1
|
Faleo T, Brunner E, Webb JW, Pickston A, Ho J, Weihs G, Buchleitner A, Dittel C, Dufour G, Fedrizzi A, Keil R. Entanglement-induced collective many-body interference. SCIENCE ADVANCES 2024; 10:eadp9030. [PMID: 39213353 PMCID: PMC11364098 DOI: 10.1126/sciadv.adp9030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Entanglement and interference are both hallmark effects of quantum physics. Particularly rich dynamics arise when multiple (at least partially) indistinguishable particles are subjected to either of these phenomena. By combining both entanglement and many-particle interference, we propose an interferometric setting through which N-particle interference can be observed, while any interference of lower orders is strictly suppressed. We experimentally demonstrate this effect in a four-photon interferometer, where the interference is nonlocal, in principle, as only pairs of photons interfere at two separate and independent beam splitters. A joint detection of all four photons identifies a high-visibility interference pattern varying as a function of their collective four-particle phase, a genuine four-body property.
Collapse
Affiliation(s)
- Tommaso Faleo
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Eric Brunner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Jonathan W. Webb
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Alexander Pickston
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Joseph Ho
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Gregor Weihs
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Christoph Dittel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Gabriel Dufour
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
| | - Alessandro Fedrizzi
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Robert Keil
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| |
Collapse
|
2
|
Ehrhardt M, Dittel C, Heinrich M, Szameit A. Topological Hong-Ou-Mandel interference. Science 2024; 384:1340-1344. [PMID: 38900876 DOI: 10.1126/science.ado8192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024]
Abstract
The interplay of topology and optics provides a route to pursue robust photonic devices, with the application to photonic quantum computation in its infancy. However, the possibilities of harnessing topological structures to process quantum information with linear optics, through the quantum interference of photons, remain largely uncharted. Here, we present a Hong-Ou-Mandel interference effect of topological origin. We show that this interference of photon pairs-ranging from constructive to destructive-is solely determined by a synthetic magnetic flux, rendering it resilient to errors on a fundamental level. Our implementation establishes a quantized flux that facilitates exclusively destructive quantum interference. Our findings pave the way toward the development of next-generation photonic quantum circuitry and scalable quantum computing protected by virtue of topologically robust quantum gates.
Collapse
Affiliation(s)
- Max Ehrhardt
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Christoph Dittel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Matthias Heinrich
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| | - Alexander Szameit
- University of Rostock, Institute of Physics, Albert-Einstein-Str. 23, 18059 Rostock, Germany
| |
Collapse
|
3
|
Young AW, Geller S, Eckner WJ, Schine N, Glancy S, Knill E, Kaufman AM. An atomic boson sampler. Nature 2024; 629:311-316. [PMID: 38720040 DOI: 10.1038/s41586-024-07304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics1. An efficient exact classical simulation of boson sampling is not believed to exist, which has motivated ground-breaking boson sampling experiments in photonics with increasingly many photons2-12. However, it is difficult to generate and reliably evolve specific numbers of photons with low loss, and thus probabilistic techniques for postselection7 or marked changes to standard boson sampling10-12 are generally used. Here, we address the above challenges by implementing boson sampling using ultracold atoms13,14 in a two-dimensional, tunnel-coupled optical lattice. This demonstration is enabled by a previously unrealized combination of tools involving high-fidelity optical cooling and imaging of atoms in a lattice, as well as programmable control of those atoms using optical tweezers. When extended to interacting systems, our work demonstrates the core abilities required to directly assemble ground and excited states in simulations of various Hubbard models15,16.
Collapse
Affiliation(s)
- Aaron W Young
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
| | - Shawn Geller
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - William J Eckner
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
| | - Nathan Schine
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
- Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, MD, USA
| | - Scott Glancy
- National Institute of Standards and Technology, Boulder, CO, USA
| | - Emanuel Knill
- National Institute of Standards and Technology, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Adam M Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
4
|
Brunner E, Pausch L, Carnio EG, Dufour G, Rodríguez A, Buchleitner A. Many-Body Interference at the Onset of Chaos. PHYSICAL REVIEW LETTERS 2023; 130:080401. [PMID: 36898099 DOI: 10.1103/physrevlett.130.080401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
We unveil the signature of many-body interference across dynamical regimes of the Bose-Hubbard model. Increasing the particles' indistinguishability enhances the temporal fluctuations of few-body observables, with a dramatic amplification at the onset of quantum chaos. By resolving the exchange symmetries of partially distinguishable particles, we explain this amplification as the fingerprint of the initial state's coherences in the eigenbasis.
Collapse
Affiliation(s)
- Eric Brunner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Lukas Pausch
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Edoardo G Carnio
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Gabriel Dufour
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Alberto Rodríguez
- Departamento de Física Fundamental, Universidad de Salamanca, E-37008 Salamanca, Spain
- Instituto Universitario de Física Fundamental y Matemáticas (IUFFyM), Universidad de Salamanca, E-37008 Salamanca, Spain
| | - Andreas Buchleitner
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 3, 79104, Freiburg, Germany
| |
Collapse
|
5
|
Ehrhardt M, Keil R, Maczewsky LJ, Dittel C, Heinrich M, Szameit A. Exploring complex graphs using three-dimensional quantum walks of correlated photons. SCIENCE ADVANCES 2021; 7:7/9/eabc5266. [PMID: 33637523 PMCID: PMC7909875 DOI: 10.1126/sciadv.abc5266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Graph representations are a powerful concept for solving complex problems across natural science, as patterns of connectivity can give rise to a multitude of emergent phenomena. Graph-based approaches have proven particularly fruitful in quantum communication and quantum search algorithms in highly branched quantum networks. Here, we introduce a previously unidentified paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks by exploiting the hybrid action of spatial and polarization degrees of freedom of photon pairs in complex waveguide circuits with tailored birefringence. This testbed for the experimental exploration of multiparticle quantum walks on complex, highly connected graphs paves the way toward exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.
Collapse
Affiliation(s)
- Max Ehrhardt
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23 18059 Rostock, Germany
| | - Robert Keil
- Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | - Lukas J Maczewsky
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23 18059 Rostock, Germany
| | - Christoph Dittel
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
- EUCOR Centre for Quantum Science and Quantum Computing, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - Matthias Heinrich
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23 18059 Rostock, Germany
| | - Alexander Szameit
- Institut für Physik, Universität Rostock, Albert-Einstein-Straße 23 18059 Rostock, Germany.
| |
Collapse
|
6
|
Quantum experiments and graphs II: Quantum interference, computation, and state generation. Proc Natl Acad Sci U S A 2019; 116:4147-4155. [PMID: 30770451 DOI: 10.1073/pnas.1815884116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present an approach to describe state-of-the-art photonic quantum experiments using graph theory. There, the quantum states are given by the coherent superpositions of perfect matchings. The crucial observation is that introducing complex weights in graphs naturally leads to quantum interference. This viewpoint immediately leads to many interesting results, some of which we present here. First, we identify an experimental unexplored multiphoton interference phenomenon. Second, we find that computing the results of such experiments is #P-hard, which means it is a classically intractable problem dealing with the computation of a matrix function Permanent and its generalization Hafnian. Third, we explain how a recent no-go result applies generally to linear optical quantum experiments, thus revealing important insights into quantum state generation with current photonic technology. Fourth, we show how to describe quantum protocols such as entanglement swapping in a graphical way. The uncovered bridge between quantum experiments and graph theory offers another perspective on a widely used technology and immediately raises many follow-up questions.
Collapse
|
7
|
Flamini F, Spagnolo N, Sciarrino F. Photonic quantum information processing: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:016001. [PMID: 30421725 DOI: 10.1088/1361-6633/aad5b2] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.
Collapse
Affiliation(s)
- Fulvio Flamini
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | | | | |
Collapse
|