1
|
Laha P, Moore DW, Filip R. Entanglement Growth via Splitting of a Few Thermal Quanta. PHYSICAL REVIEW LETTERS 2024; 132:210201. [PMID: 38856241 DOI: 10.1103/physrevlett.132.210201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 02/20/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
Quanta splitting is an essential generator of Gaussian entanglement, exemplified by Einstein-Podolsky-Rosen states and apparently the most commonly occurring form of entanglement. In general, it results from the strong pumping of a nonlinear process with a highly coherent and low-noise external drive. In contrast, recent experiments involving efficient trilinear processes in trapped ions and superconducting circuits have opened the complementary possibility to test the splitting of a few thermal quanta. Stimulated by such small thermal energy, a strong degenerate trilinear coupling generates large amounts of nonclassicality, detectable by more than 3 dB of distillable quadrature squeezing. Substantial entanglement can be generated via frequent passive linear coupling to a third mode present in parallel with the trilinear coupling. This new form of entanglement, outside any Gaussian approximation, surprisingly grows with the mean number of split thermal quanta; a quality absent from Gaussian entanglement. Using distillable squeezing we shed light on this new entanglement mechanism for nonlinear bosonic systems.
Collapse
Affiliation(s)
- Pradip Laha
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Darren W Moore
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radim Filip
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
2
|
Katz O, Monroe C. Programmable Quantum Simulations of Bosonic Systems with Trapped Ions. PHYSICAL REVIEW LETTERS 2023; 131:033604. [PMID: 37540877 DOI: 10.1103/physrevlett.131.033604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 08/06/2023]
Abstract
Trapped atomic ion crystals are a leading platform for quantum simulations of spin systems, with programmable and long-range spin-spin interactions mediated by excitations of phonons in the crystal. We describe a complementary approach for quantum simulations of bosonic systems using phonons in trapped-ion crystals, here mediated by excitations of the trapped-ion spins. The scheme enables a high degree of programability across a dense graph of bosonic couplings, utilizing long-lived collective phonon modes in a trapped-ion chain. As such, it is well suited for tackling hard problems such as boson sampling and simulations of long-range bosonic and spin-boson Hamiltonians.
Collapse
Affiliation(s)
- Or Katz
- Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Christopher Monroe
- Duke Quantum Center, Duke University, Durham, North Carolina 27701, USA
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- IonQ, Inc., College Park, Maryland 20740, USA
| |
Collapse
|
3
|
Butera S, Carusotto I. Numerical Studies of Back Reaction Effects in an Analog Model of Cosmological Preheating. PHYSICAL REVIEW LETTERS 2023; 130:241501. [PMID: 37390448 DOI: 10.1103/physrevlett.130.241501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/25/2023] [Accepted: 05/15/2023] [Indexed: 07/02/2023]
Abstract
We theoretically propose an atomic Bose-Einstein condensate as an analog model of backreaction effects during the preheating stage of the early Universe. In particular, we address the out-of-equilibrium dynamics where the initially excited inflaton field decays by parametrically exciting the matter fields. We consider a two-dimensional, ring-shaped BEC under a tight transverse confinement whose transverse breathing mode and the Goldstone and dipole excitation branches simulate the inflaton and quantum matter fields, respectively. A strong excitation of the breathing mode leads to an exponentially growing emission of dipole and Goldstone excitations via parametric pair creation: Our numerical simulations of the BEC dynamics show how the associated backreaction effect results not only in an effective friction of the breathing mode, but also in a quick loss of longitudinal spatial coherence of the initially in-phase excitations. Implications of this result on the validity of the usual semiclassical description of backreaction are finally discussed.
Collapse
Affiliation(s)
- Salvatore Butera
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Iacopo Carusotto
- Pitaevskii BEC Center, INO-CNR and Dipartimento di Fisica, Università di Trento, I-38123 Trento, Italy
| |
Collapse
|
4
|
Hei XL, Li PB, Pan XF, Nori F. Enhanced Tripartite Interactions in Spin-Magnon-Mechanical Hybrid Systems. PHYSICAL REVIEW LETTERS 2023; 130:073602. [PMID: 36867822 DOI: 10.1103/physrevlett.130.073602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coherent tripartite interactions among degrees of freedom of completely different nature are instrumental for quantum information and simulation technologies, but they are generally difficult to realize and remain largely unexplored. Here, we predict a tripartite coupling mechanism in a hybrid setup comprising a single nitrogen-vacancy (NV) center and a micromagnet. We propose to realize direct and strong tripartite interactions among single NV spins, magnons, and phonons via modulating the relative motion between the NV center and the micromagnet. Specifically, by introducing a parametric drive (two-phonon drive) to modulate the mechanical motion (such as the center-of-mass motion of a NV spin in diamond trapped in an electrical trap or a levitated micromagnet in a magnetic trap), we can obtain a tunable and strong spin-magnon-phonon coupling at the single quantum level, with up to 2 orders of magnitude enhancement for the tripartite coupling strength. This enables, for example, tripartite entanglement among solid-state spins, magnons, and mechanical motions in quantum spin-magnonics-mechanics with realistic experimental parameters. This protocol can be readily implemented with the well-developed techniques in ion traps or magnetic traps and could pave the way for general applications in quantum simulations and information processing based on directly and strongly coupled tripartite systems.
Collapse
Affiliation(s)
- Xin-Lei Hei
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peng-Bo Li
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Xue-Feng Pan
- Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
5
|
Lachman L, Filip R. Quantum Non-Gaussian Photon Coincidences. PHYSICAL REVIEW LETTERS 2021; 126:213604. [PMID: 34114867 DOI: 10.1103/physrevlett.126.213604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Photon coincidences represent an important resource for quantum technologies. They expose nonlinear quantum processes in matter and are essential for sources of entanglement. We derive broadly applicable criteria for quantum non-Gaussian two-photon coincidences that certify a new quality of photon sources. The criteria reject states emerging from Gaussian parametric processes, which often limit applications in quantum technologies. We also analyze the robustness of the quantum non-Gaussian coincidences and compare it to the heralded quantum non-Gaussianity of single photons based on them.
Collapse
Affiliation(s)
- Lukáš Lachman
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radim Filip
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
6
|
Gan HCJ, Maslennikov G, Tseng KW, Nguyen C, Matsukevich D. Hybrid Quantum Computing with Conditional Beam Splitter Gate in Trapped Ion System. PHYSICAL REVIEW LETTERS 2020; 124:170502. [PMID: 32412255 DOI: 10.1103/physrevlett.124.170502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables, which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete internal states and motional modes that can be described by continuous variables in an infinite-dimensional Hilbert space, offer a natural platform for this approach. A nonlinear gate for universal quantum computing can be implemented with the conditional beam splitter Hamiltonian |e⟩⟨e|(a[over ^]^{†}b[over ^]+a[over ^]b[over ^]^{†}) that swaps the quantum states of two motional modes, depending on the ion's internal state. We realize such a gate and demonstrate its applications for quantum state overlap measurements, single-shot parity measurement, and generation of NOON states.
Collapse
Affiliation(s)
- H C J Gan
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
| | - Gleb Maslennikov
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
| | - Ko-Wei Tseng
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
| | - Chihuan Nguyen
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
| | - Dzmitry Matsukevich
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551 Singapore, Singapore
| |
Collapse
|
7
|
Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S, Dai J, Scarani V, Matsukevich D. Quantum absorption refrigerator with trapped ions. Nat Commun 2019; 10:202. [PMID: 30643131 PMCID: PMC6331551 DOI: 10.1038/s41467-018-08090-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
In recent years substantial efforts have been expended in extending thermodynamics to single quantum systems. Quantum effects have emerged as a resource that can improve the performance of heat machines. However in the fully quantum regime their implementation still remains a challenge. Here, we report an experimental realization of a quantum absorption refrigerator in a system of three trapped ions, with three of its normal modes of motion coupled by a trilinear Hamiltonian such that heat transfer between two modes refrigerates the third. We investigate the dynamics and steady-state properties of the refrigerator and compare its cooling capability when only thermal states are involved to the case when squeezing is employed as a quantum resource. We also study the performance of such a refrigerator in the single shot regime made possible by coherence and demonstrate cooling below both the steady-state energy and a benchmark set by classical thermodynamics.
Collapse
Affiliation(s)
- Gleb Maslennikov
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Shiqian Ding
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore.,JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado, Boulder, CO, 80309, USA
| | - Roland Hablützel
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Jaren Gan
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Alexandre Roulet
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Stefan Nimmrichter
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Jibo Dai
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore
| | - Valerio Scarani
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore.,Department of Physics, National University of Singapore, 2 Science Dr 3, Singapore, 117551, Singapore
| | - Dzmitry Matsukevich
- Centre for Quantum Technologies, National University of Singapore, 3 Science Dr 2, Singapore, 117543, Singapore. .,Department of Physics, National University of Singapore, 2 Science Dr 3, Singapore, 117551, Singapore.
| |
Collapse
|