1
|
Ibarra-García-Padilla E, Choudhury S. Many-body physics of ultracold alkaline-earth atoms with SU( N)-symmetric interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:083003. [PMID: 39577095 DOI: 10.1088/1361-648x/ad9658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Symmetries play a crucial role in understanding phases of matter and the transitions between them. Theoretical investigations of quantum models with SU(N) symmetry have provided important insights into many-body phenomena. However, these models have generally remained a theoretical idealization, since it is very difficult to exactly realize the SU(N) symmetry in conventional quantum materials for largeN. Intriguingly however, in recent years, ultracold alkaline-earth-atom (AEA) quantum simulators have paved the path to realize SU(N)-symmetric many-body models, whereNis tunable and can be as large as 10. This symmetry emerges due to the closed shell structure of AEAs, thereby leading to a perfect decoupling of the electronic degrees of freedom from the nuclear spin. In this work, we provide a systematic review of recent theoretical and experimental work on the many-body physics of these systems. We first discuss the thermodynamic properties and collective modes of trapped Fermi gases, highlighting the enhanced interaction effects that appear asNincreases. We then discuss the properties of the SU(N) Fermi-Hubbard model, focusing on some of the major experimental achievements in this area. We conclude with a compendium highlighting some of the significant theoretical progress on SU(N) lattice models and a discussion of some exciting directions for future research.
Collapse
Affiliation(s)
- Eduardo Ibarra-García-Padilla
- Department of Physics and Astronomy, University of California, Davis, CA 95616, United States of America
- Department of Physics and Astronomy, San José State University, San José, CA 95192, United States of America
| | - Sayan Choudhury
- Harish-Chandra Research Institute, a CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Allahabad 211019, India
| |
Collapse
|
2
|
Kozik E. Combinatorial summation of Feynman diagrams. Nat Commun 2024; 15:7916. [PMID: 39256341 PMCID: PMC11387657 DOI: 10.1038/s41467-024-52000-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Feynman's diagrammatic series is a common language for a formally exact theoretical description of systems of infinitely-many interacting quantum particles, as well as a foundation for precision computational techniques. Here we introduce a universal framework for efficient summation of connected or skeleton Feynman diagrams for generic quantum many-body systems. It is based on an explicit combinatorial construction of the sum of the integrands by dynamic programming, at a computational cost that can be made only exponential in the diagram order on a classical computer and potentially polynomial on a quantum computer. We illustrate the technique by an unbiased diagrammatic Monte Carlo calculation of the equation of state of the 2D SU(N) Hubbard model in an experimentally relevant regime, which has remained challenging for state-of-the-art numerical methods.
Collapse
Affiliation(s)
- Evgeny Kozik
- Department of Physics, King's College London, London, UK.
| |
Collapse
|
3
|
Yamamoto D, Morita K. Engineering of a Low-Entropy Quantum Simulator for Strongly Correlated Electrons Using Cold Atoms with SU(N)-Symmetric Interactions. PHYSICAL REVIEW LETTERS 2024; 132:213401. [PMID: 38856247 DOI: 10.1103/physrevlett.132.213401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
An advanced cooling scheme, incorporating entropy engineering, is vital for isolated artificial quantum systems designed to emulate the low-temperature physics of strongly correlated electron systems. This study theoretically demonstrates a cooling method employing multicomponent Fermi gases with SU(N)-symmetric interactions, focusing on the case of ^{173}Yb atoms in a two-dimensional optical lattice. Adiabatically introducing a nonuniform state-selective laser gives rise to two distinct subsystems: a central low-entropy region, exclusively composed of two specific spin components, acts as a quantum simulator for strongly correlated electron systems, while the surrounding N-component mixture retains a significant portion of the entropy of the system. The total particle numbers for each component are good quantum numbers, creating a sharp boundary for the two-component region. The cooling efficiency is assessed through extensive finite-temperature Lanczos calculations. The results lay the foundation for quantum simulations of two-dimensional systems of Hubbard or Heisenberg type, offering crucial insights into intriguing low-temperature phenomena in condensed-matter physics.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya, Tokyo 156-8550, Japan
| | - Katsuhiro Morita
- Department of Physics and Astronomy, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
4
|
Pasqualetti G, Bettermann O, Darkwah Oppong N, Ibarra-García-Padilla E, Dasgupta S, Scalettar RT, Hazzard KRA, Bloch I, Fölling S. Equation of State and Thermometry of the 2D SU(N) Fermi-Hubbard Model. PHYSICAL REVIEW LETTERS 2024; 132:083401. [PMID: 38457712 DOI: 10.1103/physrevlett.132.083401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/09/2024] [Indexed: 03/10/2024]
Abstract
We characterize the equation of state (EoS) of the SU(N>2) Fermi-Hubbard Model (FHM) in a two-dimensional single-layer square optical lattice. We probe the density and the site occupation probabilities as functions of interaction strength and temperature for N=3, 4, and 6. Our measurements are used as a benchmark for state-of-the-art numerical methods including determinantal quantum Monte Carlo and numerical linked cluster expansion. By probing the density fluctuations, we compare temperatures determined in a model-independent way by fitting measurements to numerically calculated EoS results, making this a particularly interesting new step in the exploration and characterization of the SU(N) FHM.
Collapse
Affiliation(s)
- G Pasqualetti
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - O Bettermann
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - N Darkwah Oppong
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - E Ibarra-García-Padilla
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics, University of California, Davis, California 95616, USA
- Department of Physics and Astronomy, San José State University, San José, California 95192, USA
| | - S Dasgupta
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005-1892, USA
| | - R T Scalettar
- Department of Physics, University of California, Davis, California 95616, USA
| | - K R A Hazzard
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005-1892, USA
- Rice Center for Quantum Materials, Rice University, Houston, Texas 77005-1892, USA
- Department of Physics, University of California, Davis, California 95616, USA
| | - I Bloch
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - S Fölling
- Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 München, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| |
Collapse
|
5
|
Honda K, Taie S, Takasu Y, Nishizawa N, Nakagawa M, Takahashi Y. Observation of the Sign Reversal of the Magnetic Correlation in a Driven-Dissipative Fermi Gas in Double Wells. PHYSICAL REVIEW LETTERS 2023; 130:063001. [PMID: 36827577 DOI: 10.1103/physrevlett.130.063001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
We report the observation of the sign reversal of the magnetic correlation from antiferromagnetic to ferromagnetic in a dissipative Fermi gas in double wells, utilizing the dissipation caused by on-site two-body losses in a controlled manner. We systematically measure dynamics of the nearest-neighbor spin correlation in an isolated double-well optical lattice, as well as a crossover from an isolated double-well lattice to a one-dimensional uniform lattice. In a wide range of lattice configurations over an isolated double-well lattice, we observe a ferromagnetic spin correlation, which is consistent with a Dicke type of correlation expected in the long-time limit. This work demonstrates the control of quantum magnetism in open quantum systems with dissipation.
Collapse
Affiliation(s)
- Kantaro Honda
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Shintaro Taie
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yosuke Takasu
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Naoki Nishizawa
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Masaya Nakagawa
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiro Takahashi
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Ye B, Machado F, Kemp J, Hutson RB, Yao NY. Universal Kardar-Parisi-Zhang Dynamics in Integrable Quantum Systems. PHYSICAL REVIEW LETTERS 2022; 129:230602. [PMID: 36563207 DOI: 10.1103/physrevlett.129.230602] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/08/2022] [Accepted: 09/23/2022] [Indexed: 06/17/2023]
Abstract
Although the Bethe ansatz solution of the spin-1/2 Heisenberg model dates back nearly a century, the anomalous nature of its high-temperature transport dynamics has only recently been uncovered. Indeed, numerical and experimental observations have demonstrated that spin transport in this paradigmatic model falls into the Kardar-Parisi-Zhang (KPZ) universality class. This has inspired the significantly stronger conjecture that KPZ dynamics, in fact, occur in all integrable spin chains with non-Abelian symmetry. Here, we provide extensive numerical evidence affirming this conjecture. Moreover, we observe that KPZ transport is even more generic, arising in both supersymmetric and periodically driven models. Motivated by recent advances in the realization of SU(N)-symmetric spin models in alkaline-earth-based optical lattice experiments, we propose and analyze a protocol to directly investigate the KPZ scaling function in such systems.
Collapse
Affiliation(s)
- Bingtian Ye
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Francisco Machado
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jack Kemp
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Ross B Hutson
- JILA, National Institute of Standards and Technology, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Norman Y Yao
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
7
|
Guan XW, He P. New trends in quantum integrability: recent experiments with ultracold atoms. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:114001. [PMID: 36170807 DOI: 10.1088/1361-6633/ac95a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Over the past two decades quantum engineering has made significant advances in our ability to create genuine quantum many-body systems using ultracold atoms. In particular, some prototypical exactly solvable Yang-Baxter systems have been successfully realized allowing us to confront elegant and sophisticated exact solutions of these systems with their experimental counterparts. The new experimental developments show a variety of fundamental one-dimensional (1D) phenomena, ranging from the generalized hydrodynamics to dynamical fermionization, Tomonaga-Luttinger liquids, collective excitations, fractional exclusion statistics, quantum holonomy, spin-charge separation, competing orders with high spin symmetry and quantum impurity problems. This article briefly reviews these developments and provides rigorous understanding of those observed phenomena based on the exact solutions while highlighting the uniqueness of 1D quantum physics. The precision of atomic physics realizations of integrable many-body problems continues to inspire significant developments in mathematics and physics while at the same time offering the prospect to contribute to future quantum technology.
Collapse
Affiliation(s)
- Xi-Wen Guan
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- NSFC-SPTP Peng Huanwu Center for Fundamental Theory, Xi'an 710127, People's Republic of China
- Department of Fundamental and Theoretical Physics, Research School of Physics, Australian National University, Canberra ACT 0200, Australia
| | - Peng He
- Bureau of Frontier Sciences and Education, Chinese Academy of Sciences, Beijing 100864,People's Republic of China
| |
Collapse
|
8
|
Minář J, van Voorden B, Schoutens K. Kink Dynamics and Quantum Simulation of Supersymmetric Lattice Hamiltonians. PHYSICAL REVIEW LETTERS 2022; 128:050504. [PMID: 35179932 DOI: 10.1103/physrevlett.128.050504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
We propose a quantum simulation of a supersymmetric lattice model using atoms trapped in a 1D configuration and interacting through a Rydberg dressed potential. The elementary excitations in the model are kinks or (in a sector with one extra particle) their superpartners-the skinks. The two are connected by supersymmetry and display identical quantum dynamics. We provide an analytical description of the kink (skink) quench dynamics and propose a protocol to prepare and detect these excitations in the quantum simulator. We make a detailed analysis, based on numerical simulation, of the Rydberg atom simulator and show that it accurately tracks the dynamics of the supersymmetric model.
Collapse
Affiliation(s)
- Jiří Minář
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands
| | - Bart van Voorden
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Kareljan Schoutens
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- QuSoft, Science Park 123, 1098 XG Amsterdam, Netherlands
| |
Collapse
|
9
|
TAKAHASHI Y. Quantum simulation of quantum many-body systems with ultracold two-electron atoms in an optical lattice. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:141-160. [PMID: 35400693 PMCID: PMC9071925 DOI: 10.2183/pjab.98.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Ultracold atoms in an optical lattice provide a unique approach to study quantum many-body systems, previously only possible by using condensed-matter experimental systems. This new approach, often called quantum simulation, becomes possible because of the high controllability of the system parameters and the inherent cleanness without lattice defects and impurities. In this article, we review recent developments in this rapidly growing field of ultracold atoms in an optical lattice, with special focus on quantum simulations using our newly created quantum many-body system of two-electron atoms of ytterbium. In addition, we also mention other interesting possibilities offered by this novel experimental platform, such as applications to precision measurements for studying fundamental physics and a Rydberg atom quantum computation.
Collapse
Affiliation(s)
- Yoshiro TAKAHASHI
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
10
|
Zhao E, Lee J, He C, Ren Z, Hajiyev E, Liu J, Jo GB. Heuristic machinery for thermodynamic studies of SU(N) fermions with neural networks. Nat Commun 2021; 12:2011. [PMID: 33790292 PMCID: PMC8012572 DOI: 10.1038/s41467-021-22270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/02/2021] [Indexed: 11/10/2022] Open
Abstract
The power of machine learning (ML) provides the possibility of analyzing experimental measurements with a high sensitivity. However, it still remains challenging to probe the subtle effects directly related to physical observables and to understand physics behind from ordinary experimental data using ML. Here, we introduce a heuristic machinery by using machine learning analysis. We use our machinery to guide the thermodynamic studies in the density profile of ultracold fermions interacting within SU(N) spin symmetry prepared in a quantum simulator. Although such spin symmetry should manifest itself in a many-body wavefunction, it is elusive how the momentum distribution of fermions, the most ordinary measurement, reveals the effect of spin symmetry. Using a fully trained convolutional neural network (NN) with a remarkably high accuracy of ~94% for detection of the spin multiplicity, we investigate how the accuracy depends on various less-pronounced effects with filtered experimental images. Guided by our machinery, we directly measure a thermodynamic compressibility from density fluctuations within the single image. Our machine learning framework shows a potential to validate theoretical descriptions of SU(N) Fermi liquids, and to identify less-pronounced effects even for highly complex quantum matter with minimal prior understanding.
Collapse
Grants
- 26302118 Research Grants Council, University Grants Committee (RGC, UGC)
- 16305019 Research Grants Council, University Grants Committee (RGC, UGC)
- N-HKUST626/18 Research Grants Council, University Grants Committee (RGC, UGC)
- 16311516 Research Grants Council, University Grants Committee (RGC, UGC)
- 16305317 Research Grants Council, University Grants Committee (RGC, UGC)
- 16304918 Research Grants Council, University Grants Committee (RGC, UGC)
- 16306119 Research Grants Council, University Grants Committee (RGC, UGC)
- C6005-17G Research Grants Council, University Grants Committee (RGC, UGC)
- N-HKUST601/17 Research Grants Council, University Grants Committee (RGC, UGC)
- Innovation Awards Croucher Foundation
Collapse
Affiliation(s)
- Entong Zhao
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jeongwon Lee
- HKUST Jockey Club Institute of Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Chengdong He
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zejian Ren
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Elnur Hajiyev
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Junwei Liu
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Gyu-Boong Jo
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China.
| |
Collapse
|
11
|
Yamamoto D, Suzuki C, Marmorini G, Okazaki S, Furukawa N. Quantum and Thermal Phase Transitions of the Triangular SU(3) Heisenberg Model under Magnetic Fields. PHYSICAL REVIEW LETTERS 2020; 125:057204. [PMID: 32794836 DOI: 10.1103/physrevlett.125.057204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
We study the quantum and thermal phase transition phenomena of the SU(3) Heisenberg model on triangular lattice in the presence of magnetic fields. Performing a scaling analysis on large-size cluster mean-field calculations endowed with a density-matrix renormalization-group solver, we reveal the quantum phases selected by quantum fluctuations from the massively degenerate classical ground-state manifold. The magnetization process up to saturation reflects three different magnetic phases. The low- and high-field phases have strong nematic nature, and especially the latter is found only via a nontrivial reconstruction of symmetry generators from the standard spin and quadrupolar description. We also perform a semiclassical Monte Carlo simulation to show that thermal fluctuations prefer the same three phases as well. Moreover, we find that exotic topological phase transitions driven by the binding-unbinding of fractional (half-)vortices take place, due to the nematicity of the low- and high-field phases. Possible experimental realization with alkaline-earth-like cold atoms is also discussed.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Chihiro Suzuki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Giacomo Marmorini
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Sho Okazaki
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| | - Nobuo Furukawa
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
12
|
Nakagawa M, Tsuji N, Kawakami N, Ueda M. Dynamical Sign Reversal of Magnetic Correlations in Dissipative Hubbard Models. PHYSICAL REVIEW LETTERS 2020; 124:147203. [PMID: 32338955 DOI: 10.1103/physrevlett.124.147203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
In quantum magnetism, the virtual exchange of particles mediates an interaction between spins. Here, we show that an inelastic Hubbard interaction fundamentally alters the magnetism of the Hubbard model due to dissipation in spin-exchange processes, leading to sign reversal of magnetic correlations in dissipative quantum dynamics. This mechanism is applicable to both fermionic and bosonic Mott insulators, and can naturally be realized with ultracold atoms undergoing two-body inelastic collisions. The dynamical reversal of magnetic correlations can be detected by using a double-well optical lattice or quantum-gas microscopy, the latter of which facilitates the detection of the magnetic correlations in one-dimensional systems because of spin-charge separation. Our results open a new avenue toward controlling quantum magnetism by dissipation.
Collapse
Affiliation(s)
- Masaya Nakagawa
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoto Tsuji
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Norio Kawakami
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Masahito Ueda
- Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
- Institute for Physics of Intelligence, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|