1
|
Adão RMR, Caño-García M, Maibohm C, Nieder JB. Photonic polymeric structures and electrodynamics simulation method based on a coupled oscillator finite-difference time-domain (O-FDTD) approach. OPTICS EXPRESS 2021; 29:11903-11916. [PMID: 33984962 DOI: 10.1364/oe.414211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
We use femtosecond laser-based two-photon polymerization (TPP) to fabricate a 2.5D micropillar array. Using an angular detection setup, we characterize the structure's scattering properties and compare the results against simulation results obtained from a novel electrodynamics simulation method. The algorithm employs a modified formulation of the Lorentz Oscillator Model and a leapfrog time differentiation to define a 2D coupled Oscillator Finite-Difference Time-Domain (O-FDTD). We validate the model by presenting several simulation examples that cover a wide range of photonic components, such as multi-mode interference splitters, photonic crystals, ring resonators, and Mach-Zehnder interferometers.
Collapse
|
2
|
Filippone M, Marguerite A, Le Hur K, Fève G, Mora C. Phase-Coherent Dynamics of Quantum Devices with Local Interactions. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E847. [PMID: 33286618 PMCID: PMC7517448 DOI: 10.3390/e22080847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
This review illustrates how Local Fermi Liquid (LFL) theories describe the strongly correlated and coherent low-energy dynamics of quantum dot devices. This approach consists in an effective elastic scattering theory, accounting exactly for strong correlations. Here, we focus on the mesoscopic capacitor and recent experiments achieving a Coulomb-induced quantum state transfer. Extending to out-of-equilibrium regimes, aimed at triggered single electron emission, we illustrate how inelastic effects become crucial, requiring approaches beyond LFLs, shedding new light on past experimental data by showing clear interaction effects in the dynamics of mesoscopic capacitors.
Collapse
Affiliation(s)
- Michele Filippone
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Arthur Marguerite
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Karyn Le Hur
- CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France;
| | - Gwendal Fève
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France;
| | - Christophe Mora
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, F-75013 Paris, France;
| |
Collapse
|
3
|
Sivre E, Duprez H, Anthore A, Aassime A, Parmentier FD, Cavanna A, Ouerghi A, Gennser U, Pierre F. Electronic heat flow and thermal shot noise in quantum circuits. Nat Commun 2019; 10:5638. [PMID: 31822660 PMCID: PMC6904624 DOI: 10.1038/s41467-019-13566-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/08/2019] [Indexed: 11/09/2022] Open
Abstract
When assembling individual quantum components into a mesoscopic circuit, the interplay between Coulomb interaction and charge granularity breaks down the classical laws of electrical impedance composition. Here we explore experimentally the thermal consequences, and observe an additional quantum mechanism of electronic heat transport. The investigated, broadly tunable test-bed circuit is composed of a micron-scale metallic node connected to one electronic channel and a resistance. Heating up the node with Joule dissipation, we separately determine, from complementary noise measurements, both its temperature and the thermal shot noise induced by the temperature difference across the channel. The thermal shot noise predictions are thereby directly validated, and the electronic heat flow is revealed. The latter exhibits a contribution from the channel involving the electrons' partitioning together with the Coulomb interaction. Expanding heat current predictions to include the thermal shot noise, we find a quantitative agreement with experiments.
Collapse
Affiliation(s)
- E Sivre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - H Duprez
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - A Anthore
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France.,Université de Paris, C2N, 91120, Palaiseau, France
| | - A Aassime
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - F D Parmentier
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - A Cavanna
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - A Ouerghi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - U Gennser
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France
| | - F Pierre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120, Palaiseau, France.
| |
Collapse
|
4
|
Duprez H, Sivre E, Anthore A, Aassime A, Cavanna A, Gennser U, Pierre F. Transmitting the quantum state of electrons across a metallic island with Coulomb interaction. Science 2019; 366:1243-1247. [PMID: 31806813 DOI: 10.1126/science.aaw7856] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 11/06/2019] [Indexed: 11/02/2022]
Abstract
The Coulomb interaction generally limits the quantum propagation of electrons. However, it can also provide a mechanism to transfer their quantum state over larger distances. Here, we demonstrate such a form of electron teleportation across a metallic island. This effect originates from the low-temperature freezing of the island's charge Q which, in the presence of a single connected electronic channel, enforces a one-to-one correspondence between incoming and outgoing electrons. Such faithful quantum state imprinting is established between well-separated injection and emission locations and evidenced through two-path interferences in the integer quantum Hall regime. The additional quantum phase of 2πQ/e, where e is the electron charge, may allow for decoherence-free entanglement of propagating electrons, and notably of flying qubits.
Collapse
Affiliation(s)
- H Duprez
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - E Sivre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - A Anthore
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France.,Université de Paris, C2N, 91120 Palaiseau, France
| | - A Aassime
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - A Cavanna
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - U Gennser
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France
| | - F Pierre
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), 91120 Palaiseau, France.
| |
Collapse
|