1
|
Wang Y, Xia S, Lin X, Pan O, Chen J, Su S. Finite-time measurement-driven Otto cycle. Phys Rev E 2024; 110:L052102. [PMID: 39690646 DOI: 10.1103/physreve.110.l052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/08/2024] [Indexed: 12/19/2024]
Abstract
A novel quantum Otto heat engine that operates within a finite-time framework by incorporating measurement procedures is proposed. Departing from conventional quantum Otto heat engines, our model replaces the heat absorption process from a high-temperature source with invasive measurement. Moreover, we consider finite-time thermodynamic manipulation in each step. Our model focuses on exploring the effects of the angles of the measurement basis on the Bloch sphere and the timings of time-dependent evolutions on thermodynamic properties, with a specific emphasis on the trade-off between the power output and the efficiency. Our findings demonstrate that by carefully selecting specific parameters, the efficiency and overall performance of this heat engine can be significantly enhanced.
Collapse
|
2
|
Anka MF, de Oliveira TR, Jonathan D. Work and efficiency fluctuations in a quantum Otto cycle with idle levels. Phys Rev E 2024; 109:064129. [PMID: 39021004 DOI: 10.1103/physreve.109.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
We study the performance of a quantum Otto heat engine with two spins coupled by a Heisenberg interaction, taking into account not only the mean values of work and efficiency but also their fluctuations. We first show that, for this system, the output work and its fluctuations are directly related to the magnetization and magnetic susceptibility of the system at equilibrium with either heat bath. We analyze the regions where the work extraction can be done with low relative fluctuation for a given range of temperatures, while still achieving an efficiency higher than that of a single spin system heat engine. In particular, we find that, due to the presence of "idle" levels, an increase in the interspin coupling can either increase or decrease fluctuations, depending on the other parameters. In all cases, however, we find that the relative fluctuations in work or efficiency remain large, implying that this microscopic engine is not very reliable as a source of work.
Collapse
|
3
|
Perna G, Calzetta E. Limits on quantum measurement engines. Phys Rev E 2024; 109:044102. [PMID: 38755920 DOI: 10.1103/physreve.109.044102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 05/18/2024]
Abstract
A quantum measurement involves energy exchanges between the system to be measured and the measuring apparatus. Some of them involve energy losses, for example because energy is dissipated into the environment or is spent in recording the measurement outcome. Moreover, these processes take time. For this reason, these exchanges must be taken into account in the analysis of a quantum measurement engine, and set limits to its efficiency and power. We propose a quantum engine based on a spin 1/2 particle in a magnetic field and study its limitations due to the quantum nature of the evolution. The coupling with the electromagnetic vacuum is taken into account and plays the role of a measurement apparatus. We fully study its dynamics, work, power, and efficiency.
Collapse
Affiliation(s)
- Guillermo Perna
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| | - Esteban Calzetta
- Departamento de Física, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina and CONICET - Universidad de Buenos Aires, Ciudad Universitaria, Ciudad de Buenos Aires CP 1428, Argentina
| |
Collapse
|
4
|
Ferreira J, Jin T, Mannhart J, Giamarchi T, Filippone M. Transport and Nonreciprocity in Monitored Quantum Devices: An Exact Study. PHYSICAL REVIEW LETTERS 2024; 132:136301. [PMID: 38613271 DOI: 10.1103/physrevlett.132.136301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/03/2024] [Accepted: 01/25/2024] [Indexed: 04/14/2024]
Abstract
We study noninteracting fermionic systems undergoing continuous monitoring and driven by biased reservoirs. Averaging over the measurement outcomes, we derive exact formulas for the particle and heat flows in the system. We show that these currents feature competing elastic and inelastic components, which depend nontrivially on the monitoring strength γ. We highlight that monitor-induced inelastic processes lead to nonreciprocal currents, allowing one to extract work from measurements without active feedback control. We illustrate our formalism with two distinct monitoring schemes providing measurement-induced power or cooling. Optimal performances are found for values of the monitoring strength γ, which are hard to address with perturbative approaches.
Collapse
Affiliation(s)
- João Ferreira
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
| | - Tony Jin
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jochen Mannhart
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, École de Physique University of Geneva, 1211 Geneva, Switzerland
| | - Michele Filippone
- IRIG-MEM-L_Sim, Université Grenoble Alpes, CEA, Grenoble INP, Grenoble 38000, France
| |
Collapse
|
5
|
El Makouri A, Slaoui A, Ahl Laamara R. Monitored nonadiabatic and coherent-controlled quantum unital Otto heat engines: First four cumulants. Phys Rev E 2023; 108:044114. [PMID: 37978648 DOI: 10.1103/physreve.108.044114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 11/19/2023]
Abstract
Recently, measurement-based quantum thermal machines have drawn more attention in the field of quantum thermodynamics. However, the previous results on quantum Otto heat engines were either limited to special unital and nonunital channels in the bath stages, or a specific driving protocol at the work strokes and assuming the cycle being time-reversal symmetric, i.e., V^{†}=U (or V=U). In this paper, we consider a single spin-1/2 quantum Otto heat engine, by first replacing one of the heat baths by an arbitrary unital channel, and then we give the exact analytical expression of the characteristic function from which all the cumulants of heat and work emerge. We prove that under the effect of monitoring, ν_{2}>ν_{1} is a necessary condition for positive work, either for a symmetric or asymmetric-driven Otto cycle. Furthermore, going beyond the average we show that the ratio of the fluctuations of work and heat is lower and upper-bounded when the system is working as a heat engine. However, differently from the previous results in the literature, we consider the third and fourth cumulants as well. It is shown that the ratio of the third (fourth) cumulants of work and heat is not upper-bounded by unity nor lower-bounded by the third (fourth) power of the efficiency, as is the case for the ratio of fluctuations. Finally, we consider applying a specific unital map that plays the role of a heat bath in a coherently superposed manner, and we show the role of the initial coherence of the control qubit on efficiency, on the average work and its relative fluctuations.
Collapse
Affiliation(s)
- Abdelkader El Makouri
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdallah Slaoui
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Rachid Ahl Laamara
- LPHE-Modeling and Simulation, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Centre of Physics and Mathematics, CPM, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
6
|
Fadler P, Friedenberger A, Lutz E. Efficiency at Maximum Power of a Carnot Quantum Information Engine. PHYSICAL REVIEW LETTERS 2023; 130:240401. [PMID: 37390443 DOI: 10.1103/physrevlett.130.240401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/17/2023] [Indexed: 07/02/2023]
Abstract
Optimizing the performance of thermal machines is an essential task of thermodynamics. We here consider the optimization of information engines that convert information about the state of a system into work. We concretely introduce a generalized finite-time Carnot cycle for a quantum information engine and optimize its power output in the regime of low dissipation. We derive a general formula for its efficiency at maximum power valid for arbitrary working media. We further investigate the optimal performance of a qubit information engine subjected to weak energy measurements.
Collapse
Affiliation(s)
- Paul Fadler
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Alexander Friedenberger
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Eric Lutz
- Institute for Theoretical Physics I, University of Stuttgart, D-70550 Stuttgart, Germany
| |
Collapse
|
7
|
Koshihara K, Yuasa K. Quantum ergotropy and quantum feedback control. Phys Rev E 2023; 107:064109. [PMID: 37464633 DOI: 10.1103/physreve.107.064109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/08/2023] [Indexed: 07/20/2023]
Abstract
We study the energy extraction from and charging to a finite-dimensional quantum system by general quantum operations. We prove that the changes in energy induced by unital quantum operations are limited by the ergotropy and charging bounds for unitary quantum operations. This implies that, in order to break the ergotropy bound for unitary quantum operations, one needs to perform a quantum operation with feedback control. We also show that the ergotropy bound for unital quantum operations, applied to initial thermal equilibrium states, is tighter than the inequality representing the standard second law of thermodynamics without feedback control.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
8
|
Arrachea L. Energy dynamics, heat production and heat-work conversion with qubits: toward the development of quantum machines. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023; 86:036501. [PMID: 36603220 DOI: 10.1088/1361-6633/acb06b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
We present an overview of recent advances in the study of energy dynamics and mechanisms for energy conversion in qubit systems with special focus on realizations in superconducting quantum circuits. We briefly introduce the relevant theoretical framework to analyze heat generation, energy transport and energy conversion in these systems with and without time-dependent driving considering the effect of equilibrium and non-equilibrium environments. We analyze specific problems and mechanisms under current investigation in the context of qubit systems. These include the problem of energy dissipation and possible routes for its control, energy pumping between driving sources and heat pumping between reservoirs, implementation of thermal machines and mechanisms for energy storage. We highlight the underlying fundamental phenomena related to geometrical and topological properties, as well as many-body correlations. We also present an overview of recent experimental activity in this field.
Collapse
Affiliation(s)
- Liliana Arrachea
- Escuela de Ciencia y Tecnología and ICIFI, Universidad de San Martín, Av. 25 de Mayo y Francia, 1650 Buenos Aires, Argentina
| |
Collapse
|
9
|
Bhandari B, Czupryniak R, Erdman PA, Jordan AN. Measurement-Based Quantum Thermal Machines with Feedback Control. ENTROPY (BASEL, SWITZERLAND) 2023; 25:204. [PMID: 36832571 PMCID: PMC9955564 DOI: 10.3390/e25020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
We investigated coupled-qubit-based thermal machines powered by quantum measurements and feedback. We considered two different versions of the machine: (1) a quantum Maxwell's demon, where the coupled-qubit system is connected to a detachable single shared bath, and (2) a measurement-assisted refrigerator, where the coupled-qubit system is in contact with a hot and cold bath. In the quantum Maxwell's demon case, we discuss both discrete and continuous measurements. We found that the power output from a single qubit-based device can be improved by coupling it to the second qubit. We further found that the simultaneous measurement of both qubits can produce higher net heat extraction compared to two setups operated in parallel where only single-qubit measurements are performed. In the refrigerator case, we used continuous measurement and unitary operations to power the coupled-qubit-based refrigerator. We found that the cooling power of a refrigerator operated with swap operations can be enhanced by performing suitable measurements.
Collapse
Affiliation(s)
- Bibek Bhandari
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
| | - Robert Czupryniak
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, NY 14627, USA
| | - Paolo Andrea Erdman
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195 Berlin, Germany
| | - Andrew N. Jordan
- Institute for Quantum Studies, Chapman University, Orange, CA 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
10
|
Misra A, Opatrný T, Kurizki G. Work extraction from single-mode thermal noise by measurements: How important is information? Phys Rev E 2022; 106:054131. [PMID: 36559367 DOI: 10.1103/physreve.106.054131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Our goal in this article is to elucidate the rapport of work and information in the context of a minimal quantum-mechanical setup: a converter of heat input to work output, the input consisting of a single oscillator mode prepared in a hot thermal state along with a few much colder oscillator modes. The core issues we consider, taking account of the quantum nature of the setup, are as follows: (i) How and to what extent can information act as a work resource or, conversely, be redundant for work extraction? (ii) What is the optimal way of extracting work via information acquired by measurements? (iii) What is the bearing of information on the efficiency-power tradeoff achievable in such setups? We compare the efficiency of work extraction and the limitations of power in our minimal setup by different, generic, measurement strategies of the hot and cold modes. For each strategy, the rapport of work and information extraction is found and the cost of information erasure is allowed for. The possibilities of work extraction without information acquisition, via nonselective measurements, are also analyzed. Overall, we present, by generalizing a method based on optimized homodyning that we have recently proposed, the following insight: extraction of work by observation and feedforward that only measures a small fraction of the input is clearly advantageous to the conceivable alternatives. Our results may become the basis of a practical strategy of converting thermal noise to useful work in optical setups, such as coherent amplifiers of thermal light, as well as in their optomechanical and photovoltaic counterparts.
Collapse
Affiliation(s)
- Avijit Misra
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel and International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, 200444 Shanghai, China
| | - Tomáš Opatrný
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 50, 77146 Olomouc, Czech Republic
| | - Gershon Kurizki
- AMOS and Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Stevens J, Szombati D, Maffei M, Elouard C, Assouly R, Cottet N, Dassonneville R, Ficheux Q, Zeppetzauer S, Bienfait A, Jordan AN, Auffèves A, Huard B. Energetics of a Single Qubit Gate. PHYSICAL REVIEW LETTERS 2022; 129:110601. [PMID: 36154409 DOI: 10.1103/physrevlett.129.110601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Qubits are physical, a quantum gate thus not only acts on the information carried by the qubit but also on its energy. What is then the corresponding flow of energy between the qubit and the controller that implements the gate? Here we exploit a superconducting platform to answer this question in the case of a quantum gate realized by a resonant drive field. During the gate, the superconducting qubit becomes entangled with the microwave drive pulse so that there is a quantum superposition between energy flows. We measure the energy change in the drive field conditioned on the outcome of a projective qubit measurement. We demonstrate that the drive's energy change associated with the measurement backaction can exceed by far the energy that can be extracted by the qubit. This can be understood by considering the qubit as a weak measurement apparatus of the driving field.
Collapse
Affiliation(s)
- J Stevens
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - D Szombati
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - M Maffei
- CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
| | - C Elouard
- QUANTIC team, INRIA de Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - R Assouly
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - N Cottet
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - R Dassonneville
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Q Ficheux
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - S Zeppetzauer
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - A Bienfait
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - A N Jordan
- Institute for Quantum Studies, Chapman University, 1 University Drive, Orange, California 92866, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - A Auffèves
- CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
| | - B Huard
- Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| |
Collapse
|
12
|
Cerisola F, Sapienza F, Roncaglia AJ. Heat engines with single-shot deterministic work extraction. Phys Rev E 2022; 106:034135. [PMID: 36266866 DOI: 10.1103/physreve.106.034135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
We introduce heat engines working in the nanoregime that allow one to extract a finite amount of deterministic work. Using the resource theory approach to themodynamics, we show that the efficiency of these cycles is strictly smaller than Carnot's, and we associate this difference with a fundamental irreversibility that is present in single-shot transformations. When fluctuations in the extracted work are allowed there is a trade-off between their size and the efficiency. As the size of fluctuations increases so does the efficiency and optimal efficiency is attained for unbounded fluctuations, while a certain amount of deterministic work is drawn from the cycle. Finally, we show that when the working medium is composed of many particles, by creating an amount of correlations between the subsystems that scale logarithmically with their number, Carnot's efficiency can also be approached in the asymptotic limit along with deterministic work extraction.
Collapse
Affiliation(s)
- Federico Cerisola
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
- Department of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Facundo Sapienza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- Department of Statistics, University of California, Berkeley, 367 Evans Hall, Berkeley, California 94720, USA
| | - Augusto J Roncaglia
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina
| |
Collapse
|
13
|
Koshihara K, Yuasa K. Necessity of feedback control for the quantum Maxwell demon in a finite-time steady feedback cycle. Phys Rev E 2022; 106:024134. [PMID: 36109897 DOI: 10.1103/physreve.106.024134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
We revisit quantum Maxwell demon in thermodynamic feedback cycle in the steady-state regime. We derive a generalized version of the Clausius inequality for a finite-time steady feedback cycle with a single heat bath. It is shown to be tighter than previously known ones, and allows us to clarify that feedback control is necessary to violate the standard Clausius inequality.
Collapse
Affiliation(s)
- Kenta Koshihara
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Kazuya Yuasa
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
14
|
Manikandan SK, Elouard C, Murch KW, Auffèves A, Jordan AN. Efficiently fueling a quantum engine with incompatible measurements. Phys Rev E 2022; 105:044137. [PMID: 35590558 DOI: 10.1103/physreve.105.044137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
We propose a quantum harmonic oscillator measurement engine fueled by simultaneous quantum measurements of the noncommuting position and momentum quadratures of the quantum oscillator. The engine extracts work by moving the harmonic trap suddenly, conditioned on the measurement outcomes. We present two protocols for work extraction, respectively based on single-shot and time-continuous quantum measurements. In the single-shot limit, the oscillator is measured in a coherent state basis; the measurement adds an average of one quantum of energy to the oscillator, which is then extracted in the feedback step. In the time-continuous limit, continuous weak quantum measurements of both position and momentum of the quantum oscillator result in a coherent state, whose coordinates diffuse in time. We relate the extractable work to the noise added by quadrature measurements, and present exact results for the work distribution at arbitrary finite time. Both protocols can achieve unit work conversion efficiency in principle.
Collapse
Affiliation(s)
- Sreenath K Manikandan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Cyril Elouard
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- QUANTIC laboratory, INRIA Paris, 2 Rue Simone Iff, 75012 Paris, France
| | - Kater W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California, 92866, USA
| |
Collapse
|
15
|
de Oliveira TR, Jonathan D. Efficiency gain and bidirectional operation of quantum engines with decoupled internal levels. Phys Rev E 2021; 104:044133. [PMID: 34781508 DOI: 10.1103/physreve.104.044133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
We present a mechanism for efficiency increase in quantum heat engines containing internal energy levels that do not couple to the external work sink. The gain is achieved by using these levels to channel heat in a direction opposite to the one dictated by the second law. No quantum coherence, quantum correlations or ergotropy are required. A similar mechanism allows the engine to run "in reverse" and still produce useful work. We illustrate these ideas using a simple quantum Otto cycle in a coupled-spin system. We find this engine also exhibits other counterintuitive phenomenology. For example, its efficiency may increase as the temperature difference between the heat baths decreases. Conversely, it may cease to operate if the hotter bath becomes too hot or the colder bath too cold.
Collapse
Affiliation(s)
- Thiago R de Oliveira
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| | - Daniel Jonathan
- Instituto de Física, Universidade Federal Fluminense, Gragoatá 24210-346, Niterói, RJ, Brazil
| |
Collapse
|
16
|
Purves T, Short AJ. Channels, measurements, and postselection in quantum thermodynamics. Phys Rev E 2021; 104:014111. [PMID: 34412318 DOI: 10.1103/physreve.104.014111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
We analyze the benefit, in terms of extracting work, of having a single use of a quantum channel or measurement in quantum thermodynamics. This highlights a connection between unital and catalytic channels, and some subtleties concerning the conditional work cost of implementing a measurement given that a certain result was obtained. We also consider postselected measurements and show that any nontrivial postselection leads to an unbounded work benefit.
Collapse
Affiliation(s)
- Tom Purves
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| | - Anthony J Short
- H.H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
| |
Collapse
|
17
|
Opatrný T, Misra A, Kurizki G. Work Generation from Thermal Noise by Quantum Phase-Sensitive Observation. PHYSICAL REVIEW LETTERS 2021; 127:040602. [PMID: 34355968 DOI: 10.1103/physrevlett.127.040602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
We put forward the concept of work extraction from thermal noise by phase-sensitive (homodyne) measurements of the noisy input followed by (outcome-dependent) unitary manipulations of the postmeasured state. For optimized measurements, noise input with more than one quantum on average is shown to yield heat-to-work conversion with efficiency and power that grow with the mean number of input quanta, the efficiency and the inverse temperature of the detector. This protocol is shown to be advantageous compared to common models of information and heat engines.
Collapse
Affiliation(s)
- Tomas Opatrný
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 50, 77146 Olomouc, Czech Republic
| | - Avijit Misra
- International Center of Quantum Artificial Intelligence for Science and Technology (QuArtist) and Department of Physics, Shanghai University, 200444 Shanghai, China
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gershon Kurizki
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
18
|
Liu J, Segal D. Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators. Phys Rev E 2021; 103:032138. [PMID: 33862758 DOI: 10.1103/physreve.103.032138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/04/2021] [Indexed: 11/07/2022]
Abstract
The thermodynamic uncertainty relation, originally derived for classical Markov-jump processes, provides a tradeoff relation between precision and dissipation, deepening our understanding of the performance of quantum thermal machines. Here, we examine the interplay of quantum system coherences and heat current fluctuations on the validity of the thermodynamics uncertainty relation in the quantum regime. To achieve the current statistics, we perform a full counting statistics simulation of the Redfield quantum master equation. We focus on steady-state quantum absorption refrigerators where nonzero coherence between eigenstates can either suppress or enhance the cooling power, compared with the incoherent limit. In either scenario, we find enhanced relative noise of the cooling power (standard deviation of the power over the mean) in the presence of system coherence, thereby corroborating the thermodynamic uncertainty relation. Our results indicate that fluctuations necessitate consideration when assessing the performance of quantum coherent thermal machines.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Dvira Segal
- Department of Chemistry and Centre for Quantum Information and Quantum Control, University of Toronto, 80 Saint George Street, Toronto, Ontario, M5S 3H6, Canada.,Department of Physics, 60 Saint George Street, University of Toronto, Toronto, Ontario, Canada M5S 1A7
| |
Collapse
|
19
|
Bresque L, Camati PA, Rogers S, Murch K, Jordan AN, Auffèves A. Two-Qubit Engine Fueled by Entanglement and Local Measurements. PHYSICAL REVIEW LETTERS 2021; 126:120605. [PMID: 33834814 DOI: 10.1103/physrevlett.126.120605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
We introduce a two-qubit engine that is powered by entanglement and local measurements. Energy is extracted from the detuned qubits coherently exchanging a single excitation. Generalizing to an N-qubit chain, we show that the low energy of the first qubit can be up-converted to an arbitrarily high energy at the last qubit by successive neighbor swap operations and local measurements. We finally model the local measurement as the entanglement of a qubit with a meter, and we identify the fuel as the energetic cost to erase the correlations between the qubits. Our findings extend measurement-powered engines to composite working substances and provide a microscopic interpretation of the fueling mechanism.
Collapse
Affiliation(s)
- Léa Bresque
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Patrice A Camati
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Spencer Rogers
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Kater Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - Andrew N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| | - Alexia Auffèves
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
20
|
Chand S, Dasgupta S, Biswas A. Finite-time performance of a single-ion quantum Otto engine. Phys Rev E 2021; 103:032144. [PMID: 33862721 DOI: 10.1103/physreve.103.032144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
We study how a quantum heat engine based on a single trapped ion performs in finite time. The always-on thermal environment acts like the hot bath, while the motional degree of freedom of the ion plays the role of the effective cold bath. The hot isochoric stroke is implemented via the interaction of the ion with its hot environment, while a projective measurement of the internal state of the ion is performed as an equivalent to the cold isochoric stroke. The expansion and compression strokes are implemented via suitable change in applied magnetic field. We study in detail how the finite duration of each stroke affects the engine performance. We show that partial thermalization can in fact enhance the efficiency of the engine, due to the residual coherence, whereas faster expansion and compression strokes increase the inner friction and therefore reduce the efficiency.
Collapse
Affiliation(s)
- Suman Chand
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Shubhrangshu Dasgupta
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Asoka Biswas
- Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
21
|
Carollo F, Brandner K, Lesanovsky I. Nonequilibrium Many-Body Quantum Engine Driven by Time-Translation Symmetry Breaking. PHYSICAL REVIEW LETTERS 2020; 125:240602. [PMID: 33412035 DOI: 10.1103/physrevlett.125.240602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Quantum many-body systems out of equilibrium can host intriguing phenomena such as transitions to exotic dynamical states. Although this emergent behaviour can be observed in experiments, its potential for technological applications is largely unexplored. Here, we investigate the impact of collective effects on quantum engines that extract mechanical work from a many-body system. Using an optomechanical cavity setup with an interacting atomic gas as a working fluid, we demonstrate theoretically that such engines produce work under periodic driving. The stationary cycle of the working fluid features nonequilibrium phase transitions, resulting in abrupt changes of the work output. Remarkably, we find that our many-body quantum engine operates even without periodic driving. This phenomenon occurs when its working fluid enters a phase that breaks continuous time-translation symmetry: The emergent time-crystalline phase can sustain the motion of a load generating mechanical work. Our findings pave the way for designing novel nonequilibrium quantum machines.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Kay Brandner
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
22
|
Dann R, Kosloff R, Salamon P. Quantum Finite-Time Thermodynamics: Insight from a Single Qubit Engine. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1255. [PMID: 33287023 PMCID: PMC7712823 DOI: 10.3390/e22111255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 02/01/2023]
Abstract
Incorporating time into thermodynamics allows for addressing the tradeoff between efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from first principles, based on the quantum theory of open systems. We study the quantum origin of irreversibility, originating from heat transport, quantum friction, and thermalization in the presence of external driving. We construct various finite-time engine cycles that are based on the Otto and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of entropy production.
Collapse
Affiliation(s)
- Roie Dann
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Ronnie Kosloff
- The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Peter Salamon
- Department of Mathematics and Statistics, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-7720, USA;
| |
Collapse
|
23
|
Carollo F, Gambetta FM, Brandner K, Garrahan JP, Lesanovsky I. Nonequilibrium Quantum Many-Body Rydberg Atom Engine. PHYSICAL REVIEW LETTERS 2020; 124:170602. [PMID: 32412298 DOI: 10.1103/physrevlett.124.170602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/16/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
The standard approach to quantum engines is based on equilibrium systems and on thermodynamic transformations between Gibbs states. However, nonequilibrium quantum systems offer enhanced experimental flexibility in the control of their parameters and, if used as engines, a more direct interpretation of the type of work they deliver. Here we introduce an out-of-equilibrium quantum engine inspired by recent experiments with cold atoms. Our system is connected to a single environment and produces mechanical work from many-body interparticle interactions arising between atoms in highly excited Rydberg states. As such, it is not a heat engine but an isothermal one. We perform many-body simulations to show that this system can produce work. The setup we introduce and investigate represents a promising platform for devising new types of microscopic machines and for exploring quantum effects in thermodynamic processes.
Collapse
Affiliation(s)
- Federico Carollo
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Filippo M Gambetta
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Kay Brandner
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
- Department of Physics, Keio University, 3-14-1 Hiyoshi, Yokohama 223-8522, Japan
| | - Juan P Garrahan
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Igor Lesanovsky
- Institut für Theoretische Physik, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
- School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
24
|
Seah S, Nimmrichter S, Scarani V. Maxwell's Lesser Demon: A Quantum Engine Driven by Pointer Measurements. PHYSICAL REVIEW LETTERS 2020; 124:100603. [PMID: 32216402 DOI: 10.1103/physrevlett.124.100603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
We discuss a self-contained spin-boson model for a measurement-driven engine, in which a demon generates work from thermal excitations of a quantum spin via measurement and feedback control. Instead of granting it full direct access to the spin state and to Landauer's erasure strokes for optimal performance, we restrict this demon's action to pointer measurements, i.e., random or continuous interrogations of a damped mechanical oscillator that assumes macroscopically distinct positions depending on the spin state. The engine can reach simultaneously the power and efficiency benchmarks and operate in temperature regimes where quantum Otto engines would fail.
Collapse
Affiliation(s)
- Stella Seah
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Stefan Nimmrichter
- Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
| | - Valerio Scarani
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
25
|
Measurement Induced Synthesis of Coherent Quantum Batteries. Sci Rep 2019; 9:19628. [PMID: 31873161 PMCID: PMC6928017 DOI: 10.1038/s41598-019-56158-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/02/2019] [Indexed: 11/17/2022] Open
Abstract
Quantum coherence represented by a superposition of energy eigenstates is, together with energy, an important resource for quantum technology and thermodynamics. Energy and quantum coherence however, can be complementary. The increase of energy can reduce quantum coherence and vice versa. Recently, it was realized that steady-state quantum coherence could be autonomously harnessed from a cold environment. We propose a conditional synthesis of N independent two-level systems (TLS) with partial quantum coherence obtained from an environment to one coherent system using a measurement able to increase both energy and coherence simultaneously. The measurement process acts here as a Maxwell demon synthesizing the coherent energy of individual TLS to one large coherent quantum battery. The measurement process described by POVM elements is diagonal in energy representation and, therefore, it does not project on states with quantum coherence at all. We discuss various strategies and their efficiency to reach large coherent energy of the battery. After numerical optimization and proof-of-principle tests, it opens way to feasible repeat-until-success synthesis of coherent quantum batteries from steady-state autonomous coherence.
Collapse
|
26
|
Abstract
We consider measurement based single temperature quantum heat engine without feedback control, introduced recently by Yi, Talkner and Kim [Phys. Rev. E96, 022108 (2017)]. Taking the working medium of the engine to be a one-dimensional Heisenberg model of two spins, we calculate the efficiency of the engine undergoing a cyclic process. Starting with two spin-1/2 particles, we investigate the scenario of higher spins also. We show that, for this model of coupled working medium, efficiency can be higher than that of an uncoupled one. However, the relationship between the coupling constant and the efficiency of the engine is rather involved. We find that in the higher spin scenario efficiency can sometimes be negative (this means work has to be done to run the engine cycle) for certain range of coupling constants, in contrast to the aforesaid work of Yi, Talkner and Kim, where they showed that the extracted work is always positive in the absence of coupling. We provide arguments for this negative efficiency in higher spin scenarios. Interestingly, this happens only in the asymmetric scenarios, where the two spins are different. Given these facts, for judiciously chosen conditions, an engine with coupled working medium gives advantage for the efficiency over the uncoupled one.
Collapse
|
27
|
Guff T, Daryanoosh S, Baragiola BQ, Gilchrist A. Power and efficiency of a thermal engine with a coherent bath. Phys Rev E 2019; 100:032129. [PMID: 31639983 DOI: 10.1103/physreve.100.032129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Indexed: 06/10/2023]
Abstract
We consider a quantum engine driven by repeated weak interactions with a heat bath of identical three-level atoms. This model was first introduced by Scully et al. [Science 299, 862 (2003)SCIEAS0036-807510.1126/science.1078955], who showed that coherence between the energy-degenerate ground states serves as a thermodynamic resource that allows operation of a thermal cycle with a coherence-dependent thermalization temperature. We consider a similar engine out of the quasistatic limit and find that the ground-state coherence also determines the rate of thermalization, therefore increasing the output power and the engine efficiency only when the thermalization temperature is reduced; revealing a more nuanced perspective of coherence as a resource. This allows us to optimize the output power by adjusting the coherence and relative stroke durations.
Collapse
Affiliation(s)
- Thomas Guff
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Shakib Daryanoosh
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Ben Q Baragiola
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| | - Alexei Gilchrist
- Centre for Engineered Quantum Systems, Department of Physics and Astronomy, Macquarie University, Sydney NSW 2113, Australia
| |
Collapse
|
28
|
Bernards F, Kleinmann M, Gühne O, Paternostro M. Daemonic Ergotropy: Generalised Measurements and Multipartite Settings. ENTROPY 2019; 21:e21080771. [PMID: 33267484 PMCID: PMC7515299 DOI: 10.3390/e21080771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 11/17/2022]
Abstract
Recently, the concept of daemonic ergotropy has been introduced to quantify the maximum energy that can be obtained from a quantum system through an ancilla-assisted work extraction protocol based on information gain via projective measurements [G. Francica et al., npj Quant. Inf. 3, 12 (2018)]. We prove that quantum correlations are not advantageous over classical correlations if projective measurements are considered. We go beyond the limitations of the original definition to include generalised measurements and provide an example in which this allows for a higher daemonic ergotropy. Moreover, we propose a see-saw algorithm to find a measurement that attains the maximum work extraction. Finally, we provide a multipartite generalisation of daemonic ergotropy that pinpoints the influence of multipartite quantum correlations, and study it for multipartite entangled and classical states.
Collapse
Affiliation(s)
- Fabian Bernards
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Matthias Kleinmann
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Otfried Gühne
- Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3, 57068 Siegen, Germany
| | - Mauro Paternostro
- School of Mathematics and Physics, Queen’s University, Belfast BT7 1NN, UK
- Correspondence:
| |
Collapse
|
29
|
Harrington PM, Tan D, Naghiloo M, Murch KW. Characterizing a Statistical Arrow of Time in Quantum Measurement Dynamics. PHYSICAL REVIEW LETTERS 2019; 123:020502. [PMID: 31386500 DOI: 10.1103/physrevlett.123.020502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/02/2019] [Indexed: 06/10/2023]
Abstract
In both thermodynamics and quantum mechanics, the arrow of time is characterized by the statistical likelihood of physical processes. We characterize this arrow of time for the continuous quantum measurement dynamics of a superconducting qubit. By experimentally tracking individual weak measurement trajectories, we compare the path probabilities of forward and backward-in-time evolution to develop an arrow of time statistic associated with measurement dynamics. We compare the statistics of individual trajectories to ensemble properties showing that the measurement dynamics obeys both detailed and integral fluctuation theorems, thus establishing the consistency between microscopic and macroscopic measurement dynamics.
Collapse
Affiliation(s)
- P M Harrington
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - D Tan
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - M Naghiloo
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - K W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Institute for Materials Science and Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
30
|
Seah S, Nimmrichter S, Scarani V. Nonequilibrium dynamics with finite-time repeated interactions. Phys Rev E 2019; 99:042103. [PMID: 31108604 DOI: 10.1103/physreve.99.042103] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 11/07/2022]
Abstract
We study quantum dynamics in the framework of repeated interactions between a system and a stream of identical probes. We present a coarse-grained master equation that captures the system's dynamics in the natural regime where interactions with different probes do not overlap, but it is otherwise valid for arbitrary values of the interaction strength and mean interaction time. We then apply it to some specific examples. For probes prepared in Gibbs states, such channels have been used to describe thermalization: while this is the case for many choices of parameters, for others one finds out-of-equilibrium states including inverted Gibbs and maximally mixed states. Gapless probes can be interpreted as performing an indirect measurement, and we study the energy transfer associated with this measurement.
Collapse
Affiliation(s)
- Stella Seah
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Stefan Nimmrichter
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - Valerio Scarani
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.,Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| |
Collapse
|
31
|
Buffoni L, Solfanelli A, Verrucchi P, Cuccoli A, Campisi M. Quantum Measurement Cooling. PHYSICAL REVIEW LETTERS 2019; 122:070603. [PMID: 30848614 DOI: 10.1103/physrevlett.122.070603] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Invasiveness of quantum measurements is a genuinely quantum mechanical feature that is not necessarily detrimental: Here we show how quantum measurements can be used to fuel a cooling engine. We illustrate quantum measurement cooling (QMC) by means of a prototypical two-stroke two-qubit engine which interacts with a measurement apparatus and two heat reservoirs at different temperatures. We show that feedback control is not necessary for operation while entanglement must be present in the measurement projectors. We quantify the probability that QMC occurs when the measurement basis is chosen randomly, and find that it can be very large as compared to the probability of extracting energy (heat engine operation), while remaining always smaller than the most useless operation, namely, dumping heat in both baths. These results show that QMC can be very robust to experimental noise. A possible low-temperature solid-state implementation that integrates circuit QED technology with circuit quantum thermodynamics technology is presented.
Collapse
Affiliation(s)
- Lorenzo Buffoni
- Department of Information Engineering, University of Florence, via S. Marta 3, I-50139 Florence, Italy
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Andrea Solfanelli
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Paola Verrucchi
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via Madonna del Piano 10, I-50019 Sesto Fiorentino (FI), Italy
- INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Alessandro Cuccoli
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
| | - Michele Campisi
- Department of Physics and Astronomy, University of Florence, via G. Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- INFN Sezione di Firenze, via G.Sansone 1, I-50019 Sesto Fiorentino (FI), Italy
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|