1
|
Kukk E, Niskanen J, Travnikova O, Berholts M, Kooser K, Peng D, Ismail I, Piancastelli MN, Püttner R, Hergerhahn U, Simon M. Orientational anisotropy due to molecular field splitting in sulfur 2p photoemission from CS 2 and SF 6 - theoretical treatment and application to photoelectron recoil. Phys Chem Chem Phys 2024; 26:21810-21820. [PMID: 39101747 DOI: 10.1039/d4cp01463d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Photoelectron recoil strongly modifies the high kinetic energy photoemission spectra from atoms and molecules as well as from surface structures. In most cases studied so far, photoemission from atomic-like inner-shell or core orbitals has been assumed to be isotropic in the molecular frame of reference. However, in the presence of molecular field splitting of p or d orbitals, this assumption is not justified per se. We present a general theoretical treatment, linking the orientational distribution of gas-phase molecules to the electron emission and detection in a certain direction in the laboratory frame. The approach is then applied to the S 2p photoemission from a linear molecule such as CS2 and we investigate, how the predicted orientational anisotropies due to molecular field splitting affect the photoelectron recoil excitations. Lastly, experimental S 2p high-kinetic-energy photoelectron spectra of SF6 and CS2 are analyzed using the modeled recoil lineshapes representing the anisotropy-affected recoil effects.
Collapse
Affiliation(s)
- Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.
| | - Johannes Niskanen
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.
| | - Oksana Travnikova
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Marta Berholts
- Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Kuno Kooser
- Institute of Physics, University of Tartu, W. Ostwaldi 1, EE-50411 Tartu, Estonia
| | - Dawei Peng
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Iyas Ismail
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Maria Novella Piancastelli
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| | - Ralph Püttner
- Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Uwe Hergerhahn
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| |
Collapse
|
2
|
He PL, Hatsagortsyan KZ, Keitel CH. Double-Slit Interference in the Ion Dynamics of Dissociative Photoionization. PHYSICAL REVIEW LETTERS 2023; 131:013201. [PMID: 37478442 DOI: 10.1103/physrevlett.131.013201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/03/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
The ion momentum distribution in the x-ray-induced dissociative photoionization of molecules is investigated, treating the ionization analytically under the Born-Oppenheimer approximation and simulating numerically the ion motion via the Schrödinger equation. The ion-photoelectron entanglement transfers information of the electronic interference to the ion dynamics. As a consequence, the ion momentum distributions of dissociative molecular photoionization present Young's double-slit interference when the photoelectron emission angle is fixed. We demonstrate that double-slit interference signatures persist in the ion longitudinal momentum shift even when the information of the correlated photoelectron is lost, which is the case for heteronuclear molecules when an additional photoelectron recoil momentum arises due to the different ion masses. For the case of sequential double ionization, we show that double-slit interference in the ion dynamics can be utilized for coherent control of the molecular dynamics.
Collapse
Affiliation(s)
- Pei-Lun He
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | | | - Christoph H Keitel
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| |
Collapse
|
3
|
Liu JC, Wang J, Ignatova N, Krasnov P, Gel'mukhanov F, Kimberg V. Role of the Cohen-Fano interference in recoil-induced rotation. J Chem Phys 2023; 158:114304. [PMID: 36948799 DOI: 10.1063/5.0138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We study the rotational dynamics induced by the recoil effect in diatomic molecules using time-resolved two-color x-ray pump-probe spectroscopy. A short pump x-ray pulse ionizes a valence electron inducing the molecular rotational wave packet, whereas the second time-delayed x-ray pulse probes the dynamics. An accurate theoretical description is used for analytical discussions and numerical simulations. Our main attention is paid to the following two interference effects that influence the recoil-induced dynamics: (i) Cohen-Fano (CF) two-center interference between partial ionization channels in diatomics and (ii) interference between the recoil-excited rotational levels manifesting as the rotational revival structures in the time-dependent absorption of the probe pulse. The time-dependent x-ray absorption is computed for the heteronuclear CO and homonuclear N2 molecules as showcases. It is found that the effect of CF interference is comparable with the contribution from independent partial ionization channels, especially for the low photoelectron kinetic energy case. The amplitude of the recoil-induced revival structures for the individual ionization decreases monotonously with a decrease in the photoelectron energy, whereas the amplitude of the CF contribution remains sufficient even at the photoelectron kinetic energy below 1 eV. The profile and intensity of the CF interference depend on the phase difference between the individual ionization channels related to the parity of the molecular orbital emitting the photoelectron. This phenomenon provides a sensitive tool for the symmetry analysis of molecular orbitals.
Collapse
Affiliation(s)
- Ji-Cai Liu
- School of Mathematics and Physics, North China Electric Power University, 102206 Beijing, China
| | - Jian Wang
- School of Mathematics and Physics, North China Electric Power University, 102206 Beijing, China
| | - Nina Ignatova
- International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Pavel Krasnov
- International Research Center of Spectroscopy and Quantum Chemistry-IRC SQC, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Faris Gel'mukhanov
- Division of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Victor Kimberg
- Division of Theoretical Chemistry and Biology, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
4
|
Kukk E, Püttner R, Simon M. Recoil lineshapes in hard X-ray photoelectron spectra of large molecules - free and anchored-on-surface 10-aminodecane-1-thiol. Phys Chem Chem Phys 2022; 24:10465-10474. [PMID: 35441614 DOI: 10.1039/d1cp05777d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Core-level photoelectron spectroscopy of molecules presents unique opportunities but also challenges in the Hard X-ray Spectroscopy (HAXPES) realm. Here we focus on the manifestation of the photoelectron recoil effects in core-level photoemission spectra, using the independent normal-mode oscillators approach that allows to model and investigate the resulting recoil lineshapes for molecules of large sizes with only a slight computational effort. We model the recoil lineshape for N 1s and C 1s photoemission using the 10-aminodecane-1-thiol molecule as an example. It represents also a class of compounds commonly used in creating self-assembled monolayers (SAMs) on surfaces. Attachment of the -SH head group to the surface is modelled here in a simplified way by anchoring the sulfur atom of a single molecule. The effects of the orientation of photoemission in the molecular frame on the recoil lineshape of such anchored molecules are illustrated and discussed as a possible geometry probe. Time-evolution of the recoil excitations from the initial emission site across the entire molecule is also visualized.
Collapse
Affiliation(s)
- Edwin Kukk
- Department of Physics and Astronomy, University of Turku, FI-20014 Turku, Finland.
| | - Ralph Püttner
- Fachbereich Physik, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, F-75005 Paris, France
| |
Collapse
|
5
|
Simon M. Gas phase Photoemission studies in the hard X-ray domain. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202227301003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent results obtained in gas phase photoemission studies are presented in this article with particular emphasis on recoil, Double Core Hole and Post Collision Interaction. These three important effects are not specific to the gas phase and could have more general applications in condensed matter studies.
Collapse
|
6
|
Dowek D, Decleva P. Trends in angle-resolved molecular photoelectron spectroscopy. Phys Chem Chem Phys 2022; 24:24614-24654. [DOI: 10.1039/d2cp02725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this perspective article, main trends of angle-resolved molecular photoelectron spectroscopy in the laboratory up to the molecular frame, in different regimes of light-matter interactions, are highlighted with emphasis on foundations and most recent applications.
Collapse
Affiliation(s)
- Danielle Dowek
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay, 91405 Orsay, France
| | - Piero Decleva
- CNR IOM and Dipartimento DSCF, Università di Trieste, Trieste, Italy
| |
Collapse
|
7
|
Kalha C, Fernando NK, Bhatt P, Johansson FOL, Lindblad A, Rensmo H, Medina LZ, Lindblad R, Siol S, Jeurgens LPH, Cancellieri C, Rossnagel K, Medjanik K, Schönhense G, Simon M, Gray AX, Nemšák S, Lömker P, Schlueter C, Regoutz A. Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:233001. [PMID: 33647896 DOI: 10.1088/1361-648x/abeacd] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Hard x-ray photoelectron spectroscopy (HAXPES) is establishing itself as an essential technique for the characterisation of materials. The number of specialised photoelectron spectroscopy techniques making use of hard x-rays is steadily increasing and ever more complex experimental designs enable truly transformative insights into the chemical, electronic, magnetic, and structural nature of materials. This paper begins with a short historic perspective of HAXPES and spans from developments in the early days of photoelectron spectroscopy to provide an understanding of the origin and initial development of the technique to state-of-the-art instrumentation and experimental capabilities. The main motivation for and focus of this paper is to provide a picture of the technique in 2020, including a detailed overview of available experimental systems worldwide and insights into a range of specific measurement modi and approaches. We also aim to provide a glimpse into the future of the technique including possible developments and opportunities.
Collapse
Affiliation(s)
- Curran Kalha
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Nathalie K Fernando
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Prajna Bhatt
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| | - Fredrik O L Johansson
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Andreas Lindblad
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - Håkan Rensmo
- Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden
| | - León Zendejas Medina
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Rebecka Lindblad
- Department of Chemistry-Ångström Laboratory, Uppsala University, Box 538, SE-75121, Uppsala, Sweden
| | - Sebastian Siol
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Lars P H Jeurgens
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Claudia Cancellieri
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Dübendorf, Switzerland
| | - Kai Rossnagel
- Institute of Experimental and Applied Physics, Kiel University, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | - Katerina Medjanik
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Gerd Schönhense
- Johannes Gutenberg Universität, Institut für Physik, 55128 Mainz, Germany
| | - Marc Simon
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France
| | - Alexander X Gray
- Department of Physics, Temple University, Philadelphia, PA 19122, United States of America
| | - Slavomír Nemšák
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Patrick Lömker
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Anna Regoutz
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom
| |
Collapse
|
8
|
Piancastelli MN, Marchenko T, Guillemin R, Journel L, Travnikova O, Ismail I, Simon M. Hard x-ray spectroscopy and dynamics of isolated atoms and molecules: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:016401. [PMID: 31694003 DOI: 10.1088/1361-6633/ab5516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present here a review of the most significant recent achievements in the field of HAXPES (hard x-ray photoelectron spectroscopy) on isolated atoms and molecules, and related spectroscopies. The possibility of conducting hard x-ray photoexcitation and photoionization experiments under state-of-the art conditions in terms of photon and electron kinetic energy resolution has become available only in the last few years. HAXPES has then produced structural and dynamical information at the level of detail already reached in the VUV and soft-x-ray ranges. The much improved experimental conditions have allowed extending to the hard x-ray range some methods well established in soft x-ray spectroscopies. Investigations of electron and nuclear dynamics in the femtosecond (fs, 10-15 s) and even attosecond (as, 10-18 s) regime have become feasible. Complex relaxation phenomena following deep-core ionization can now be enlightened in great detail. Other phenomena like e.g. recoil-induced effects are much more important in fast photoelectron emission, which can be induced by hard x-rays. Furthermore, a new kind of ionic states with double core holes can be observed by x-ray single-photon absorption. Future perspectives are also discussed.
Collapse
Affiliation(s)
- M N Piancastelli
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, LCPMR, F-75005 Paris, France. Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
9
|
Kircher M, Rist J, Trinter F, Grundmann S, Waitz M, Melzer N, Vela-Pérez I, Mletzko T, Pier A, Strenger N, Siebert J, Janssen R, Schmidt LPH, Artemyev AN, Schöffler MS, Jahnke T, Dörner R, Demekhin PV. Recoil-Induced Asymmetry of Nondipole Molecular Frame Photoelectron Angular Distributions in the Hard X-ray Regime. PHYSICAL REVIEW LETTERS 2019; 123:243201. [PMID: 31922823 DOI: 10.1103/physrevlett.123.243201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Indexed: 06/10/2023]
Abstract
We investigate angular emission distributions of the 1s photoelectrons of N_{2} ionized by linearly polarized synchrotron radiation at hν=40 keV. As expected, nondipole contributions cause a very strong forward-backward asymmetry in the measured emission distributions. In addition, we observe an unexpected asymmetry with respect to the polarization direction, which depends on the direction of the molecular fragmentation. In particular, photoelectrons are predominantly emitted in the direction of the forward nitrogen atom. This observation cannot be explained via asymmetries introduced by the initial bound and final continuum electronic states of the oriented molecule. The present simulations assign this asymmetry to a novel nontrivial effect of the recoil imposed to the nuclei by the fast photoelectrons and high-energy photons, which results in a propensity for the ions to break up along the axis of the recoil momentum. The results are of particular importance for the interpretation of future experiments at x-ray free electron lasers operating in the few tens of keV regime, where such nondipole and recoil effects will be essential.
Collapse
Affiliation(s)
- M Kircher
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - J Rist
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - F Trinter
- FS-PETRA-S, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4, 14195 Berlin, Germany
| | - S Grundmann
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - M Waitz
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - N Melzer
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - I Vela-Pérez
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - T Mletzko
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - A Pier
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - N Strenger
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - J Siebert
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - R Janssen
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - A N Artemyev
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - M S Schöffler
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - T Jahnke
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - R Dörner
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| |
Collapse
|
10
|
Kircher M, Rist J, Trinter F, Grundmann S, Waitz M, Melzer N, Vela-Perez I, Mletzko T, Pier A, Strenger N, Siebert J, Janssen R, Honkimäki V, Drnec J, Demekhin PV, Schmidt LPH, Schöffler MS, Jahnke T, Dörner R. Photon-Momentum-Induced Molecular Dynamics in Photoionization of N_{2} at hν=40 keV. PHYSICAL REVIEW LETTERS 2019; 123:193001. [PMID: 31765203 DOI: 10.1103/physrevlett.123.193001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Indexed: 06/10/2023]
Abstract
We investigate K-shell ionization of N_{2} at 40 keV photon energy. Using a cold target recoil ion momentum spectroscopy reaction microscope, we determine the vector momenta of the photoelectron, the Auger electron, and both N^{+} fragments. These fully differential data show that the dissociation process of the N_{2}^{2+} ion is significantly modified not only by the recoil momentum of the photoelectron but also by the photon momentum and the momentum of the emitted Auger electron. We find that the recoil energy introduced by the photon and the photoelectron momentum is partitioned with a ratio of approximately 30∶70 between the Auger electron and fragment ion kinetic energies, respectively. We also observe that the photon momentum induces an additional rotation of the molecular ion.
Collapse
Affiliation(s)
- M Kircher
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - J Rist
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - F Trinter
- FS-PETRA-S, Deutsches Elektronen-Sychrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4, 14195 Berlin, Germany
| | - S Grundmann
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - M Waitz
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - N Melzer
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - I Vela-Perez
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - T Mletzko
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - A Pier
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - N Strenger
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - J Siebert
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - R Janssen
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - V Honkimäki
- ESRF, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France
| | - J Drnec
- ESRF, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble Cedex 9, France
| | - Ph V Demekhin
- Institut für Physik und CINSaT, Universität Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - M S Schöffler
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - T Jahnke
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - R Dörner
- Institut für Kernphysik, Johann Wolfgang Goethe Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| |
Collapse
|