of 2. By controlling the relative strengths of deterministic, nonrandom couplings, we can continuously tune from the linear geometry of a nearest-neighbor spin chain to an ultrametric geometry in which the effective distance between spins is governed by their positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in entanglement and exponentially fast spreading of quantum information across the system. Our proposed implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test case for experimentally observing the emergent geometry of a quantum many-body system.
Collapse
Affiliation(s)
- Gregory Bentsen
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Tomohiro Hashizume
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Anton S Buyskikh
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Emily J Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Andrew J Daley
- Department of Physics and SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Steven S Gubser
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Monika Schleier-Smith
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
33
|
Schlawin F, Jaksch D. Cavity-Mediated Unconventional Pairing in Ultracold Fermionic Atoms. PHYSICAL REVIEW LETTERS 2019; 123:133601. [PMID: 31697538 DOI: 10.1103/physrevlett.123.133601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 06/10/2023]
Abstract
We investigate long-range pairing interactions between ultracold fermionic atoms confined in an optical lattice which are mediated by the coupling to a cavity. In the absence of other perturbations, we find three degenerate pairing symmetries for a two-dimensional square lattice. By tuning a weak local atomic interaction via a Feshbach resonance or by tuning a weak magnetic field, the superfluid system can be driven from a topologically trivial s wave to topologically ordered, chiral superfluids containing Majorana edge states. Our work points out a novel path towards the creation of exotic superfluid states by exploiting the competition between long-range and short-range interactions.
Collapse
Affiliation(s)
- Frank Schlawin
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dieter Jaksch
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
34
|
Jäger SB, Cooper J, Holland MJ, Morigi G. Dynamical Phase Transitions to Optomechanical Superradiance. PHYSICAL REVIEW LETTERS 2019; 123:053601. [PMID: 31491307 DOI: 10.1103/physrevlett.123.053601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/07/2019] [Indexed: 06/10/2023]
Abstract
We theoretically analyze superradiant emission of light from an ultracold gas of bosonic atoms confined in a bad cavity. A metastable dipolar transition of the atoms couples to the cavity field and is incoherently pumped, and the mechanical effects of cavity-atom interactions tend to order the atoms in the periodic cavity potential. By means of a mean-field model we determine the conditions on the cavity parameters and pump rate that lead to the buildup of a stable macroscopic dipole emitting coherent light. We show that this occurs when the superradiant decay rate and the pump rate exceed threshold values of the order of the photon recoil energy. Above these thresholds superradiant emission is accompanied by the formation of stable matter-wave gratings that diffract the emitted photons. Outside of this regime, instead, the optomechanical coupling can give rise to dephasing or chaos, for which the emitted light is respectively incoherent or chaotic. These behaviors exhibit the features of a dynamical phase transitions and emerge from the interplay between global optomechanical interactions, quantum fluctuations, and noise.
Collapse
Affiliation(s)
- Simon B Jäger
- Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| | - John Cooper
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Murray J Holland
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Giovanna Morigi
- Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany
| |
Collapse
|
35
|
Chiacchio EIR, Nunnenkamp A. Dissipation-Induced Instabilities of a Spinor Bose-Einstein Condensate Inside an Optical Cavity. PHYSICAL REVIEW LETTERS 2019; 122:193605. [PMID: 31144960 DOI: 10.1103/physrevlett.122.193605] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Indexed: 06/09/2023]
Abstract
We investigate the dynamics of a spinor Bose-Einstein condensate inside an optical cavity, driven transversely by a laser with a controllable polarization angle. We focus on a two-component Dicke model with complex light-matter couplings, in the presence of photon losses. We calculate the steady-state phase diagram and find dynamical instabilities in the form of limit cycles, heralded by the presence of exceptional points and level attraction. We show that the instabilities are induced by dissipative processes that generate nonreciprocal couplings between the two collective spins. Our predictions can be readily tested in state-of-the-art experiments and open up the study of nonreciprocal many-body dynamics out of equilibrium.
Collapse
Affiliation(s)
| | - A Nunnenkamp
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
36
|
Mivehvar F, Ritsch H, Piazza F. Cavity-Quantum-Electrodynamical Toolbox for Quantum Magnetism. PHYSICAL REVIEW LETTERS 2019; 122:113603. [PMID: 30951329 DOI: 10.1103/physrevlett.122.113603] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Indexed: 06/09/2023]
Abstract
The recent experimental observation of spinor self-ordering of ultracold atoms in optical resonators has set the stage for the exploration of emergent magnetic orders in quantum-gas-cavity systems. Based on this platform, we introduce a generic scheme for the implementation of long-range quantum spin Hamiltonians composed of various types of couplings, including Heisenberg and Dzyaloshinskii-Moriya interactions. Our model is composed of an effective two-component Bose-Einstein condensate, driven by two classical pump lasers and coupled to a single dynamic mode of a linear cavity in a double Λ scheme. Cavity photons mediate the long-range spin-spin interactions with spatially modulated coupling coefficients, where the latter ones can be tuned by modifying spatial profiles of the pump lasers. As experimentally relevant examples, we demonstrate that by properly choosing the spatial profiles of the pump lasers achiral domain-wall antiferromagnetic and chiral spin-spiral orders emerge beyond critical laser strengths. The transition between these two phases can be observed in a single experimental setup by tuning the reflectivity of a mirror. We also discuss extensions of our scheme for the implementation of other classes of spin Hamiltonians.
Collapse
Affiliation(s)
- Farokh Mivehvar
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Helmut Ritsch
- Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
| | - Francesco Piazza
- Max-Planck-Institut für Physik komplexer Systeme, D-01187 Dresden, Germany
| |
Collapse
|
37
|
Davis EJ, Bentsen G, Homeier L, Li T, Schleier-Smith MH. Photon-Mediated Spin-Exchange Dynamics of Spin-1 Atoms. PHYSICAL REVIEW LETTERS 2019; 122:010405. [PMID: 31012698 DOI: 10.1103/physrevlett.122.010405] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 06/09/2023]
Abstract
We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 μm are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optical resonator. We characterize the system via quench dynamics and imaging of the local magnetization, verifying the coherence of the interactions and demonstrating optical control of their strength and sign. Furthermore, by initializing the spin-1 system in the m_{f}=0 Zeeman state, we observe correlated pair creation in the m_{f}=±1 states, a process analogous to spontaneous parametric down-conversion and to spin mixing in Bose-Einstein condensates. Our work opens new opportunities in quantum simulation with long-range interactions and in entanglement-enhanced metrology.
Collapse
Affiliation(s)
- Emily J Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Gregory Bentsen
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Lukas Homeier
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Tracy Li
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
38
|
Kroeze RM, Guo Y, Vaidya VD, Keeling J, Lev BL. Spinor Self-Ordering of a Quantum Gas in a Cavity. PHYSICAL REVIEW LETTERS 2018; 121:163601. [PMID: 30387632 DOI: 10.1103/physrevlett.121.163601] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 06/08/2023]
Abstract
We observe the joint spin-spatial (spinor) self-organization of a two-component Bose-Einstein condensate (BEC) strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke phase transition is driven by an off-resonant Raman transition formed from a classical pump field and the emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is observed by directly detecting the atomic spin and momentum state and by holographically reconstructing the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to create dynamical gauge fields and quantum spin glasses.
Collapse
Affiliation(s)
- Ronen M Kroeze
- Department of Physics, Stanford University, Stanford, California 94305, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Yudan Guo
- Department of Physics, Stanford University, Stanford, California 94305, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
| | - Varun D Vaidya
- Department of Physics, Stanford University, Stanford, California 94305, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS United Kingdom
| | - Benjamin L Lev
- Department of Physics, Stanford University, Stanford, California 94305, USA
- E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|