1
|
Wang C, Gupta A, Singh SK, Madathil PT, Chung YJ, Pfeiffer LN, Baldwin KW, Winkler R, Shayegan M. Fractional Quantum Hall State at Filling Factor ν=1/4 in Ultra-High-Quality GaAs Two-Dimensional Hole Systems. PHYSICAL REVIEW LETTERS 2023; 131:266502. [PMID: 38215363 DOI: 10.1103/physrevlett.131.266502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
Single-component fractional quantum Hall states (FQHSs) at even-denominator filling factors may host non-Abelian quasiparticles that are considered to be building blocks of topological quantum computers. Such states, however, are rarely observed in the lowest-energy Landau level, namely at filling factors ν<1. Here, we report evidence for an even-denominator FQHS at ν=1/4 in ultra-high-quality two-dimensional hole systems confined to modulation-doped GaAs quantum wells. We observe a deep minimum in the longitudinal resistance at ν=1/4, superimposed on a highly insulating background, suggesting a close competition between the ν=1/4 FQHS and the magnetic-field-induced, pinned Wigner solid states. Our experimental observations are consistent with the very recent theoretical calculations that predict that substantial Landau level mixing, caused by the large hole effective mass, can induce composite fermion pairing and lead to a non-Abelian FQHS at ν=1/4. Our results demonstrate that Landau level mixing can provide a very potent means for tuning the interaction between composite fermions and creating new non-Abelian FQHSs.
Collapse
Affiliation(s)
- Chengyu Wang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - P T Madathil
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
2
|
Petrescu M, Berkson-Korenberg Z, Vijayakrishnan S, West KW, Pfeiffer LN, Gervais G. Large composite fermion effective mass at filling factor 5/2. Nat Commun 2023; 14:7250. [PMID: 37945585 PMCID: PMC10636205 DOI: 10.1038/s41467-023-42986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The 5/2 fractional quantum Hall effect in the second Landau level of extremely clean two-dimensional electron gases has attracted much attention due to its topological order predicted to host quasiparticles that obey non-Abelian quantum statistics and could serve as a basis for fault-tolerant quantum computations. While previous works have establish the Fermi liquid (FL) nature of its putative composite fermion (CF) normal phase, little is known regarding its thermodynamics properties and as a result its effective mass is entirely unknown. Here, we report on time-resolved specific heat measurements at filling factor 5/2, and we examine the ratio of specific heat to temperature as a function of temperature. Combining these specific heat data with existing longitudinal thermopower data measuring the entropy in the clean limit we find that, unless a phase transition/crossover gives rise to large specific heat anomaly, both datasets point towards a large effective mass in the FL phase of CFs at 5/2. We estimate the effective-to-bare mass ratio m*/me to be ranging from ~ 2 to 4, which is two to three times larger than previously measured values in the first Landau level.
Collapse
Affiliation(s)
- M Petrescu
- Department of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada
| | | | | | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - G Gervais
- Department of Physics, McGill University, Montreal, Quebec, H3A 2T8, Canada.
| |
Collapse
|
3
|
Hossain MS, Ma MK, Chung YJ, Singh SK, Gupta A, West KW, Baldwin KW, Pfeiffer LN, Winkler R, Shayegan M. Valley-Tunable Even-Denominator Fractional Quantum Hall State in the Lowest Landau Level of an Anisotropic System. PHYSICAL REVIEW LETTERS 2023; 130:126301. [PMID: 37027870 DOI: 10.1103/physrevlett.130.126301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
Fractional quantum Hall states (FQHSs) at even-denominator Landau level filling factors (ν) are of prime interest as they are predicted to host exotic, topological states of matter. We report here the observation of a FQHS at ν=1/2 in a two-dimensional electron system of exceptionally high quality, confined to a wide AlAs quantum well, where the electrons can occupy multiple conduction-band valleys with an anisotropic effective mass. The anisotropy and multivalley degree of freedom offer an unprecedented tunability of the ν=1/2 FQHS as we can control both the valley occupancy via the application of in-plane strain, and the ratio between the strengths of the short- and long-range Coulomb interaction by tilting the sample in the magnetic field to change the electron charge distribution. Thanks to this tunability, we observe phase transitions from a compressible Fermi liquid to an incompressible FQHS and then to an insulating phase as a function of tilt angle. We find that this evolution and the energy gap of the ν=1/2 FQHS depend strongly on valley occupancy.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Meng K Ma
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - S K Singh
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - A Gupta
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - R Winkler
- Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA
| | - M Shayegan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
4
|
Hossain MS, Mueed MA, Ma MK, Villegas Rosales KA, Chung YJ, Pfeiffer LN, West KW, Baldwin KW, Shayegan M. Precise Experimental Test of the Luttinger Theorem and Particle-Hole Symmetry for a Strongly Correlated Fermionic System. PHYSICAL REVIEW LETTERS 2020; 125:046601. [PMID: 32794794 DOI: 10.1103/physrevlett.125.046601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
A fundamental concept in physics is the Fermi surface, the constant-energy surface in momentum space encompassing all the occupied quantum states at absolute zero temperature. In 1960, Luttinger postulated that the area enclosed by the Fermi surface should remain unaffected even when electron-electron interaction is turned on, so long as the interaction does not cause a phase transition. Understanding what determines the Fermi surface size is a crucial and yet unsolved problem in strongly interacting systems such as high-T_{c} superconductors. Here we present a precise test of the Luttinger theorem for a two-dimensional Fermi liquid system where the exotic quasiparticles themselves emerge from the strong interaction, namely, for the Fermi sea of composite fermions (CFs). Via direct, geometric resonance measurements of the CFs' Fermi wave vector down to very low electron densities, we show that the Luttinger theorem is obeyed over a significant range of interaction strengths, in the sense that the Fermi sea area is determined by the density of the minority carriers in the lowest Landau level. Our data also address the ongoing debates on whether or not CFs obey particle-hole symmetry, and if they are Dirac particles. We find that particle-hole symmetry is obeyed, but the measured Fermi sea area differs quantitatively from that predicted by the Dirac model for CFs.
Collapse
Affiliation(s)
- Md Shafayat Hossain
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M A Mueed
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M K Ma
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K A Villegas Rosales
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Y J Chung
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - L N Pfeiffer
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W West
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - K W Baldwin
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - M Shayegan
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|