1
|
Barresi A, Boulet A, Magierski P, Wlazłowski G. Dissipative Dynamics of Quantum Vortices in Fermionic Superfluid. PHYSICAL REVIEW LETTERS 2023; 130:043001. [PMID: 36763425 DOI: 10.1103/physrevlett.130.043001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/08/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In a recent article, Kwon et al. [Nature (London) 600, 64 (2021)NATUAS0028-083610.1038/s41586-021-04047-4] revealed nonuniversal dissipative dynamics of quantum vortices in a fermionic superfluid. The enhancement of the dissipative process is pronounced for the Bardeen-Cooper-Schrieffer interaction regime, and it was suggested that the effect is due to the presence of quasiparticles localized inside the vortex core. We test this hypothesis through numerical simulations with time-dependent density-functional theory: a fully microscopic framework with fermionic degrees of freedom. The results of fully microscopic calculations expose the impact of the vortex-bound states on dissipative dynamics in a fermionic superfluid. Their contribution is too weak to explain the experimental measurements, and we identify that thermal effects, giving rise to mutual friction between superfluid and the normal component, dominate the observed dynamics.
Collapse
Affiliation(s)
- Andrea Barresi
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
| | - Antoine Boulet
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
| | - Piotr Magierski
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Gabriel Wlazłowski
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| |
Collapse
|
2
|
Wlazłowski G, Xhani K, Tylutki M, Proukakis NP, Magierski P. Dissipation Mechanisms in Fermionic Josephson Junction. PHYSICAL REVIEW LETTERS 2023; 130:023003. [PMID: 36706420 DOI: 10.1103/physrevlett.130.023003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/10/2022] [Accepted: 12/12/2022] [Indexed: 06/18/2023]
Abstract
We characterize numerically the dominant dynamical regimes in a superfluid ultracold fermionic Josephson junction. Beyond the coherent Josephson plasma regime, we discuss the onset and physical mechanism of dissipation due to the superflow exceeding a characteristic speed, and provide clear evidence distinguishing its physical mechanism across the weakly and strongly interacting limits, despite qualitative dynamics of global characteristics being only weakly sensitive to the operating dissipative mechanism. Specifically, dissipation in the strongly interacting regime occurs through the phase-slippage process, caused by the emission and propagation of quantum vortices, and sound waves-similar to the Bose-Einstein condensation limit. Instead, in the weak interaction limit, the main dissipative channel arises through the pair-breaking mechanism.
Collapse
Affiliation(s)
- Gabriel Wlazłowski
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| | - Klejdja Xhani
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy
| | - Marek Tylutki
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
| | - Nikolaos P Proukakis
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Piotr Magierski
- Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
- Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
| |
Collapse
|
3
|
Kwon WJ, Del Pace G, Xhani K, Galantucci L, Muzi Falconi A, Inguscio M, Scazza F, Roati G. Sound emission and annihilations in a programmable quantum vortex collider. Nature 2021; 600:64-69. [PMID: 34853459 DOI: 10.1038/s41586-021-04047-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 11/09/2022]
Abstract
In quantum fluids, the quantization of circulation forbids the diffusion of a vortex swirling flow seen in classical viscous fluids. Yet, accelerating quantum vortices may lose their energy into acoustic radiations1,2, similar to the way electric charges decelerate on emitting photons. The dissipation of vortex energy underlies central problems in quantum hydrodynamics3, such as the decay of quantum turbulence, highly relevant to systems as varied as neutron stars, superfluid helium and atomic condensates4,5. A deep understanding of the elementary mechanisms behind irreversible vortex dynamics has been a goal for decades3,6, but it is complicated by the shortage of conclusive experimental signatures7. Here we address this challenge by realizing a programmable vortex collider in a planar, homogeneous atomic Fermi superfluid with tunable inter-particle interactions. We create on-demand vortex configurations and monitor their evolution, taking advantage of the accessible time and length scales of ultracold Fermi gases8,9. Engineering collisions within and between vortex-antivortex pairs allows us to decouple relaxation of the vortex energy due to sound emission and that due to interactions with normal fluid (that is, mutual friction). We directly visualize how the annihilation of vortex dipoles radiates a sound pulse. Further, our few-vortex experiments extending across different superfluid regimes reveal non-universal dissipative dynamics, suggesting that fermionic quasiparticles localized inside the vortex core contribute significantly to dissipation, thereby opening the route to exploring new pathways for quantum turbulence decay, vortex by vortex.
Collapse
Affiliation(s)
- W J Kwon
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy. .,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy.
| | - G Del Pace
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| | - K Xhani
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| | - L Galantucci
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, UK
| | - A Muzi Falconi
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| | - M Inguscio
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy.,Department of Engineering, Campus Bio-Medico University of Rome, Rome, Italy
| | - F Scazza
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy.,Department of Physics, University of Trieste, Trieste, Italy
| | - G Roati
- European Laboratory for Nonlinear Spectroscopy (LENS), Sesto Fiorentino, Italy.,Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), Sesto Fiorentino, Italy
| |
Collapse
|
4
|
Kim JH, Hong D, Lee K, Shin Y. Critical Energy Dissipation in a Binary Superfluid Gas by a Moving Magnetic Obstacle. PHYSICAL REVIEW LETTERS 2021; 127:095302. [PMID: 34506177 DOI: 10.1103/physrevlett.127.095302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/24/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
We study the critical energy dissipation in an atomic superfluid gas with two symmetric spin components by an oscillating magnetic obstacle. Above a certain critical oscillation frequency, spin-wave excitations are generated by the magnetic obstacle, demonstrating the spin superfluid behavior of the system. When the obstacle is strong enough to cause density perturbations via local saturation of spin polarization, half-quantum vortices (HQVs) are created for higher oscillation frequencies, which reveals the characteristic evolution of critical dissipative dynamics from spin-wave emission to HQV shedding. Critical HQV shedding is further investigated using a pulsed linear motion of the obstacle, and we identify two critical velocities to create HQVs with different core magnetization.
Collapse
Affiliation(s)
- Joon Hyun Kim
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Deokhwa Hong
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
| | - Kyuhwan Lee
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
| | - Y Shin
- Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
- Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
5
|
Xhani K, Neri E, Galantucci L, Scazza F, Burchianti A, Lee KL, Barenghi CF, Trombettoni A, Inguscio M, Zaccanti M, Roati G, Proukakis NP. Critical Transport and Vortex Dynamics in a Thin Atomic Josephson Junction. PHYSICAL REVIEW LETTERS 2020; 124:045301. [PMID: 32058733 DOI: 10.1103/physrevlett.124.045301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Indexed: 06/10/2023]
Abstract
We study the onset of dissipation in an atomic Josephson junction between Fermi superfluids in the molecular Bose-Einstein condensation limit of strong attraction. Our simulations identify the critical population imbalance and the maximum Josephson current delimiting dissipationless and dissipative transport, in quantitative agreement with recent experiments. We unambiguously link dissipation to vortex ring nucleation and dynamics, demonstrating that quantum phase slips are responsible for the observed resistive current. Our work directly connects microscopic features with macroscopic dissipative transport, providing a comprehensive description of vortex ring dynamics in three-dimensional inhomogeneous constricted superfluids at zero and finite temperatures.
Collapse
Affiliation(s)
- K Xhani
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - E Neri
- Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
| | - L Galantucci
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - F Scazza
- European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy
| | - A Burchianti
- European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy
| | - K-L Lee
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - C F Barenghi
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - A Trombettoni
- CNR-IOM DEMOCRITOS Simulation Center and SISSA, Via Bonomea 265, I-34136 Trieste, Italy
| | - M Inguscio
- European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy
- Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - M Zaccanti
- European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy
- Dipartimento di Fisica e Astronomia, Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy
| | - G Roati
- European Laboratory for Non-Linear Spectroscopy (LENS), Università di Firenze, 50019 Sesto Fiorentino, Italy
- Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (CNR-INO), 50019 Sesto Fiorentino, Italy
| | - N P Proukakis
- Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
6
|
Musser S, Proment D, Onorato M, Irvine WTM. Starting Flow Past an Airfoil and its Acquired Lift in a Superfluid. PHYSICAL REVIEW LETTERS 2019; 123:154502. [PMID: 31702294 DOI: 10.1103/physrevlett.123.154502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/27/2019] [Indexed: 06/10/2023]
Abstract
We investigate superfluid flow around an airfoil accelerated to a finite velocity from rest. Using simulations of the Gross-Pitaevskii equation we find striking similarities to viscous flows: from production of starting vortices to convergence of airfoil circulation onto a quantized version of the Kutta-Joukowski circulation. We predict the number of quantized vortices nucleated by a given foil via a phenomenological argument. We further find stall-like behavior governed by airfoil speed, not angle of attack, as in classical flows. Finally we analyze the lift and drag acting on the airfoil.
Collapse
Affiliation(s)
- Seth Musser
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Davide Proment
- School of Mathematics, University of East Anglia, Norwich Research Park, NR47TJ Norwich, United Kingdom
| | - Miguel Onorato
- Dipartimento di Fisica, Università degli Studi di Torino and INFN, Via Pietro Giuria 1, 10125 Torino, Italy
| | - William T M Irvine
- James Franck Institute and Enrico Fermi Institute, Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|