1
|
Munn BR, Müller EJ, Favre-Bulle I, Scott E, Lizier JT, Breakspear M, Shine JM. Multiscale organization of neuronal activity unifies scale-dependent theories of brain function. Cell 2024; 187:7303-7313.e15. [PMID: 39481379 DOI: 10.1016/j.cell.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/09/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024]
Abstract
Brain recordings collected at different resolutions support distinct signatures of neural coding, leading to scale-dependent theories of brain function. Here, we show that these disparate signatures emerge from a heavy-tailed, multiscale functional organization of neuronal activity observed across calcium-imaging recordings collected from the whole brains of zebrafish and C. elegans as well as from sensory regions in Drosophila, mice, and macaques. Network simulations demonstrate that this conserved hierarchical structure enhances information processing. Finally, we find that this organization is maintained despite significant cross-scale reconfiguration of cellular coordination during behavior. Our findings suggest that this nonlinear organization of neuronal activity is a universal principle conserved for its ability to adaptively link behavior to neural dynamics across multiple spatiotemporal scales while balancing functional resiliency and information processing efficiency.
Collapse
Affiliation(s)
- Brandon R Munn
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| | - Eli J Müller
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia; Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Itia Favre-Bulle
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia; School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, Australia
| | - Ethan Scott
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Michael Breakspear
- School of Psychology, College of Engineering, Science and the Environment, School of Medicine and Public Health, College of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Munn BR, Müller EJ, Medel V, Naismith SL, Lizier JT, Sanders RD, Shine JM. Neuronal connected burst cascades bridge macroscale adaptive signatures across arousal states. Nat Commun 2023; 14:6846. [PMID: 37891167 PMCID: PMC10611774 DOI: 10.1038/s41467-023-42465-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The human brain displays a rich repertoire of states that emerge from the microscopic interactions of cortical and subcortical neurons. Difficulties inherent within large-scale simultaneous neuronal recording limit our ability to link biophysical processes at the microscale to emergent macroscopic brain states. Here we introduce a microscale biophysical network model of layer-5 pyramidal neurons that display graded coarse-sampled dynamics matching those observed in macroscale electrophysiological recordings from macaques and humans. We invert our model to identify the neuronal spike and burst dynamics that differentiate unconscious, dreaming, and awake arousal states and provide insights into their functional signatures. We further show that neuromodulatory arousal can mediate different modes of neuronal dynamics around a low-dimensional energy landscape, which in turn changes the response of the model to external stimuli. Our results highlight the promise of multiscale modelling to bridge theories of consciousness across spatiotemporal scales.
Collapse
Affiliation(s)
- Brandon R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
- Complex Systems, School of Physics, University of Sydney, Sydney, NSW, Australia.
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia.
| | - Eli J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Complex Systems, School of Physics, University of Sydney, Sydney, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| | - Vicente Medel
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago, Chile
| | - Sharon L Naismith
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- School of Psychology, Faculty of Science & Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Joseph T Lizier
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
- School of Computer Science, The University of Sydney, Sydney, NSW, Australia
| | - Robert D Sanders
- Department of Anaesthetics & Institute of Academic Surgery, Royal Prince Alfred Hospital, Camperdown, Australia
- Central Clinical School & NHMRC Clinical Trials Centre, The University of Sydney, Sydney, NSW, Australia
| | - James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Complex Systems, School of Physics, University of Sydney, Sydney, NSW, Australia
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Qi Y, Gong P. Fractional neural sampling as a theory of spatiotemporal probabilistic computations in neural circuits. Nat Commun 2022; 13:4572. [PMID: 35931698 PMCID: PMC9356069 DOI: 10.1038/s41467-022-32279-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
A range of perceptual and cognitive processes have been characterized from the perspective of probabilistic representations and inference. To understand the neural circuit mechanism underlying these probabilistic computations, we develop a theory based on complex spatiotemporal dynamics of neural population activity. We first implement and explore this theory in a biophysically realistic, spiking neural circuit. Population activity patterns emerging from the circuit capture realistic variability or fluctuations of neural dynamics both in time and in space. These activity patterns implement a type of probabilistic computations that we name fractional neural sampling (FNS). We further develop a mathematical model to reveal the algorithmic nature of FNS and its computational advantages for representing multimodal distributions, a major challenge faced by existing theories. We demonstrate that FNS provides a unified account of a diversity of experimental observations of neural spatiotemporal dynamics and perceptual processes such as visual perception inference, and that FNS makes experimentally testable predictions.
Collapse
Affiliation(s)
- Yang Qi
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
4
|
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 2021; 12:6016. [PMID: 34650039 PMCID: PMC8516926 DOI: 10.1038/s41467-021-26268-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.
Collapse
|
5
|
Liu Y, Long X, Martin PR, Solomon SG, Gong P. Lévy walk dynamics explain gamma burst patterns in primate cerebral cortex. Commun Biol 2021; 4:739. [PMID: 34131276 PMCID: PMC8206356 DOI: 10.1038/s42003-021-02256-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Lévy walks describe patterns of intermittent motion with variable step sizes. In complex biological systems, Lévy walks (non-Brownian, superdiffusive random walks) are associated with behaviors such as search patterns of animals foraging for food. Here we show that Lévy walks also describe patterns of oscillatory activity in primate cerebral cortex. We used a combination of empirical observation and modeling to investigate high-frequency (gamma band) local field potential activity in visual motion-processing cortical area MT of marmoset monkeys. We found that gamma activity is organized as localized burst patterns that propagate across the cortical surface with Lévy walk dynamics. Lévy walks are fundamentally different from either global synchronization, or regular propagating waves, because they include large steps that enable activity patterns to move rapidly over cortical modules. The presence of Lévy walk dynamics therefore represents a previously undiscovered mode of brain activity, and implies a novel way for the cortex to compute. We apply a biophysically realistic circuit model to explain that the Lévy walk dynamics arise from critical-state transitions between asynchronous and localized propagating wave states, and that these dynamics yield optimal spatial sampling of the cortical sheet. We hypothesise that Lévy walk dynamics could help the cortex to efficiently process variable inputs, and to find links in patterns of activity among sparsely spiking populations of neurons.
Collapse
Affiliation(s)
- Yuxi Liu
- School of Physics, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Xian Long
- School of Physics, University of Sydney, Sydney, NSW, Australia
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
| | - Paul R Martin
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia
- Discipline of Physiology, University of Sydney, Sydney, NSW, Australia
- Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Samuel G Solomon
- Department of Experimental Psychology, University College London, London, UK
| | - Pulin Gong
- School of Physics, University of Sydney, Sydney, NSW, Australia.
- ARC Centre of Excellence for Integrative Brain Function, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
6
|
Puckett AM, Schira MM, Isherwood ZJ, Victor JD, Roberts JA, Breakspear M. Manipulating the structure of natural scenes using wavelets to study the functional architecture of perceptual hierarchies in the brain. Neuroimage 2020; 221:117173. [PMID: 32682991 PMCID: PMC8239382 DOI: 10.1016/j.neuroimage.2020.117173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
Functional neuroimaging experiments that employ naturalistic stimuli (natural scenes, films, spoken narratives) provide insights into cognitive function "in the wild". Natural stimuli typically possess crowded, spectrally dense, dynamic, and multimodal properties within a rich multiscale structure. However, when using natural stimuli, various challenges exist for creating parametric manipulations with tight experimental control. Here, we revisit the typical spectral composition and statistical dependences of natural scenes, which distinguish them from abstract stimuli. We then demonstrate how to selectively degrade subtle statistical dependences within specific spatial scales using the wavelet transform. Such manipulations leave basic features of the stimuli, such as luminance and contrast, intact. Using functional neuroimaging of human participants viewing degraded natural images, we demonstrate that cortical responses at different levels of the visual hierarchy are differentially sensitive to subtle statistical dependences in natural images. This demonstration supports the notion that perceptual systems in the brain are optimally tuned to the complex statistical properties of the natural world. The code to undertake these stimulus manipulations, and their natural extension to dynamic natural scenes (films), is freely available.
Collapse
Affiliation(s)
- Alexander M Puckett
- School of Psychology, The University of Queensland, Brisbane QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane QLD 4072, Australia.
| | - Mark M Schira
- School of Psychology, University of Wollongong, Wollongong NSW 2522, Australia
| | - Zoey J Isherwood
- School of Psychology, University of Nevada, Reno NV 89557, United States
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College, New York NY 10065, United States
| | - James A Roberts
- Brain Modelling Group, QIMR Berghofer Medical Research Institute, Brisbane QLD 4006, Australia
| | - Michael Breakspear
- Brain and Mind PRC, University of Newcastle, Newcastle NSW 2308, Australia
| |
Collapse
|
7
|
Munn B, Zeater N, Pietersen AN, Solomon SG, Cheong SK, Martin PR, Gong P. Fractal spike dynamics and neuronal coupling in the primate visual system. J Physiol 2020; 598:1551-1571. [DOI: 10.1113/jp278935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Affiliation(s)
- Brandon Munn
- School of Physics University of Sydney Sydney New South Wales 2006 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
| | - Natalie Zeater
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
| | - Alexander N. Pietersen
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
| | - Samuel G. Solomon
- Discipline of Physiology University of Sydney Sydney New South Wales 2006 Australia
- Department of Experimental Psychology University College London London WC1P 0AH UK
| | - Soon Keen Cheong
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
| | - Paul R. Martin
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
- Save Sight Institute Eye Hospital Campus University of Sydney Sydney New South Wales 2001 Australia
- Discipline of Physiology University of Sydney Sydney New South Wales 2006 Australia
| | - Pulin Gong
- School of Physics University of Sydney Sydney New South Wales 2006 Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function University of Sydney Sydney New South Wales 2006 Australia
| |
Collapse
|
8
|
Naturalistic Stimuli in Neuroscience: Critically Acclaimed. Trends Cogn Sci 2019; 23:699-714. [PMID: 31257145 DOI: 10.1016/j.tics.2019.05.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/08/2019] [Accepted: 05/21/2019] [Indexed: 01/12/2023]
Abstract
Cognitive neuroscience has traditionally focused on simple tasks, presented sparsely and using abstract stimuli. While this approach has yielded fundamental insights into functional specialisation in the brain, its ecological validity remains uncertain. Do these tasks capture how brains function 'in the wild', where stimuli are dynamic, multimodal, and crowded? Ecologically valid paradigms that approximate real life scenarios, using stimuli such as films, spoken narratives, music, and multiperson games emerged in response to these concerns over a decade ago. We critically appraise whether this approach has delivered on its promise to deliver new insights into brain function. We highlight the challenges, technological innovations, and clinical opportunities that are required should this field meet its full potential.
Collapse
|