1
|
Choi H, Kim J, Park J, Lee J, Heo W, Kwon J, Lee SH, Ahmed F, Watanabe K, Taniguchi T, Sun Z, Jo MH, Choi H. Ultrafast Floquet engineering of Fermi-polaron resonances in charge-tunable monolayer WSe 2 devices. Nat Commun 2024; 15:10852. [PMID: 39738012 DOI: 10.1038/s41467-024-55138-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/28/2024] [Indexed: 01/01/2025] Open
Abstract
Fermi polarons are emerging quasiparticles when a bosonic impurity immersed in a fermionic bath. Depending on the boson-fermion interaction strength, the Fermi-polaron resonances exhibit either attractive or repulsive interactions, which impose further experimental challenges on understanding the subtle light-driven dynamics. Here, we report the light-driven dynamics of attractive and repulsive Fermi polarons in monolayer WSe2 devices. Time-resolved polaron resonances are probed using femtosecond below-gap Floquet engineering with tunable exciton-Fermi sea interactions. While conventional optical Stark shifts are observed in the weak interaction regime, the resonance shift of attractive polarons increases, but that of repulsive polarons decreases with increasing the Fermi-sea density. A model Hamiltonian using Chevy ansatz suggests the off-resonant pump excitation influences the free carriers that interact with excitons in an opposite valley, thereby reducing the binding energy of attractive polarons. Our findings may enable coherent Floquet engineering of Bose-Fermi mixtures in ultrafast time scales.
Collapse
Affiliation(s)
- Hyojin Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jinjae Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jiwon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Jekwan Lee
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Wonhyeok Heo
- Semiconductor R&D Center, Samsung Electronics, Suwon, 18848, Korea
| | - Jaehyeon Kwon
- Semiconductor R&D Center, Samsung Electronics, Suwon, 18848, Korea
| | - Suk-Ho Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Korea
| | - Faisal Ahmed
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, Espoo, 02150, Finland
| | - Kenji Watanabe
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Aalto University, Espoo, 02150, Finland
| | - Moon-Ho Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 37673, Korea.
- Center for van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, 37673, Korea.
| | - Hyunyong Choi
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea.
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
2
|
von Milczewski J, Chen X, Imamoglu A, Schmidt R. Superconductivity Induced by Strong Electron-Exciton Coupling in Doped Atomically Thin Semiconductor Heterostructures. PHYSICAL REVIEW LETTERS 2024; 133:226903. [PMID: 39672128 DOI: 10.1103/physrevlett.133.226903] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/11/2024] [Accepted: 09/23/2024] [Indexed: 12/15/2024]
Abstract
We study a mechanism to induce superconductivity in atomically thin semiconductors where excitons mediate an effective attraction between electrons. Our model includes interaction effects beyond the paradigm of phonon-mediated superconductivity and connects to the well-established limits of Bose and Fermi polarons. By accounting for the strong-coupling physics of trions, we find that the effective electron-exciton interaction develops a strong frequency and momentum dependence accompanied by the system undergoing an emerging BCS-BEC crossover from weakly bound s-wave Cooper pairs to a superfluid of bipolarons. Even at strong-coupling the bipolarons remain relatively light, resulting in critical temperatures of up to 10% of the Fermi temperature. This renders heterostructures of two-dimensional materials a promising candidate to realize superconductivity at high critical temperatures set by electron doping and trion binding energies.
Collapse
Affiliation(s)
- Jonas von Milczewski
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xin Chen
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| | | | - Richard Schmidt
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Astrakharchik GE, Ardila LAP, Jachymski K, Negretti A. Many-body bound states and induced interactions of charged impurities in a bosonic bath. Nat Commun 2023; 14:1647. [PMID: 36964151 PMCID: PMC10039032 DOI: 10.1038/s41467-023-37153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/03/2023] [Indexed: 03/26/2023] Open
Abstract
Induced interactions and bound states of charge carriers immersed in a quantum medium are crucial for the investigation of quantum transport. Ultracold atom-ion systems can provide a convenient platform for studying this problem. Here, we investigate the static properties of one and two ionic impurities in a bosonic bath using quantum Monte Carlo methods. We identify three bipolaronic regimes depending on the strength of the atom-ion potential and the number of its two-body bound states: a perturbative regime resembling the situation of a pair of neutral impurities, a non-perturbative regime that loses the quasi-particle character of the former, and a many-body bound state regime that can arise only in the presence of a bound state in the two-body potential. We further reveal strong bath-induced interactions between the two ionic polarons. Our findings show that numerical simulations are indispensable for describing highly correlated impurity models.
Collapse
Affiliation(s)
- Grigory E Astrakharchik
- Department de Física, Universitat Politécnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain.
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, E-08028, Barcelona, Spain.
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Martí i Franquès 1, E-08028, Barcelona, Spain.
| | - Luis A Peña Ardila
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, 30167, Hannover, Germany.
| | - Krzysztof Jachymski
- Faculty of Physics, University of Warsaw, Pasteura 5, PL-02093, Warsaw, Poland
| | - Antonio Negretti
- Zentrum für Optische Quantentechnologien, Fachbereich Physik, Luruper Chaussee 149, D-22761, Hamburg, Germany
| |
Collapse
|
4
|
Ai R, Xia X, Zhang H, Chui KK, Wang J. Orientation-Dependent Interaction between the Magnetic Plasmons in Gold Nanocups and the Excitons in WS 2 Monolayer and Multilayer. ACS NANO 2023; 17:2356-2367. [PMID: 36662164 PMCID: PMC9933610 DOI: 10.1021/acsnano.2c09099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
The integration of two-dimensional transition metal dichalcogenides with plasmonic nanostructures is extremely attractive for the investigation of the resonance coupling between plasmons and excitons, which offers a framework for the study of cavity quantum electrodynamics and is of great potential for exploring diverse quantum technologies. Herein we report on the coupling between the magnetic plasmons supported by individual asymmetric Au nanocups and the excitons in WS2 monolayer and multilayer. Resonance coupling with the strength varying from weak to strong regimes is realized by adjusting the orientation of the individual Au nanocups on WS2 monolayer. Different energy detunings between the magnetic plasmons and the excitons are achieved by varying the size of the Au nanocup. The Rabi splitting energies extracted at zero detuning are up to 106 meV. The anticrossing feature is observed in the measured scattering spectra and simulated absorption spectra, which indicates that the resonance coupling between the magnetic plasmons in the Au nanocup and the excitons in WS2 monolayer enters the strongly coupled regime. A dependence of the coupling strength on the layer number is further observed when the Au nanocups are coupled with WS2 multilayer. Our study suggests a promising approach toward the realization of different coupling regimes in a simple hybrid system made of individual Au nanocups and two-dimensional materials.
Collapse
Affiliation(s)
- Ruoqi Ai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR999077, China
| | - Xinyue Xia
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR999077, China
| | - Han Zhang
- School
of Materials Science and Engineering, Zhejiang
Sci-Tech University, Hangzhou310018, China
| | - Ka Kit Chui
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR999077, China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR999077, China
| |
Collapse
|
5
|
Strongly Interacting Bose Polarons in Two-Dimensional Atomic Gases and Quantum Fluids of Polaritons. ATOMS 2022. [DOI: 10.3390/atoms11010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Polarons are quasiparticles relevant across many fields in physics: from condensed matter to atomic physics. Here, we study the quasiparticle properties of two-dimensional strongly interacting Bose polarons in atomic Bose–Einstein condensates and polariton gases. Our studies are based on the non-self consistent T-matrix approximation adapted to these physical systems. For the atomic case, we study the spectral and quasiparticle properties of the polaron in the presence of a magnetic Feshbach resonance. We show the presence of two polaron branches: an attractive polaron, a low-lying state that appears as a well-defined quasiparticle for weak attractive interactions, and a repulsive polaron, a metastable state that becomes the dominant branch at weak repulsive interactions. In addition, we study a polaron arising from the dressing of a single itinerant electron by a quantum fluid of polaritons in a semiconductor microcavity. We demonstrate the persistence of the two polaron branches whose properties can be controlled over a wide range of parameters by tuning the cavity mode.
Collapse
|
6
|
Fujii K, Hongo M, Enss T. Universal van der Waals Force between Heavy Polarons in Superfluids. PHYSICAL REVIEW LETTERS 2022; 129:233401. [PMID: 36563199 DOI: 10.1103/physrevlett.129.233401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/22/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
We investigate the long-range behavior of the induced Casimir interaction between two spinless heavy impurities, or polarons, in superfluid cold atomic gases. With the help of effective field theory (EFT) of a Galilean invariant superfluid, we show that the induced impurity-impurity potential at long distance universally shows a relativistic van der Waals-like attraction (∼1/r^{7}) resulting from the exchange of two superfluid phonons. We also clarify finite temperature effects from the same two-phonon exchange process. The temperature T introduces the additional length scale c_{s}/T with the speed of sound c_{s}. Leading corrections at finite temperature scale as T^{6}/r for distances r≪c_{s}/T smaller than the thermal length. For larger distances the potential shows a nonrelativistic van der Waals behavior (∼T/r^{6}) instead of the relativistic one. Our EFT formulation applies not only to weakly coupled Bose or Fermi superfluids but also to those composed of strongly correlated unitary fermions with a weakly coupled impurity. The sound velocity controls the magnitude of the van der Waals potential, which we evaluate for the fermionic superfluid in the BCS-BEC crossover.
Collapse
Affiliation(s)
- Keisuke Fujii
- Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Masaru Hongo
- Department of Physics, Niigata University, Niigata 950-2181, Japan
- RIKEN iTHEMS, RIKEN, Wako 351-0198, Japan
| | - Tilman Enss
- Institut für Theoretische Physik, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
7
|
Abstract
Interactions between quasiparticles are of fundamental importance and ultimately determine the macroscopic properties of quantum matter. A famous example is the phenomenon of superconductivity, which arises from attractive electron-electron interactions that are mediated by phonons or even other more exotic fluctuations in the material. Here we introduce mobile exciton impurities into a two-dimensional electron gas and investigate the interactions between the resulting Fermi polaron quasiparticles. We employ multi-dimensional coherent spectroscopy on monolayer WS2, which provides an ideal platform for determining the nature of polaron-polaron interactions due to the underlying trion fine structure and the valley specific optical selection rules. At low electron doping densities, we find that the dominant interactions are between polaron states that are dressed by the same Fermi sea. In the absence of bound polaron pairs (bipolarons), we show using a minimal microscopic model that these interactions originate from a phase-space filling effect, where excitons compete for the same electrons. We furthermore reveal the existence of a bipolaron bound state with remarkably large binding energy, involving excitons in different valleys cooperatively bound to the same electron. Our work lays the foundation for probing and understanding strong electron correlation effects in two-dimensional layered structures such as moiré superlattices. Here, the authors investigate the interactions between Fermi polarons in monolayer WS2 by multi-dimensional coherent spectroscopy, and find that, at low electron doping densities, the dominant interactions are between polaron states that are dressed by the same Fermi sea. They also observe a bipolaron bound state with large binding energy, involving excitons in different valleys cooperatively bound to the same electron.
Collapse
|
8
|
Ding S, Drewsen M, Arlt JJ, Bruun GM. Mediated Interaction between Ions in Quantum Degenerate Gases. PHYSICAL REVIEW LETTERS 2022; 129:153401. [PMID: 36269954 DOI: 10.1103/physrevlett.129.153401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 08/04/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
We explore the interaction between two trapped ions mediated by a surrounding quantum degenerate Bose or Fermi gas. Using perturbation theory valid for weak atom-ion interaction, we show analytically that the interaction mediated by a Bose gas has a power-law behavior for large distances whereas it has a Yukawa form for intermediate distances. For a Fermi gas, the mediated interaction is given by a power law for large density and by a Ruderman-Kittel-Kasuya-Yosida form for low density. For strong atom-ion interaction, we use a diagrammatic theory to demonstrate that the mediated interaction can be a significant addition to the bare Coulomb interaction between the ions, when an atom-ion bound state is close to threshold. Finally, we show that the induced interaction leads to substantial and observable shifts in the ion phonon frequencies.
Collapse
Affiliation(s)
- Shanshan Ding
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Michael Drewsen
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - Jan J Arlt
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
| | - G M Bruun
- Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Christianen A, Cirac JI, Schmidt R. Chemistry of a Light Impurity in a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2022; 128:183401. [PMID: 35594082 DOI: 10.1103/physrevlett.128.183401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Similar to an electron in a solid, an impurity in an atomic Bose-Einstein condensate (BEC) is dressed by excitations from the medium, forming a polaron quasiparticle with modified properties. This impurity can also undergo chemical recombination with atoms from the BEC, a process resonantly enhanced when universal three-body Efimov bound states cross the continuum. To study the interplay between these phenomena, we use a Gaussian state variational method able to describe both Efimov physics and arbitrarily many excitations of the BEC. We show that the polaron cloud contributes to bound state formation, leading to a shift of the Efimov resonance to smaller interaction strengths. This shifted scattering resonance marks the onset of a polaronic instability towards the decay into large Efimov clusters and fast recombination, offering a remarkable example of chemistry in a quantum medium.
Collapse
Affiliation(s)
- Arthur Christianen
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| | - J Ignacio Cirac
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
| | - Richard Schmidt
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, D-80799 Munich, Germany
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Abstract
We investigate the properties of a dilute gas of impurities embedded in an ultracold gas of bosons that forms a Bose–Einstein condensate (BEC). This work focuses mainly on the equation of state (EoS) of the impurity gas at zero temperature and the induced interaction between impurities mediated by the host bath. We use perturbative field-theory approaches, such as Hugenholtz–Pines formalism, in the weakly interacting regime. In turn, for strong interactions, we aim at non-perturbative techniques such as quantum–Monte Carlo (QMC) methods. Our findings agree with experimental observations for an ultra dilute gas of impurities, modeled in the framework of the single impurity problem; however, as the density of impurities increases, systematic deviations are displayed with respect to the one-body Bose polaron problem.
Collapse
|
11
|
Abstract
We present a comprehensive discussion of the ground-state properties of dilute D-dimensional Bose gas interacting with a few static impurities. Assuming the short-ranged character of the boson-impurity interaction, we calculated the energy of three- and two-dimensional Bose systems with one and two impurities immersed.
Collapse
|
12
|
Polaron-Depleton Transition in the Yrast Excitations of a One-Dimensional Bose Gas with a Mobile Impurity. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We present exact numerical data for the lowest-energy momentum eigenstates (yrast states) of a repulsive spin impurity in a one-dimensional Bose gas using full configuration interaction quantum Monte Carlo (FCIQMC). As a stochastic extension of exact diagonalization, it is well suited for the study of yrast states of a lattice-renormalized model for a quantum gas. Yrast states carry valuable information about the dynamic properties of slow-moving mobile impurities immersed in a many-body system. Based on the energies and the first and second-order correlation functions of yrast states, we identify different dynamical regimes and the transitions between them: The polaron regime, where the impurity’s motion is affected by the Bose gas through a renormalized effective mass; a regime of a gray soliton that is weakly correlated with a stationary impurity, and the depleton regime, where the impurity occupies a dark or gray soliton. Extracting the depleton effective mass reveals a super heavy regime where the magnitude of the (negative) depleton mass exceeds the mass of the finite Bose gas.
Collapse
|
13
|
Weakly-Interacting Bose–Bose Mixtures from the Functional Renormalisation Group. CONDENSED MATTER 2022. [DOI: 10.3390/condmat7010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
We provide a detailed presentation of the functional renormalisation group (FRG) approach for weakly-interacting Bose–Bose mixtures, including a complete discussion on the RG equations. To test this approach, we examine thermodynamic properties of balanced three-dimensional Bose–Bose gases at zero and finite temperatures and find a good agreement with related works. We also study ground-state energies of repulsive Bose polarons by examining mixtures in the limit of infinite population imbalance. Finally, we discuss future applications of the FRG to novel problems in Bose–Bose mixtures and related systems.
Collapse
|
14
|
Pruszyńska-Karbownik E, Janczak M, Czyszanowski T. Extended bound states in the continuum in a one-dimensional grating implemented on a distributed Bragg reflector. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:45-52. [PMID: 39635009 PMCID: PMC11501903 DOI: 10.1515/nanoph-2021-0478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/07/2024]
Abstract
Bound states in the continuum (BICs) are observed in optical cavities composed of a high refractive index periodic structure embedded in significantly lower refractive index surroundings, enabling vertical confinement of the grating modes. Here, we propose a vertically nonsymmetric configuration, implemented on a high refractive index bulk substrate with a one-dimensional grating positioned on a distributed Bragg reflector (DBR). In this configuration, the grating modes are leaky, which could prohibit the creation of a BIC if the grating was implemented on uniform substrate. However, the judiciously designed DBR on which the grating is implemented reflects nonzero diffraction orders induced by the grating. We found that the laterally antisymmetric optical modes located at the center of the Brillouin zone of this structure create BICs that are robust against changes in the grating parameters, as long as the DBR reflects the diffraction orders. The configuration enables a high degree of design freedom, facilitating the realization of very high quality factor cavities in conventional all-semiconductor technology.
Collapse
Affiliation(s)
| | - Mikołaj Janczak
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005, Łódź, Poland
| | - Tomasz Czyszanowski
- Institute of Physics, Lodz University of Technology, ul. Wólczańska 217/221, 93-005, Łódź, Poland
| |
Collapse
|
15
|
Will M, Astrakharchik GE, Fleischhauer M. Polaron Interactions and Bipolarons in One-Dimensional Bose Gases in the Strong Coupling Regime. PHYSICAL REVIEW LETTERS 2021; 127:103401. [PMID: 34533353 DOI: 10.1103/physrevlett.127.103401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/03/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Bose polarons, quasiparticles composed of mobile impurities surrounded by cold Bose gas, can experience strong interactions mediated by the many-body environment and form bipolaron bound states. Here we present a detailed study of heavy polarons in a one-dimensional Bose gas by formulating a nonperturbative theory and complementing it with exact numerical simulations. We develop an analytic approach for weak boson-boson interactions and arbitrarily strong impurity-boson couplings. Our approach is based on a mean-field theory that accounts for deformations of the superfluid by the impurities and in this way minimizes quantum fluctuations. The mean-field equations are solved exactly in the Born-Oppenheimer approximation, leading to an analytic expression for the interaction potential of heavy polarons, which is found to be in excellent agreement with quantum Monte Carlo (QMC) results. In the strong coupling limit, the potential substantially deviates from the exponential form valid for weak coupling and has a linear shape at short distances. Taking into account the leading-order Born-Huang corrections, we calculate bipolaron binding energies for impurity-boson mass ratios as low as 3 and find excellent agreement with QMC results.
Collapse
Affiliation(s)
- M Will
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - G E Astrakharchik
- Departament de Física, Universitat Politècnica de Catalunya, Campus Nord B4-B5, E-08034, Barcelona, Spain
| | - M Fleischhauer
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
16
|
Abstract
An impurity immersed in a medium constitutes a canonical scenario applicable in a wide range of fields in physics. Though our understanding has advanced significantly in the past decades, quantum impurities in a bosonic environment are still of considerable theoretical and experimental interest. Here, we discuss the initial dynamics of such impurities, which was recently observed in interferometric experiments. Experimental observations from weak to unitary interactions are presented and compared to a theoretical description. In particular, the transition between two initial dynamical regimes dominated by two-body interactions is analyzed, yielding transition times in clear agreement with the theoretical prediction. Additionally, the distinct time dependence of the coherence amplitude in these regimes is obtained by extracting its power-law exponents. This benchmarks our understanding and suggests new ways of probing dynamical properties of quantum impurities.
Collapse
|
17
|
Pérez-Ríos J. Cold chemistry: a few-body perspective on impurity physics of a single ion in an ultracold bath. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1881637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- J. Pérez-Ríos
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| |
Collapse
|
18
|
Pyzh M, Keiler K, Mistakidis SI, Schmelcher P. Entangling Lattice-Trapped Bosons with a Free Impurity: Impact on Stationary and Dynamical Properties. ENTROPY (BASEL, SWITZERLAND) 2021; 23:290. [PMID: 33652970 PMCID: PMC7996946 DOI: 10.3390/e23030290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/07/2023]
Abstract
We address the interplay of few lattice trapped bosons interacting with an impurity atom in a box potential. For the ground state, a classification is performed based on the fidelity allowing to quantify the susceptibility of the composite system to structural changes due to the intercomponent coupling. We analyze the overall response at the many-body level and contrast it to the single-particle level. By inspecting different entropy measures we capture the degree of entanglement and intraspecies correlations for a wide range of intra- and intercomponent interactions and lattice depths. We also spatially resolve the imprint of the entanglement on the one- and two-body density distributions showcasing that it accelerates the phase separation process or acts against spatial localization for repulsive and attractive intercomponent interactions, respectively. The many-body effects on the tunneling dynamics of the individual components, resulting from their counterflow, are also discussed. The tunneling period of the impurity is very sensitive to the value of the impurity-medium coupling due to its effective dressing by the few-body medium. Our work provides implications for engineering localized structures in correlated impurity settings using species selective optical potentials.
Collapse
Affiliation(s)
- Maxim Pyzh
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
| | - Kevin Keiler
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
| | - Simeon I. Mistakidis
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
| | - Peter Schmelcher
- Center for Optical Quantum Technologies, Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany; (M.P.); (K.K.); (S.I.M.)
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
19
|
Camacho-Guardian A, Bastarrachea-Magnani MA, Bruun GM. Mediated Interactions and Photon Bound States in an Exciton-Polariton Mixture. PHYSICAL REVIEW LETTERS 2021; 126:017401. [PMID: 33480782 DOI: 10.1103/physrevlett.126.017401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/13/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
The quest to realize strongly interacting photons remains an outstanding challenge both for fundamental science and for applications. Here, we explore mediated photon-photon interactions in a highly imbalanced two-component mixture of exciton polaritons in a semiconductor microcavity. Using a theory that takes into account nonperturbative correlations between the excitons as well as strong light-matter coupling, we demonstrate the high tunability of an effective interaction between quasiparticles formed by minority component polaritons interacting with a Bose-Einstein condensate (BEC) of a majority component polaritons. In particular, the interaction, which is mediated by sound modes in the BEC can be made strong enough to support a bound state of two quasiparticles. Since these quasiparticles consist partly of photons, this in turn corresponds to a dimer state of photons propagating through the BEC. This gives rise to a new light transmission line where the dimer wave function is directly mapped onto correlations between the photons. Our findings open new routes for highly nonlinear optical materials and novel hybrid light-matter quantum systems.
Collapse
Affiliation(s)
- A Camacho-Guardian
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
| | | | - G M Bruun
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
20
|
Nielsen KK, Camacho-Guardian A, Bruun GM, Pohl T. Superfluid Flow of Polaron Polaritons above Landau's Critical Velocity. PHYSICAL REVIEW LETTERS 2020; 125:035301. [PMID: 32745417 DOI: 10.1103/physrevlett.125.035301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
We develop a theory for the interaction of light with superfluid optical media, describing the motion of quantum impurities that are created and dragged through the liquid by propagating photons. It is well known that a mobile impurity suffers dissipation due to phonon emission as soon as it moves faster than the speed of sound in the superfluid-Landau's critical velocity. Surprisingly we find that in the present hybrid light-matter setting, polaritonic impurities can be protected against environmental decoherence and be allowed to propagate well above the Landau velocity without jeopardizing the superfluid response of the medium.
Collapse
Affiliation(s)
- K Knakkergaard Nielsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
| | - A Camacho-Guardian
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
| | - G M Bruun
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - T Pohl
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade, 8000 Aarhus C, Denmark
| |
Collapse
|
21
|
Dzsotjan D, Schmidt R, Fleischhauer M. Dynamical Variational Approach to Bose Polarons at Finite Temperatures. PHYSICAL REVIEW LETTERS 2020; 124:223401. [PMID: 32567929 DOI: 10.1103/physrevlett.124.223401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
We discuss the interaction of a mobile quantum impurity with a Bose-Einstein condensate of atoms at finite temperature. To describe the resulting Bose polaron formation we develop a dynamical variational approach applicable to an initial thermal gas of Bogoliubov phonons. We study the polaron formation after switching on the interaction, e.g., by a radio-frequency (rf) pulse from a noninteracting to an interacting state. To treat also the strongly interacting regime, interaction terms beyond the Fröhlich model are taken into account. We calculate the real-time impurity Green's function and discuss its temperature dependence. Furthermore we determine the rf absorption spectrum and find good agreement with recent experimental observations. We predict temperature-induced shifts and a substantial broadening of spectral lines. The analysis of the real-time Green's function reveals a crossover to a linear temperature dependence of the thermal decay rate of Bose polarons as unitary interactions are approached.
Collapse
Affiliation(s)
- David Dzsotjan
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
- Wigner Research Center, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary
| | - Richard Schmidt
- Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Strasse. 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799 München, Germany
| | - Michael Fleischhauer
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
22
|
Li X, Yakaboylu E, Bighin G, Schmidt R, Lemeshko M, Deuchert A. Intermolecular forces and correlations mediated by a phonon bath. J Chem Phys 2020; 152:164302. [PMID: 32357791 DOI: 10.1063/1.5144759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Inspired by the possibility to experimentally manipulate and enhance chemical reactivity in helium nanodroplets, we investigate the effective interaction and the resulting correlations between two diatomic molecules immersed in a bath of bosons. By analogy with the bipolaron, we introduce the biangulon quasiparticle describing two rotating molecules that align with respect to each other due to the effective attractive interaction mediated by the excitations of the bath. We study this system in different parameter regimes and apply several theoretical approaches to describe its properties. Using a Born-Oppenheimer approximation, we investigate the dependence of the effective intermolecular interaction on the rotational state of the two molecules. In the strong-coupling regime, a product-state ansatz shows that the molecules tend to have a strong alignment in the ground state. To investigate the system in the weak-coupling regime, we apply a one-phonon excitation variational ansatz, which allows us to access the energy spectrum. In comparison to the angulon quasiparticle, the biangulon shows shifted angulon instabilities and an additional spectral instability, where resonant angular momentum transfer between the molecules and the bath takes place. These features are proposed as an experimentally observable signature for the formation of the biangulon quasiparticle. Finally, by using products of single angulon and bare impurity wave functions as basis states, we introduce a diagonalization scheme that allows us to describe the transition from two separated angulons to a biangulon as a function of the distance between the two molecules.
Collapse
Affiliation(s)
- Xiang Li
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Enderalp Yakaboylu
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Giacomo Bighin
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Richard Schmidt
- Max Planck Institute of Quantum Optics, Hans-Kopfermann-Str. 1, 85748 Garching, Germany
| | - Mikhail Lemeshko
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andreas Deuchert
- IST Austria (Institute of Science and Technology Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
23
|
Yan ZZ, Ni Y, Robens C, Zwierlein MW. Bose polarons near quantum criticality. Science 2020; 368:190-194. [DOI: 10.1126/science.aax5850] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 03/13/2020] [Indexed: 11/02/2022]
Affiliation(s)
- Zoe Z. Yan
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yiqi Ni
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carsten Robens
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Martin W. Zwierlein
- MIT–Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Kinnunen JJ, Wu Z, Bruun GM. Induced p-Wave Pairing in Bose-Fermi Mixtures. PHYSICAL REVIEW LETTERS 2018; 121:253402. [PMID: 30608823 DOI: 10.1103/physrevlett.121.253402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 06/09/2023]
Abstract
Cooper pairing caused by an induced interaction represents a paradigm in our description of fermionic superfluidity. Here, we present a strong coupling theory for the critical temperature of p-wave pairing between spin polarized fermions immersed in a Bose-Einstein condensate. The fermions interact via the exchange of phonons in the condensate, and our self-consistent theory takes into account the full frequency and momentum dependence of the resulting induced interaction. We demonstrate that both retardation and self-energy effects are important for obtaining a reliable value of the critical temperature. Focusing on experimentally relevant systems, we perform a systematic analysis varying the boson-boson and boson-fermion interaction strength as well as their masses, and identify the most suitable system for realizing a p-wave superfluid. Our results show that such a superfluid indeed is experimentally within reach using light bosons mixed with heavy fermions.
Collapse
Affiliation(s)
- Jami J Kinnunen
- Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
| | - Zhigang Wu
- Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Georg M Bruun
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
25
|
Zhang YC, Walther V, Pohl T. Long-Range Interactions and Symmetry Breaking in Quantum Gases through Optical Feedback. PHYSICAL REVIEW LETTERS 2018; 121:073604. [PMID: 30169082 DOI: 10.1103/physrevlett.121.073604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 06/08/2023]
Abstract
We consider a quasi-two-dimensional atomic Bose-Einstein condensate interacting with a near-resonant laser field that is backreflected onto the condensate by a planar mirror. We show that this single-mirror optical feedback leads to an unusual type of effective interaction between the ultracold atoms giving rise to a rich spectrum of ground states. In particular, we find that it can cause the spontaneous contraction of the quasi-two-dimensional condensate to form a self-bound one-dimensional chain of mesoscopic quantum droplets, and demonstrate that the observation of this exotic effect is within reach of current experiments.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Valentin Walther
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Thomas Pohl
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| |
Collapse
|