1
|
Ahmadi M, Atul A, de Graaf S, van der Veer E, Meise A, Tavabi AH, Heggen M, Dunin-Borkowski RE, Ahmadi M, Kooi BJ. Atomically Resolved Phase Coexistence in VO 2 Thin Films. ACS NANO 2024; 18:13496-13505. [PMID: 38752408 PMCID: PMC11140831 DOI: 10.1021/acsnano.3c10745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024]
Abstract
Concurrent structural and electronic transformations in VO2 thin films are of 2-fold importance: enabling fine-tuning of the emergent electrical properties in functional devices, yet creating an intricate interfacial domain structure of transitional phases. Despite the importance of understanding the structure of VO2 thin films, a detailed real-space atomic structure analysis in which the oxygen atomic columns are also resolved is lacking. Moreover, intermediate atomic structures have remained elusive due to the lack of robust atomically resolved quantitative analysis. Here, we directly resolve both V and O atomic columns and discover the presence of intermediate monoclinic (M2) phase nanolayers (less than 2 nm thick) in epitaxially grown VO2 films on a TiO2 (001) substrate, where the dominant part of VO2 undergoes a transition from the tetragonal (rutile) phase to the monoclinic M1 phase. Strain analysis suggests that the presence of the M2 phase is related to local strain gradients near the TiO2/VO2 interface. We unfold the crucial role of imaging the spatial configurations of the oxygen anions (in addition to V cations) by utilizing atomic-resolution electron microscopy. Our approach can be used to unravel the structural transitions in a wide range of correlated oxides, offering substantial implications for, e.g., optoelectronics and ferroelectrics.
Collapse
Affiliation(s)
- Masoud Ahmadi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Atul Atul
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Sytze de Graaf
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Ewout van der Veer
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Ansgar Meise
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Amir Hossein Tavabi
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Marc Heggen
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rafal E. Dunin-Borkowski
- Ernst
Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Majid Ahmadi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Bart J. Kooi
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Niu Y, Vinogradov N, Preobrajenski A, Struzzi C, Sarpi B, Zhu L, Golias E, Zakharov A. MAXPEEM: a spectromicroscopy beamline at MAX IV laboratory. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:468-478. [PMID: 36891861 PMCID: PMC10000796 DOI: 10.1107/s160057752300019x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/09/2023] [Indexed: 06/13/2023]
Abstract
MAXPEEM, a dedicated photoemission electron microscopy beamline at MAX IV Laboratory, houses a state-of-the-art aberration-corrected spectroscopic photoemission and low-energy electron microscope (AC-SPELEEM). This powerful instrument offers a wide range of complementary techniques providing structural, chemical and magnetic sensitivities with a single-digit nanometre spatial resolution. The beamline can deliver a high photon flux of ≥1015 photons s-1 (0.1% bandwidth)-1 in the range 30-1200 eV with full control of the polarization from an elliptically polarized undulator. The microscope has several features which make it unique from similar instruments. The X-rays from the synchrotron pass through the first beam separator and impinge the surface at normal incidence. The microscope is equipped with an energy analyzer and an aberration corrector which improves both the resolution and the transmission compared with standard microscopes. A new fiber-coupled CMOS camera features an improved modulation transfer function, dynamic range and signal-to-noise ratio compared with the traditional MCP-CCD detection system.
Collapse
Affiliation(s)
- Yuran Niu
- MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
| | | | | | - Claudia Struzzi
- MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
| | - Brice Sarpi
- MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
| | - Lin Zhu
- MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
| | | | - Alexei Zakharov
- MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden
| |
Collapse
|
3
|
Basyooni MA, Zaki SE, Tihtih M, Eker YR, Ateş Ş. Photonic bandgap engineering in (VO 2) n/(WSe 2) nphotonic superlattice for versatile near- and mid-infrared phase transition applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:325901. [PMID: 35588726 DOI: 10.1088/1361-648x/ac7189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The application of the photonic superlattice in advanced photonics has become a demanding field, especially for two-dimensional and strongly correlated oxides. Because it experiences an abrupt metal-insulator transition near ambient temperature, where the electrical resistivity varies by orders of magnitude, vanadium oxide (VO2) shows potential as a building block for infrared switching and sensing devices. We reported a first principle study of superlattice structures of VO2as a strongly correlated phase transition material and tungsten diselenide (WSe2) as a two-dimensional transition metal dichalcogenide layer. Based on first-principles calculations, we exploit the effect of semiconductor monoclinic and metallic tetragonal state of VO2with WSe2in a photonic superlattices structure through the near and mid-infrared (NIR-MIR) thermochromic phase transition regions. By increasing the thickness of the VO2layer, the photonic bandgap (PhB) gets red-shifted. We observed linear dependence of the PhB width on the VO2thickness. For the monoclinic case of VO2, the number of the forbidden bands increase with the number of layers of WSe2. New forbidden gaps are preferred to appear at a slight angle of incidence, and the wider one can predominate at larger angles. We presented an efficient way to control the flow of the NIR-MIR in both summer and winter environments for phase transition and photonic thermochromic applications. This study's findings may help understand vanadium oxide's role in tunable photonic superlattice for infrared switchable devices and optical filters.
Collapse
Affiliation(s)
- Mohamed A Basyooni
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
| | - Shrouk E Zaki
- Department of Nanotechnology and Advanced Materials, Graduate School of Applied and Natural Science, Selçuk University, Konya 42030, Turkey
| | - Mohammed Tihtih
- Institute of Ceramic and Polymer Engineering, University of Miskolc, Miskolc 3515, Hungary
| | - Yasin Ramazan Eker
- Science and Technology Research and Application Center (BITAM), Necmettin Erbakan University, Konya 42090, Turkey
- Department of Metallurgy and Material Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya 42060, Turkey
| | - Şule Ateş
- Department of Physics, Faculty of Science, Selçuk University, Konya 42075, Turkey
| |
Collapse
|
4
|
Sandiumenge F, Rodríguez L, Pruneda M, Magén C, Santiso J, Catalan G. Metallic Diluted Dimerization in VO 2 Tweeds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004374. [PMID: 33501746 DOI: 10.1002/adma.202004374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/03/2021] [Indexed: 06/12/2023]
Abstract
The observation of electronic phase separation textures in vanadium dioxide, a prototypical electron-correlated oxide, has recently added new perspectives on the long standing debate about its metal-insulator transition and its applications. Yet, the lack of atomically resolved information on phases accompanying such complex patterns still hinders a comprehensive understanding of the transition and its implementation in practical devices. In this work, atomic resolution imaging and spectroscopy unveils the existence of ferroelastic tweed structures on ≈5 nm length scales, well below the resolution limit of currently used spectroscopic imaging techniques. Moreover, density functional theory calculations show that this pretransitional fine-scale tweed, which on average looks and behaves like the standard metallic rutile phase, is in fact weaved by semi-dimerized chains of vanadium in a new monoclinic phase that represents a structural bridge to the monoclinic insulating ground state. These observations provide a multiscale perspective for the interpretation of existing data, whereby phase coexistence and structural intermixing can occur all the way down to the atomic scale.
Collapse
Affiliation(s)
- Felip Sandiumenge
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, Bellaterra, Catalonia, 08193, Spain
| | - Laura Rodríguez
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
| | - Miguel Pruneda
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
| | - César Magén
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza - CSIC, Departamento de Física de la Materia Condensada, Zaragoza, 50009, Spain
- Laboratorio de Microscopías Avanzadas (LMA) - Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, Zaragoza, 50018, Spain
| | - José Santiso
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
| | - Gustau Catalan
- ICN2 (Institut Catala de Nanociencia i Nanotecnologia) BIST-CSIC, Bellaterra, Catalonia, 08193, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), Barcelona, 08010, Spain
| |
Collapse
|
5
|
Hwang IH, Park CI, Yeo S, Sun CJ, Han SW. Decoupling the metal insulator transition and crystal field effects of VO 2. Sci Rep 2021; 11:3135. [PMID: 33542342 PMCID: PMC7862372 DOI: 10.1038/s41598-021-82588-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
VO2 is a highly correlated electron system which has a metal-to-insulator transition (MIT) with a dramatic change of conductivity accompanied by a first-order structural phase transition (SPT) near room temperature. The origin of the MIT is still controversial and there is ongoing debate over whether an SPT induces the MIT and whether the Tc can be engineered using artificial parameters. We examined the electrical and local structural properties of Cr- and Co-ion implanted VO2 (Cr-VO2 and Co-VO2) films using temperature-dependent resistance and X-ray absorption fine structure (XAFS) measurements at the V K edge. The temperature-dependent electrical resistance measurements of both Cr-VO2 and Co-VO2 films showed sharp MIT features. The Tc values of the Cr-VO2 and Co-VO2 films first decreased and then increased relative to that of pristine VO2 as the ion flux was increased. The pre-edge peak of the V K edge from the Cr-VO2 films with a Cr ion flux ≥ 1013 ions/cm2 showed no temperature-dependent behavior, implying no changes in the local density of states of V 3d t2g and eg orbitals during MIT. Extended XAFS (EXAFS) revealed that implanted Cr and Co ions and their tracks caused a substantial amount of structural disorder and distortion at both vanadium and oxygen sites. The resistance and XAFS measurements revealed that VO2 experiences a sharp MIT when the distance of V-V pairs undergoes an SPT without any transitions in either the VO6 octahedrons or the V 3d t2g and eg states. This indicates that the MIT of VO2 occurs with no changes of the crystal fields.
Collapse
Affiliation(s)
- In-Hui Hwang
- Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Chang-In Park
- Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea
| | - Sunmog Yeo
- Korea Atomic Energy Research Institute, KOMAC, Miraero 181, Gyoungju, 38180, Korea
| | - Cheng-Jun Sun
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Sang-Wook Han
- Department of Physics Education, Institute of Fusion Science, and Institute of Science Education, Jeonbuk National University, Jeonju, 54896, Korea.
| |
Collapse
|
6
|
Guo Y, Sun X, Jiang J, Wang B, Chen X, Yin X, Qi W, Gao L, Zhang L, Lu Z, Jia R, Pendse S, Hu Y, Chen Z, Wertz E, Gall D, Feng J, Lu TM, Shi J. A Reconfigurable Remotely Epitaxial VO 2 Electrical Heterostructure. NANO LETTERS 2020; 20:33-42. [PMID: 31769995 DOI: 10.1021/acs.nanolett.9b02696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The reconfigurability of the electrical heterostructure featured with external variables, such as temperature, voltage, and strain, enabled electronic/optical phase transition in functional layers has great potential for future photonics, computing, and adaptive circuits. VO2 has been regarded as an archetypal phase transition building block with superior metal-insulator transition characteristics. However, the reconfigurable VO2-based heterostructure and the associated devices are rare due to the fundamental challenge in integrating high-quality VO2 in technologically important substrates. In this report, for the first time, we show the remote epitaxy of VO2 and the demonstration of a vertical diode device in a graphene/epitaxial VO2/single-crystalline BN/graphite structure with VO2 as a reconfigurable phase-change material and hexagonal boron nitride (h-BN) as an insulating layer. By diffraction and electrical transport studies, we show that the remote epitaxial VO2 films exhibit higher structural and electrical quality than direct epitaxial ones. By high-resolution transmission electron microscopy and Cs-corrected scanning transmission electron microscopy, we show that a graphene buffered substrate leads to a less strained VO2 film than the bare substrate. In the reconfigurable diode, we find that the Fermi level change and spectral weight shift along with the metal-insulator transition of VO2 could modify the transport characteristics. The work suggests the feasibility of developing a single-crystalline VO2-based reconfigurable heterostructure with arbitrary substrates and sheds light on designing novel adaptive photonics and electrical devices and circuits.
Collapse
Affiliation(s)
- Yuwei Guo
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xin Sun
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jie Jiang
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
- Faculty of Material Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
| | - Baiwei Wang
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xinchun Chen
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Xuan Yin
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Wei Qi
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology , University of Science and Technology Beijing , Beijing , 100083 , China
| | - Lifu Zhang
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Zonghuan Lu
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Ru Jia
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Saloni Pendse
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Yang Hu
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Zhizhong Chen
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Esther Wertz
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Daniel Gall
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jing Feng
- Faculty of Material Science and Engineering , Kunming University of Science and Technology , Kunming 650093 , China
| | - Toh-Ming Lu
- Department of Physics, Applied Physics, and Astronomy , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Jian Shi
- Department of Materials Science and Engineering , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
- Center for Materials, Devices, and Integrated Systems , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|