1
|
Zhang XX, Nagaosa N. Topological spin textures in electronic non-Hermitian systems. Sci Bull (Beijing) 2024; 69:325-333. [PMID: 38129237 DOI: 10.1016/j.scib.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Non-Hermitian systems have been discussed mostly in the context of open systems and nonequilibrium. Recent experimental progress is much from optical, cold-atomic, and classical platforms due to the vast tunability and clear identification of observables. However, their counterpart in solid-state electronic systems in equilibrium remains unmasked although highly desired, where a variety of materials are available, calculations are solidly founded, and accurate spectroscopic techniques can be applied. We demonstrate that, in the surface state of a topological insulator with spin-dependent relaxation due to magnetic impurities, highly nontrivial topological soliton spin textures appear in momentum space. Such spin-channel phenomena are delicately related to the type of non-Hermiticity and correctly reveal the most robust non-Hermitian features detectable spectroscopically. Moreover, the distinct topological soliton objects can be deformed to each other, mediated by topological transitions driven by tuning across a critical direction of doped magnetism. These results not only open a solid-state avenue to exotic spin patterns via spin- and angle-resolved photoemission spectroscopy, but also inspire non-Hermitian dissipation engineering of spins in solids.
Collapse
Affiliation(s)
- Xiao-Xiao Zhang
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan.
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan; Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
2
|
Han J, Mao P, Chen H, Yin JX, Wang M, Chen D, Li Y, Zheng J, Zhang X, Ma D, Ma Q, Yu ZM, Zhou J, Liu CC, Wang Y, Jia S, Weng Y, Hasan MZ, Xiao W, Yao Y. Optical bulk-boundary dichotomy in a quantum spin Hall insulator. Sci Bull (Beijing) 2023:S2095-9273(23)00074-9. [PMID: 36740530 DOI: 10.1016/j.scib.2023.01.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/23/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
The bulk-boundary correspondence is a critical concept in topological quantum materials. For instance, a quantum spin Hall insulator features a bulk insulating gap with gapless helical boundary states protected by the underlying Z2 topology. However, the bulk-boundary dichotomy and distinction are rarely explored in optical experiments, which can provide unique information about topological charge carriers beyond transport and electronic spectroscopy techniques. Here, we utilize mid-infrared absorption micro-spectroscopy and pump-probe micro-spectroscopy to elucidate the bulk-boundary optical responses of Bi4Br4, a recently discovered room-temperature quantum spin Hall insulator. Benefiting from the low energy of infrared photons and the high spatial resolution, we unambiguously resolve a strong absorption from the boundary states while the bulk absorption is suppressed by its insulating gap. Moreover, the boundary absorption exhibits strong polarization anisotropy, consistent with the one-dimensional nature of the topological boundary states. Our infrared pump-probe microscopy further measures a substantially increased carrier lifetime for the boundary states, which reaches one nanosecond scale. The nanosecond lifetime is about one to two orders longer than that of most topological materials and can be attributed to the linear dispersion nature of the helical boundary states. Our findings demonstrate the optical bulk-boundary dichotomy in a topological material and provide a proof-of-principal methodology for studying topological optoelectronics.
Collapse
Affiliation(s)
- Junfeng Han
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Pengcheng Mao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Analysis & Testing Center, Beijing Institute of Technology, Beijing 100081, China
| | - Hailong Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan 523808, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jia-Xin Yin
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton NJ 08544, USA
| | - Maoyuan Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Department of Physics, Xiamen University, Xiamen 361005, China
| | - Dongyun Chen
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Yongkai Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Jingchuan Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Xu Zhang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Dashuai Ma
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Department of Physics, Chongqing University, Chongqing 400044, China
| | - Qiong Ma
- Department of Physics, Boston College, Chestnut Hill MA 02467, USA
| | - Zhi-Ming Yu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Jinjian Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng-Cheng Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Shuang Jia
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yuxiang Weng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton NJ 08544, USA
| | - Wende Xiao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China.
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), School of Physics, Beijing Institute of Technology, Beijing 100081, China; Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314000, China; Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
3
|
Liu P, Eckberg C, Pan L, Zhang P, Wang KL, Lüpke G. Ultrafast optical control of surface and bulk magnetism in magnetic topological insulator/antiferromagnet heterostructure. Sci Rep 2022; 12:12117. [PMID: 35840647 PMCID: PMC9287552 DOI: 10.1038/s41598-022-16205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Optical control of the magnetic properties in topological insulator systems is an important step in applying these materials in ultrafast optoelectronic and spintronic schemes. In this work, we report the experimental observation of photo-induced magnetization dynamics in the magnetically doped topological insulator (MTI)/antiferromagnet (AFM) heterostructure composed of Cr-(Bi,Sb)2Te3/CrSb. Through proximity coupling to the AFM layer, the MTI displays a dramatically enhanced magnetism, with robust perpendicular magnetic anisotropy. When subjected to intense laser irradiation, both surface and bulk magnetism of the MTI are weakened by laser-induced heating of the lattice, however, at the surface, the deleterious heat effect is compensated by the strengthening of Dirac-hole-mediated exchange coupling as demonstrated by an unconventional pump-fluence-dependent exchange-bias effect. Through theoretical analyses, the sizes of exchange coupling energies are estimated in the MTI/AFM bilayer structure. The fundamentally different mechanisms supporting the surface and bulk magnetic order in MTIs allow a novel and distinctive photo-induced transient magnetic state with antiparallel spin configuration, which broadens the understanding of the magnetization dynamics of MTIs under ultrashort and intense optical excitation.
Collapse
Affiliation(s)
- Peiwen Liu
- Department of Applied Science, The College of William and Mary, Williamsburg, VA, 23187, USA
| | - Chris Eckberg
- Department of Electrical Engineering, University of California, Los Angeles, CA, 90095, USA.,Fibertek Inc, Herndon, VA, 20171, USA.,DEVCOM Army Research Laboratory, Adelphi, MD, 20783, USA.,DEVCOM Army Research Laboratory, Playa Vista, CA, 90094, USA
| | - Lei Pan
- Department of Electrical Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Peng Zhang
- Department of Electrical Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Kang L Wang
- Department of Electrical Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Gunter Lüpke
- Department of Applied Science, The College of William and Mary, Williamsburg, VA, 23187, USA.
| |
Collapse
|
5
|
Deng H, Zhang C, Liang W, Zhang XX, Luo SN. Hot carrier dynamics of BiTeI with large Rashba spin splitting. RSC Adv 2022; 12:16479-16485. [PMID: 35754880 PMCID: PMC9167645 DOI: 10.1039/d2ra01978g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
We present a time-resolved ultrafast optical spectroscopy study on BiTeI, a noncentrosymmetric semiconductor with large spin–orbit splitting.
Collapse
Affiliation(s)
- Hongze Deng
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, People's Republic of China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Weizheng Liang
- The Peac Institute of Multiscale Sciences, Chengdu, Sichuan, People's Republic of China
| | - Xi-Xiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sheng-Nian Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|