1
|
Puebla R, Gómez-Ruiz FJ. Quantum Information Scrambling in Adiabatically Driven Critical Systems. ENTROPY (BASEL, SWITZERLAND) 2024; 26:951. [PMID: 39593895 PMCID: PMC11592705 DOI: 10.3390/e26110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024]
Abstract
Quantum information scrambling refers to the spread of the initially stored information over many degrees of freedom of a quantum many-body system. Information scrambling is intimately linked to the thermalization of isolated quantum many-body systems, and has been typically studied in a sudden quench scenario. Here, we extend the notion of quantum information scrambling to critical quantum many-body systems undergoing an adiabatic evolution. In particular, we analyze how the symmetry-breaking information of an initial state is scrambled in adiabatically driven integrable systems, such as the Lipkin-Meshkov-Glick and quantum Rabi models. Following a time-dependent protocol that drives the system from symmetry-breaking to a normal phase, we show how the initial information is scrambled, even for perfect adiabatic evolutions, as indicated by the expectation value of a suitable observable. We detail the underlying mechanism for quantum information scrambling, its relation to ground- and excited-state quantum phase transitions, and quantify the degree of scrambling in terms of the number of eigenstates that participate in the encoding of the initial symmetry-breaking information. While the energy of the final state remains unaltered in an adiabatic protocol, the relative phases among eigenstates are scrambled, and so is the symmetry-breaking information. We show that a potential information retrieval, following a time-reversed protocol, is hindered by small perturbations, as indicated by a vanishingly small Loschmidt echo and out-of-time-ordered correlators. The reported phenomenon is amenable for its experimental verification, and may help in the understanding of information scrambling in critical quantum many-body systems.
Collapse
Affiliation(s)
- Ricardo Puebla
- Departamento de Física, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Spain
| | - Fernando J. Gómez-Ruiz
- Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011 Valladolid, Spain;
| |
Collapse
|
2
|
Carollo F, Lesanovsky I. Applicability of Mean-Field Theory for Time-Dependent Open Quantum Systems with Infinite-Range Interactions. PHYSICAL REVIEW LETTERS 2024; 133:150401. [PMID: 39454166 DOI: 10.1103/physrevlett.133.150401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/09/2024] [Indexed: 10/27/2024]
Abstract
Understanding quantum many-body systems with long-range or infinite-range interactions is of relevance across a broad set of physical disciplines, including quantum optics, nuclear magnetic resonance, and nuclear physics. From a theoretical viewpoint, these systems are appealing since they can be efficiently studied with numerics, and in the thermodynamic limit are expected to be governed by mean-field equations of motion. Over the past years the capabilities to experimentally create long-range interacting systems have dramatically improved permitting their control in space and time. This allows us to induce and explore a plethora of nonequilibrium dynamical phases, including time crystals and even chaotic regimes. However, establishing the emergence of these phases from numerical simulations turns out to be surprisingly challenging. This difficulty led to the assertion that mean-field theory may not be applicable to time-dependent infinite-range interacting systems. Here, we rigorously prove that mean-field theory in fact exactly captures their dynamics, in the thermodynamic limit. We further provide bounds for finite-size effects and their dependence on the evolution time.
Collapse
|
3
|
Gherardini S, Buffoni L, Defenu N. Universal Defects Statistics with Strong Long-Range Interactions. PHYSICAL REVIEW LETTERS 2024; 133:113401. [PMID: 39331975 DOI: 10.1103/physrevlett.133.113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 09/29/2024]
Abstract
Quasi-static transformations, or slow quenches, of many-body quantum systems across quantum critical points generate topological defects. The Kibble-Zurek mechanism regulates the appearance of defects in a local quantum system through a classical combinatorial process. However, long-range interactions disrupt the conventional Kibble-Zurek scaling and lead to a density of defects that is independent of the rate of the transformation. In this Letter, we analytically determine the complete full counting statistics of defects generated by slow annealing a strong long-range system across its quantum critical point. We demonstrate that the mechanism of defect generation in long-range systems is a purely quantum process with no classical equivalent. Furthermore, universality is not only observed in the defect density but also in all the moments of the distribution. Our findings can be tested on various experimental platforms, including Rydberg gases and trapped ions.
Collapse
Affiliation(s)
- Stefano Gherardini
- CNR-INO, Largo Enrico Fermi 6, I-50125 Firenze, Italy
- LENS, Università di Firenze, I-50019 Sesto Fiorentino, Italy
| | | | - Nicolò Defenu
- Institut für Theoretische Physik, ETH Zürich, Wolfgang-Pauli-Strasse 27 Zürich, Switzerland
- CNR-INO, Area Science Park, Basovizza, I-34149 Trieste, Italy
| |
Collapse
|
4
|
Sim K, Defenu N, Molignini P, Chitra R. Quantum Metric Unveils Defect Freezing in Non-Hermitian Systems. PHYSICAL REVIEW LETTERS 2023; 131:156501. [PMID: 37897761 DOI: 10.1103/physrevlett.131.156501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/25/2023] [Accepted: 08/22/2023] [Indexed: 10/30/2023]
Abstract
Non-Hermiticity in quantum Hamiltonians leads to nonunitary time evolution and possibly complex energy eigenvalues, which can lead to a rich phenomenology with no Hermitian counterpart. In this work, we study the dynamics of an exactly solvable non-Hermitian system, hosting both PT-symmetric and PT-broken modes subject to a linear quench. Employing a fully consistent framework, in which the Hilbert space is endowed with a nontrivial dynamical metric, we analyze the dynamics of the generated defects. In contrast to Hermitian systems, our study reveals that PT-broken time evolution leads to defect freezing and hence the violation of adiabaticity. This physics necessitates the so-called metric framework, as it is missed by the oft used approach of normalizing quantities by the time-dependent norm of the state. Our results are relevant for a wide class of experimental systems.
Collapse
Affiliation(s)
- Karin Sim
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| | - Nicolò Defenu
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| | - Paolo Molignini
- Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - R Chitra
- Institute for Theoretical Physics, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
5
|
Giachetti G, Defenu N. Entanglement propagation and dynamics in non-additive quantum systems. Sci Rep 2023; 13:12388. [PMID: 37524738 PMCID: PMC10390585 DOI: 10.1038/s41598-023-37984-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/30/2023] [Indexed: 08/02/2023] Open
Abstract
The prominent collective character of long-range interacting quantum systems makes them promising candidates for quantum technological applications. Yet, lack of additivity overthrows the traditional picture for entanglement scaling and transport, due to the breakdown of the common mechanism based on excitations propagation and confinement. Here, we describe the dynamics of the entanglement entropy in many-body quantum systems with a diverging contribution to the internal energy from the long-range two body potential. While in the strict thermodynamic limit entanglement dynamics is shown to be suppressed, a rich mosaic of novel scaling regimes is observed at intermediate system sizes, due to the possibility to trigger multiple resonant modes in the global dynamics. Quantitative predictions on the shape and timescales of entanglement propagation are made, paving the way to the observation of these phases in current quantum simulators. This picture is connected and contrasted with the case of local many body systems subject to Floquet driving.
Collapse
Affiliation(s)
- Guido Giachetti
- SISSA and INFN Sezione di Trieste, Via Bonomea 265, 34136, Trieste, Italy
| | - Nicolò Defenu
- Institut für Theoretische Physik, ETH Zürich, Wolfgang-Pauli-Str. 27, Zurich, Switzerland.
| |
Collapse
|
6
|
Pal K, Pal K, Sarkar T. Complexity in the Lipkin-Meshkov-Glick model. Phys Rev E 2023; 107:044130. [PMID: 37198862 DOI: 10.1103/physreve.107.044130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
We study complexity in a spin system with infinite-range interaction, via the paradigmatic Lipkin-Meshkov-Glick (LMG) model, in the thermodynamic limit. Exact expressions for the Nielsen complexity (NC) and the Fubini-Study complexity (FSC) are derived, which helps us to establish several distinguishing features compared to complexity in other known spin models. In a time-independent LMG model, close to phase transition, the NC diverges logarithmically, much like the entanglement entropy. Remarkably, however, in a time-dependent scenario, this divergence is replaced by a finite discontinuity, as we show by using the Lewis-Riesenfeld theory of time-dependent invariant operators. The FSC of a variant of the LMG model shows different behavior compared to quasifree spin models. Namely, it diverges logarithmically when the target (or reference) state is near the separatrix. Numerical analysis indicates that this is due to the fact that geodesics starting with arbitrary boundary conditions are "attracted" toward the separatrix and that near this line, a finite change in the affine parameter of the geodesic produces an infinitesimal change of the geodesic length. The same divergence is shared by the NC of this model as well.
Collapse
Affiliation(s)
- Kunal Pal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Kuntal Pal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Tapobrata Sarkar
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
7
|
Marino J, Eckstein M, Foster MS, Rey AM. Dynamical phase transitions in the collisionless pre-thermal states of isolated quantum systems: theory and experiments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:116001. [PMID: 36075190 DOI: 10.1088/1361-6633/ac906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
We overview the concept of dynamical phase transitions (DPTs) in isolated quantum systems quenched out of equilibrium. We focus on non-equilibrium transitions characterized by an order parameter, which features qualitatively distinct temporal behavior on the two sides of a certain dynamical critical point. DPTs are currently mostly understood as long-lived prethermal phenomena in a regime where inelastic collisions are incapable to thermalize the system. The latter enables the dynamics to substain phases that explicitly break detailed balance and therefore cannot be encompassed by traditional thermodynamics. Our presentation covers both cold atoms as well as condensed matter systems. We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit, such as for a large number of particles, large number of order parameter components, or large spatial dimension. The systems we explore include, among others, quantum magnets with collective interactions,ϕ4quantum field theories, and Fermi-Hubbard models. A section dedicated to experimental explorations of DPTs in condensed matter and AMO systems connects this large variety of theoretical models.
Collapse
Affiliation(s)
- Jamir Marino
- Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martin Eckstein
- Department of Physics, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Matthew S Foster
- Department of Physics and Astronomy, Rice University, Houston, TX 77005, United States of America
- Rice Center for Quantum Materials, Rice University, Houston, TX 77005, United States of America
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology, and Department of Physics,University of Colorado, Boulder, CO 80309, United States of America
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO 80309, United States of America
| |
Collapse
|
8
|
Gherardini S, Giachetti G, Ruffo S, Trombettoni A. Thermalization processes induced by quantum monitoring in multilevel systems. Phys Rev E 2021; 104:034114. [PMID: 34654093 DOI: 10.1103/physreve.104.034114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/17/2021] [Indexed: 11/07/2022]
Abstract
We study the heat statistics of a multilevel N-dimensional quantum system monitored by a sequence of projective measurements. The late-time, asymptotic properties of the heat characteristic function are analyzed in the thermodynamic limit of a high, ideally infinite, number M of measurements (M→∞). In this context, the conditions allowing for an infinite-temperature thermalization (ITT), induced by the repeated monitoring of the quantum system, are discussed. We show that ITT is identified by the fixed point of a symmetric random matrix that models the stochastic process originated by the sequence of measurements. Such fixed point is independent on the nonequilibrium evolution of the system and its initial state. Exceptions to ITT, which we refer to as partial thermalization, take place when the observable of the intermediate measurements is commuting (or quasicommuting) with the Hamiltonian of the quantum system or when the time interval between measurements is smaller or comparable with the system energy scale (quantum Zeno regime). Results on the limit of infinite-dimensional Hilbert spaces (N→∞), describing continuous systems with a discrete spectrum, are also presented. We show that the order of the limits M→∞ and N→∞ matters: When N is fixed and M diverges, then ITT occurs. In the opposite case, the system becomes classical, so that the measurements are no longer effective in changing the state of the system. A nontrivial result is obtained fixing M/N^{2} where instead partial ITT occurs. Finally, an example of partial thermalization applicable to rotating two-dimensional gases is presented.
Collapse
Affiliation(s)
- S Gherardini
- SISSA and INFN, I-34136 Trieste, Italy.,Department of Physics and Astronomy and LENS, University of Florence, I-50019 Sesto Fiorentino, Italy.,CNR-IOM DEMOCRITOS Simulation Center, I-34136 Trieste, Italy
| | | | - S Ruffo
- SISSA and INFN, I-34136 Trieste, Italy.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, I-50019 Sesto Fiorentino, Italy
| | - A Trombettoni
- SISSA and INFN, I-34136 Trieste, Italy.,CNR-IOM DEMOCRITOS Simulation Center, I-34136 Trieste, Italy.,Department of Physics, University of Trieste, I-34151 Trieste, Italy
| |
Collapse
|
9
|
Bao J, Liu YH, Guo B. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:495401. [PMID: 34517354 DOI: 10.1088/1361-648x/ac2647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
We study the global quantum discord (GQD) in the Lipkin-Meshkov-Glick (LMG) model at zero and finite temperatures, in which all spins are mutually interacted and introduced in an external magnetic field (denoted byh). We confirm that the high coordinate number is one of the most distinguishing features of the LMG model, which directly results in the nontrivial behaviors of quantum correlations. We compare the GQD with other quantum correlations measures (such as concurrence, quantum discord, and global entanglement) and find the remarkable difference between them. For instance, we find that GQD spreads in the entire system and captures more information on quantum correlations when comparing with concurrence and quantum (pairwise) discord. We discover that GQD can characterize multipartite correlations in the both broken phase (h< 1) and the symmetric phase (h⩾ 1), while global entanglement and its generalized fail. Moreover, we show that the ground-state GQD can identify second-order quantum phase transitions of the LMG model in the thermodynamic limit. By making the scaling behavior of the GQD in the LMG model analysis, we show that GQD (denoted byG) scales asG∼k⋅N+cwithk> 0 in the anisotropic cases for any fixed magnetic field. We further show that GQD behaves asG|sn∼k⋅1N+cwithk< 0 in the isotropic cases for any Dicke state |sn⟩. Hereinkandcare the fitting parameters. We also find that the thermal stability of the GQD at low temperatures depends on the energy gap. We further reveal that the extraordinary behaviors of the thermal-state GQD in the isotropic LMG model are explained by the contribution theory of the energy levels.
Collapse
Affiliation(s)
- Jia Bao
- Department of Physics, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Yan-Hong Liu
- Department of Physics, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Bin Guo
- Department of Physics, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
10
|
Abstract
Long-lived quasi-stationary states (QSSs) are a signature characteristic of long-range interacting systems both in the classical and in the quantum realms. Often, they emerge after a sudden quench of the Hamiltonian internal parameters and present a macroscopic lifetime, which increases with the system size. Despite their ubiquity, the fundamental mechanism at their root remains unknown. Here, we show that the spectrum of systems with power-law decaying couplings remains discrete up to the thermodynamic limit. As a consequence, several traditional results on the chaotic nature of the spectrum in many-body quantum systems are not satisfied in the presence of long-range interactions. In particular, the existence of QSSs may be traced back to the finiteness of Poincaré recurrence times. This picture justifies and extends known results on the anomalous magnetization dynamics in the quantum Ising model with power-law decaying couplings. The comparison between the discrete spectrum of long-range systems and more conventional examples of pure point spectra in the disordered case is also discussed.
Collapse
Affiliation(s)
- Nicolò Defenu
- Institut für Theoretische Physik, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
11
|
Davis EJ, Periwal A, Cooper ES, Bentsen G, Evered SJ, Van Kirk K, Schleier-Smith MH. Protecting Spin Coherence in a Tunable Heisenberg Model. PHYSICAL REVIEW LETTERS 2020; 125:060402. [PMID: 32845652 DOI: 10.1103/physrevlett.125.060402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 05/09/2023]
Abstract
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferromagnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the noninteracting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.
Collapse
Affiliation(s)
- Emily J Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Avikar Periwal
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Eric S Cooper
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Gregory Bentsen
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - Simon J Evered
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Katherine Van Kirk
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Monika H Schleier-Smith
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
12
|
Titum P, Maghrebi MF. Nonequilibrium Criticality in Quench Dynamics of Long-Range Spin Models. PHYSICAL REVIEW LETTERS 2020; 125:040602. [PMID: 32794797 DOI: 10.1103/physrevlett.125.040602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Long-range interacting spin systems are ubiquitous in physics and exhibit a variety of ground-state disorder-to-order phase transitions. We consider a prototype of infinite-range interacting models known as the Lipkin-Meshkov-Glick model describing the collective interaction of N spins and investigate the dynamical properties of fluctuations and correlations after a sudden quench of the Hamiltonian. Specifically, we focus on critical quenches, where the initial state and/or the postquench Hamiltonian are critical. Depending on the type of quench, we identify three distinct behaviors where both the short-time dynamics and the stationary state at long times are effectively thermal, quantum, and genuinely nonequilibrium, characterized by distinct universality classes and static and dynamical critical exponents. These behaviors can be identified by an infrared effective temperature that is finite, zero, and infinite (the latter scaling with the system size as N^{1/3}), respectively. The quench dynamics is studied through a combination of exact numerics and analytical calculations utilizing the nonequilibrium Keldysh field theory. Our results are amenable to realization in experiments with trapped-ion experiments where long-range interactions naturally arise.
Collapse
Affiliation(s)
- Paraj Titum
- Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Mohammad F Maghrebi
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
13
|
Gómez-Ruiz FJ, Mayo JJ, Del Campo A. Full Counting Statistics of Topological Defects after Crossing a Phase Transition. PHYSICAL REVIEW LETTERS 2020; 124:240602. [PMID: 32639801 DOI: 10.1103/physrevlett.124.240602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
We consider the number distribution of topological defects resulting from the finite-time crossing of a continuous phase transition and identify signatures of universality beyond the mean value, predicted by the Kibble-Zurek mechanism. Statistics of defects follows a binomial distribution with N Bernouilli trials associated with the probability of forming a topological defect at the locations where multiple domains merge. All cumulants of the distribution are predicted to exhibit a common universal power-law scaling with the quench time in which the transition is crossed. Knowledge of the distribution is used to discuss the onset of adiabatic dynamics and bound rare events associated with large deviations.
Collapse
Affiliation(s)
| | - Jack J Mayo
- Donostia International Physics Center, E-20018 San Sebastián, Spain
- University of Groningen, 9712 CP Groningen, Netherlands
| | - Adolfo Del Campo
- Donostia International Physics Center, E-20018 San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, E-48013 Bilbao, Spain
- Department of Physics, University of Massachusetts, Boston, Massachusetts 02125, USA
| |
Collapse
|
14
|
Puebla R, Smirne A, Huelga SF, Plenio MB. Universal Anti-Kibble-Zurek Scaling in Fully Connected Systems. PHYSICAL REVIEW LETTERS 2020; 124:230602. [PMID: 32603162 DOI: 10.1103/physrevlett.124.230602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We investigate the quench dynamics of an open quantum system involving a quantum phase transition. In the isolated case, the quench dynamics involving the phase transition exhibits a number of scaling relations with the quench rate as predicted by the celebrated Kibble-Zurek mechanism. In contact with an environment however, these scaling laws break down and one may observe an anti-Kibble-Zurek behavior: slower ramps lead to less adiabatic dynamics, increasing thus nonadiabatic effects with the quench time. In contrast to previous works, we show here that such anti-Kibble-Zurek scaling can acquire a universal form in the sense that it is determined by the equilibrium critical exponents of the phase transition, provided the excited states of the system exhibit singular behavior, as observed in fully connected models. This demonstrates novel universal scaling laws granted by a system-environment interaction in a critical system. We illustrate these findings in two fully connected models, namely, the quantum Rabi and the Lipkin-Meshkov-Glick models. In addition, we discuss the impact of nonlinear ramps and finite-size systems.
Collapse
Affiliation(s)
- Ricardo Puebla
- Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Andrea Smirne
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Universität Ulm, 89069 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, e Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, I-20133 Milan, Italy
| | - Susana F Huelga
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics and IQST, Albert-Einstein Allee 11, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
15
|
Guo AY, Tran MC, Childs AM, Gorshkov AV, Gong ZX. Signaling and scrambling with strongly long-range interactions. PHYSICAL REVIEW. A 2020; 102:10.1103/PhysRevA.102.010401. [PMID: 33367192 PMCID: PMC7754795 DOI: 10.1103/physreva.102.010401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Strongly long-range interacting quantum systems-those with interactions decaying as a power law 1/r α in the distance r on a D-dimensional lattice for α ⩽ D-have received significant interest in recent years. They are present in leading experimental platforms for quantum computation and simulation, as well as in theoretical models of quantum-information scrambling and fast entanglement creation. Since no notion of locality is expected in such systems, a general understanding of their dynamics is lacking. In a step towards rectifying this problem, we prove two Lieb-Robinson-type bounds that constrain the time for signaling and scrambling in strongly long-range interacting systems, for which no tight bounds were previously known. Our first bound applies to systems mappable to free-particle Hamiltonians with long-range hopping, and is saturable for α ⩽ D/2. Our second bound pertains to generic long-range interacting spin Hamiltonians and gives a tight lower bound for the signaling time to extensive subsets of the system for all α< D. This many-site signaling time lower bounds the scrambling time in strongly long-range interacting systems.
Collapse
Affiliation(s)
- Andrew Y. Guo
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Minh C. Tran
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Andrew M. Childs
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
- Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V. Gorshkov
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Zhe-Xuan Gong
- Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
| |
Collapse
|
16
|
Makhalov V, Satoor T, Evrard A, Chalopin T, Lopes R, Nascimbene S. Probing Quantum Criticality and Symmetry Breaking at the Microscopic Level. PHYSICAL REVIEW LETTERS 2019; 123:120601. [PMID: 31633983 DOI: 10.1103/physrevlett.123.120601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 06/10/2023]
Abstract
We report on an experimental study of the Lipkin-Meshkov-Glick model of quantum spins interacting at infinite range in a transverse magnetic field, which exhibits a ferromagnetic phase transition in the thermodynamic limit. We use dysprosium atoms of electronic spin J=8, subjected to a quadratic Zeeman light shift, to simulate 2J=16 interacting spins 1/2. We probe the system microscopically using single magnetic sublevel resolution, giving access to the spin projection parity, which is the collective observable characterizing the underlying Z_{2} symmetry. We measure the thermodynamic properties and dynamical response of the system, and we study the quantum critical behavior around the transition point. In the ferromagnetic phase, we achieve coherent tunneling between symmetry-broken states, and we test the link between symmetry breaking and the appearance of a finite order parameter.
Collapse
Affiliation(s)
- Vasiliy Makhalov
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Tanish Satoor
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Alexandre Evrard
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Thomas Chalopin
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Raphael Lopes
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Sylvain Nascimbene
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL University, Sorbonne Université, 11 Place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
17
|
Sun C, Chernyak VY, Piryatinski A, Sinitsyn NA. Cooperative Light Emission in the Presence of Strong Inhomogeneous Broadening. PHYSICAL REVIEW LETTERS 2019; 123:123605. [PMID: 31633973 DOI: 10.1103/physrevlett.123.123605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 06/10/2023]
Abstract
We study photon emission by an ensemble of two-level systems, with strong inhomogeneous broadening and coupled to a cavity mode whose frequency has linear time dependence. The analysis shows that, regardless of the distribution of energy level splittings, a sharp phase transition occurs between the weak and strong cooperative emission phases near a critical photonic frequency sweeping rate. The associated scaling exponent is determined. We suggest that this phase transition can be observed in an ensemble of negatively charged NV^{-} centers in diamond interacting with a microwave half-wavelength cavity mode even in the regime of weak coupling and at strong disorder of two-level splittings.
Collapse
Affiliation(s)
- Chen Sun
- Department of Physics, Brown University, Providence, Rhode Island 02912, USA
| | - Vladimir Y Chernyak
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
- Department of Mathematics, Wayne State University, 656 W. Kirby, Detroit, Michigan 48202, USA
| | - Andrei Piryatinski
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Nikolai A Sinitsyn
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|