1
|
Wang Y, Qian Z, Tong H, Tanaka H. Hyperuniform disordered solids with crystal-like stability. Nat Commun 2025; 16:1398. [PMID: 39939581 PMCID: PMC11822127 DOI: 10.1038/s41467-025-56283-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/14/2025] [Indexed: 02/14/2025] Open
Abstract
Hyperuniform disordered solids, characterised by unusually suppressed density fluctuations at low wavenumbers (q), are of great interest due to their potentially distinct properties as a unique glass state. From the jamming perspective, there is ongoing debate about the relationship between hyperuniformity and the jamming transition, as well as whether hyperuniformity persists above the jamming point. Here, we successfully generate over-jammed disordered solids exhibiting the strongest class of hyperuniformity, characterised by a power-law density spectrum (qα with α = 4). By decompressing both hyperuniform and conventional over-jammed packings to their respective marginally jammed states, we identify protocol-independent exponents: α ≈ 0.25 for density hyperuniformity and α ≈ 2 for contact-number hyperuniformity, both associated with the jamming transition. Although both marginally jammed and conventional over-jammed packings exhibit marginal stability, we demonstrate that hyperuniform over-jammed packings possess exceptional stability across vibrational, kinetic, thermodynamic, and mechanical properties-similar to crystals. These findings suggest that hyperuniform over-jammed packings offer crucial insights into the ideal disordered solid state and stand out as promising candidates for disordered metamaterials, uniquely combining hyperuniformity with ultrastability.
Collapse
Affiliation(s)
- Yinqiao Wang
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Zhuang Qian
- Department of Physics, University of Science and Technology of China, Hefei, China
| | - Hua Tong
- Department of Physics, University of Science and Technology of China, Hefei, China.
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
2
|
Jeong A, Portner J, Tanner CPN, Ondry JC, Zhou C, Mi Z, Tazoui YA, Lee B, Wall VRK, Ginsberg NS, Talapin DV. Colloidal Dispersions of Sterically and Electrostatically Stabilized PbS Quantum Dots: Structure Factors, Second Virial Coefficients, and Film-Forming Properties. ACS NANO 2024; 18:33864-33874. [PMID: 39630577 DOI: 10.1021/acsnano.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-Sn2S64-) in polar solvents. The study reveals significant deviations from the ideal solution behavior in electrostatically stabilized QD dispersions. Our results demonstrate that PbS-Sn2S64- QDs exhibit long-range interactions within the solvent, in contrast to the short-range steric repulsion characteristic of PbS QDs with oleate ligands (PbS-OA). Introducing highly charged multivalent electrolytes screens electrostatic interactions between charged QDs, reducing the length scale of the repulsive interactions. Furthermore, we calculated the second virial (B2) coefficients from SAXS data, providing insights into how surface chemistry, solvent, and size influence pair potentials. Finally, we explore the influence of long-range interparticle interactions of PbS-Sn2S64- QDs on the morphology of films produced by drying or spin-coating colloidal solutions. The long-range repulsive term of PbS-Sn2S64- QDs promotes the formation of amorphous films, and screening the electrostatic repulsion by the addition of an electrolyte enables the formation of crystalline domains. These findings highlight the critical role of NC-NC interactions in tailoring the properties of functional materials made of colloidal NCs.
Collapse
Affiliation(s)
- Ahhyun Jeong
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Christian P N Tanner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Chenkun Zhou
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Zehan Mi
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Youssef A Tazoui
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Vivian R K Wall
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division and Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
3
|
Liu Y, Chen D, Tian J, Xu W, Jiao Y. Universal Hyperuniform Organization in Looped Leaf Vein Networks. PHYSICAL REVIEW LETTERS 2024; 133:028401. [PMID: 39073952 DOI: 10.1103/physrevlett.133.028401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/06/2024] [Indexed: 07/31/2024]
Abstract
The leaf vein network is a hierarchical vascular system that transports water and nutrients to the leaf cells. The thick primary veins form a branched network, while the secondary veins can develop closed loops forming a well-defined cellular structure. Through extensive analysis of a variety of distinct leaf species, we discover that the apparently disordered cellular structures of the secondary vein networks exhibit a universal hyperuniform organization and possess a hidden order on large scales. Disorder hyperuniform systems lack conventional long-range order, yet they completely suppress normalized infinite-wavelength density fluctuations like crystals. Specifically, we find that the distributions of the geometric centers associated with the vein network loops possess a vanishing static structure factor in the limit that the wave number k goes to 0, i.e., S(k)∼k^{α}, where α≈0.64±0.021, providing an example of class III hyperuniformity in biology. This hyperuniform organization leads to superior efficiency of diffusive transport, as evidenced by the much faster convergence of the time-dependent spreadability S(t) to its longtime asymptotic limit, compared to that of other uncorrelated or correlated disordered but nonhyperuniform organizations. Our results also have implications for the discovery and design of novel disordered network materials with optimal transport properties.
Collapse
Affiliation(s)
| | | | | | - Wenxiang Xu
- Institute of Solid Mechanics, College of Mechanics and Engineering Science, Hohai University, Nanjing 211100, People's Republic of China
| | | |
Collapse
|
4
|
Zhuang H, Chen D, Liu L, Keeney D, Zhang G, Jiao Y. Vibrational properties of disordered stealthy hyperuniform 1D atomic chains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:285703. [PMID: 38579735 DOI: 10.1088/1361-648x/ad3b5c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Disorder hyperuniformity is a recently discovered exotic state of many-body systems that possess a hidden order in between that of a perfect crystal and a completely disordered system. Recently, this novel disordered state has been observed in a number of quantum materials including amorphous 2D graphene and silica, which are endowed with unexpected electronic transport properties. Here, we numerically investigate 1D atomic chain models, including perfect crystalline, disordered stealthy hyperuniform (SHU) as well as randomly perturbed atom packing configurations to obtain a quantitative understanding of how the unique SHU disorder affects the vibrational properties of these low-dimensional materials. We find that the disordered SHU chains possess lower cohesive energies compared to the randomly perturbed chains, implying their potential reliability in experiments. Our inverse partition ratio (IPR) calculations indicate that the SHU chains can support fully delocalized states just like perfect crystalline chains over a wide range of frequencies, i.e.ω∈(0,100)cm-1, suggesting superior phonon transport behaviors within these frequencies, which was traditionally considered impossible in disordered systems. Interestingly, we observe the emergence of a group of highly localized states associated withω∼200cm-1, which is characterized by a significant peak in the IPR and a peak in phonon density of states at the corresponding frequency, and is potentially useful for decoupling electron and phonon degrees of freedom. These unique properties of disordered SHU chains have implications in the design and engineering of novel quantum materials for thermal and phononic applications.
Collapse
Affiliation(s)
- Houlong Zhuang
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Duyu Chen
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, United States of America
| | - Lei Liu
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - David Keeney
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
| | - Ge Zhang
- Department of Physics, City University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Yang Jiao
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, United States of America
- Department of Physics, Arizona State University, Tempe, AZ 85287, United States of America
| |
Collapse
|
5
|
Yang Z, Xu X, Douglas JF, Xu WS. Confinement effect of inter-arm interactions on glass formation in star polymer melts. J Chem Phys 2024; 160:044503. [PMID: 38265089 DOI: 10.1063/5.0185412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We utilized molecular dynamic simulation to investigate the glass formation of star polymer melts in which the topological complexity is varied by altering the number of star arms (f). Emphasis was placed on how the "confinement effect" of repulsive inter-arm interactions within star polymers influences the thermodynamics and dynamics of star polymer melts. All the characteristic temperatures of glass formation were found to progressively increase with increasing f, but unexpectedly the fragility parameter KVFT was found to decrease with increasing f. As previously observed, stars having more than 5 or 6 arms adopt an average particle-like structure that is more contracted relative to the linear polymer size having the same mass and exhibit a strong tendency for intermolecular and intramolecular segregation. We systematically analyzed how varying f alters collective particle motion, dynamic heterogeneity, the decoupling exponent ζ phenomenologically linking the slow β- and α-relaxation times, and the thermodynamic scaling index γt. Consistent with our hypothesis that the segmental dynamics of many-arm star melts and thin supported polymer films should exhibit similar trends arising from the common feature of high local segmental confinement, we found that ζ increases considerably with increasing f, as found in supported polymer films with decreasing thickness. Furthermore, increasing f led to greatly enhanced elastic heterogeneity, and this phenomenon correlates strongly with changes in ζ and γt. Our observations should be helpful in building a more rational theoretical framework for understanding how molecular topology and geometrical confinement influence the dynamics of glass-forming materials more broadly.
Collapse
Affiliation(s)
- Zhenyue Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Northeast Normal University, Changchun 130024, People's Republic of China
| | - Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
6
|
Wang H, Torquato S. Designer pair statistics of disordered many-particle systems with novel properties. J Chem Phys 2024; 160:044911. [PMID: 38294317 DOI: 10.1063/5.0189769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
The knowledge of exact analytical functional forms for the pair correlation function g2(r) and its corresponding structure factor S(k) of disordered many-particle systems is limited. For fundamental and practical reasons, it is highly desirable to add to the existing database of analytical functional forms for such pair statistics. Here, we design a plethora of such pair functions in direct and Fourier spaces across the first three Euclidean space dimensions that are realizable by diverse many-particle systems with varying degrees of correlated disorder across length scales, spanning a wide spectrum of hyperuniform, typical nonhyperuniform, and antihyperuniform ones. This is accomplished by utilizing an efficient inverse algorithm that determines equilibrium states with up to pair interactions at positive temperatures that precisely match targeted forms for both g2(r) and S(k). Among other results, we realize an example with the strongest hyperuniform property among known positive-temperature equilibrium states, critical-point systems (implying unusual 1D systems with phase transitions) that are not in the Ising universality class, systems that attain self-similar pair statistics under Fourier transformation, and an experimentally feasible polymer model. We show that our pair functions enable one to achieve many-particle systems with a wide range of translational order and self-diffusion coefficients D, which are inversely related to one another. One can design other realizable pair statistics via linear combinations of our functions or by applying our inverse procedure to other desirable functional forms. Our approach facilitates the inverse design of materials with desirable physical and chemical properties by tuning their pair statistics.
Collapse
Affiliation(s)
- Haina Wang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Materials Institute, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
- School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA
| |
Collapse
|
7
|
Zhuravlyov V, Goree J, Elvati P, Violi A. Finite-size effects in the static structure factor S(k) and S(0) for a two-dimensional Yukawa liquid. Phys Rev E 2023; 108:035211. [PMID: 37849136 DOI: 10.1103/physreve.108.035211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/29/2023] [Indexed: 10/19/2023]
Abstract
Finite-size effects in the static structure factor S(k) are analyzed for an amorphous substance. As the number of particles is reduced, S(0) increases greatly, up to an order of magnitude. Meanwhile, there is a decrease in the height of the first peak S_{peak}. These finite-size effects are modeled accurately by the Binder formula for S(0) and our empirical formula for S_{peak}. Procedures are suggested to correct for finite-size effects in S(k) data and in the hyperuniformity index H≡S(0)/S_{peak}. These principles generally apply to S(k) obtained from particle positions in noncrystalline substances. The amorphous substance we simulate is a two-dimensional liquid, with a soft Yukawa interaction modeling a dusty plasma experiment.
Collapse
Affiliation(s)
- Vitaliy Zhuravlyov
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - J Goree
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Paolo Elvati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Angela Violi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Zhang H, Wang X, Zhang J, Yu HB, Douglas JF. Approach to hyperuniformity in a metallic glass-forming material exhibiting a fragile to strong glass transition. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:50. [PMID: 37380868 DOI: 10.1140/epje/s10189-023-00308-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023]
Abstract
We investigate a metallic glass-forming (GF) material (Al90Sm10) exhibiting a fragile-strong (FS) glass-formation by molecular dynamics simulation to better understand this highly distinctive pattern of glass-formation in which many of the usual phenomenological relations describing relaxation times and diffusion of ordinary GF liquids no longer apply, and where instead genuine thermodynamic features are observed in response functions and little thermodynamic signature is exhibited at the glass transition temperature, Tg. Given the many unexpected similarities between the thermodynamics and dynamics of this metallic GF material with water, we first focus on the anomalous static scattering in this liquid, following recent studies on water, silicon and other FS GF liquids. We quantify the "hyperuniformity index" H of our liquid, which provides a quantitative measure of molecular "jamming". To gain insight into the T-dependence and magnitude of H, we also estimate another more familiar measure of particle localization, the Debye-Waller parameter 〈u2〉 describing the mean-square particle displacement on a timescale on the order of the fast relaxation time, and we also calculate H and 〈u2〉 for heated crystalline Cu. This comparative analysis between H and 〈u2〉 for crystalline and metallic glass materials allows us to understand the critical value of H on the order of 10-3 as being analogous to the Lindemann criterion for both the melting of crystals and the "softening" of glasses. We further interpret the emergence of FS GF and liquid-liquid phase separation in this class of liquids to arise from a cooperative self-assembly process in the GF liquid.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| | - Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiarui Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Hai-Bin Yu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jack F Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
9
|
Tawade BV, Singh M, Apata IE, Veerasamy J, Pradhan N, Karim A, Douglas JF, Raghavan D. Polymer-Grafted Nanoparticles with Variable Grafting Densities for High Energy Density Polymeric Nanocomposite Dielectric Capacitors. JACS AU 2023; 3:1365-1375. [PMID: 37234129 PMCID: PMC10207098 DOI: 10.1021/jacsau.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Designing high energy density dielectric capacitors for advanced energy storage systems needs nanocomposite-based dielectric materials, which can utilize the properties of both inorganic and polymeric materials. Polymer-grafted nanoparticle (PGNP)-based nanocomposites alleviate the problems of poor nanocomposite properties by providing synergistic control over nanoparticle and polymer properties. Here, we synthesize "core-shell" barium titanate-poly(methyl methacrylate) (BaTiO3-PMMA) grafted PGNPs using surface-initiated atom transfer polymerization (SI-ATRP) with variable grafting densities of (0.303 to 0.929) chains/nm2 and high molecular masses (97700 g/mL to 130000 g/mol) and observe that low grafted density and high molecular mass based PGNP show high permittivity, high dielectric strength, and hence higher energy densities (≈ 5.2 J/cm3) as compared to the higher grafted density PGNPs, presumably due to their "star-polymer"-like conformations with higher chain-end densities that are known to enhance breakdown. Nonetheless, these energy densities are an order of magnitude higher than their nanocomposite blend counterparts. We expect that these PGNPs can be readily used as commercial dielectric capacitors, and these findings can serve as guiding principles for developing tunable high energy density energy storage devices using PGNP systems.
Collapse
Affiliation(s)
- Bhausaheb V. Tawade
- Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Maninderjeet Singh
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ikeoluwa E. Apata
- Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Jagadesh Veerasamy
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Nihar Pradhan
- Department
of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, Mississippi 39217, United States
| | - Alamgir Karim
- Department
of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jack F. Douglas
- Material
Science and Engineering Division, National
Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Dharmaraj Raghavan
- Department
of Chemistry, Howard University, Washington, D.C. 20059, United States
| |
Collapse
|
10
|
Zhuravlyov V, Goree J, Douglas JF, Elvati P, Violi A. Comparison of the static structure factor at long wavelengths for a dusty plasma liquid and other liquids. Phys Rev E 2022; 106:055212. [PMID: 36559416 DOI: 10.1103/physreve.106.055212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Especially small values of the static structure factor S(k) at long wavelengths, i.e., small k, were obtained in an analysis of experimental data, for a two-dimensional dusty plasma in its liquid state. For comparison, an analysis of S(k) data was carried out for many previously published experiments with other liquids. The latter analysis indicates that the magnitude of S(k) at small k is typically in a range 0.02-0.13. In contrast, the corresponding value for a dusty plasma liquid was found to be as small as 0.0139. Another basic finding for the dusty plasma liquid is that S(k) at small k generally increases with temperature, with its lowest value, noted above, occurring near the melting point. Simulations were carried out for the dusty plasma liquid, and their results are generally consistent with the experiment. Since a dusty plasma has a soft interparticle interaction, our findings support earlier theoretical suggestions that a useful design strategy for creating materials having exceptionally low values of S(0), so-called hyperuniform materials, is the use of a condensed material composed of particles that interact softly at their periphery.
Collapse
Affiliation(s)
- Vitaliy Zhuravlyov
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - J Goree
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Paolo Elvati
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Angela Violi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
11
|
Wu W, Singh M, Zhai Y, Masud A, Tonny W, Yuan C, Yin R, Al-Enizi AM, Bockstaller MR, Matyjaszewski K, Douglas JF, Karim A. Facile Entropy-Driven Segregation of Imprinted Polymer-Grafted Nanoparticle Brush Blends by Solvent Vapor Annealing Soft Lithography. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45765-45774. [PMID: 36174114 DOI: 10.1021/acsami.2c11134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Polymer-grafted nanoparticles (PGNPs) have attracted extensive research interest due to their potential for enhancing mechanical and electrical properties of both bulk polymer composite materials, as well as thin polymer films incorporating these nanoparticles (NPs). In previous studies, we have shown that an entropic driving force serves to organize low-molecular-mass PGNPs in imprinted blend films of PGNPs with low-molecular-mass homopolymers. In this work, we developed a novel solvent vapor annealing soft lithography (SVA-SL) method to overcome the technical difficulties in processing the high-molecular-mass PGNP blends due to the intrinsically sluggish melt annealing kinetics found in the phase separation of these blend PGNP materials. In particular, we utilized SVA-SL to create nanopatterns in blends of PGNPs having relatively high-molecular-mass-grafted layers but with cores of NPs having greatly different sizes. The minimization of the entropic free energy in the present system corresponded to larger PGNPs partitioning almost exclusively into the "mesa" regions of the imprinted PGNP blend films, as quantified by the estimation of the partition coefficient, Kp. The use of the SVA-SL processing method is important because it allows facile imprint patterning of PGNP materials and large-scale organization of the PGNPs even when the grafted chain lengths are long enough for the chains to be highly entangled, allowing enhanced thermo-mechanical property enhancements of the resulting films and a corresponding extended range of potential nanotech applications.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Yue Zhai
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Wafa Tonny
- Department of Materials Science and Engineering, University of Houston, Houston, Texas77204, United States
| | - Chuqing Yuan
- Department of Materials Science and Engineering, University of Houston, Houston, Texas77204, United States
| | - Rongguan Yin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, University of Houston, Houston, Texas77204, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania15213, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
12
|
Dale JR, Sartor JD, Dennis RC, Corwin EI. Hyperuniform jammed sphere packings have anomalous material properties. Phys Rev E 2022; 106:024903. [PMID: 36109903 DOI: 10.1103/physreve.106.024903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A spatial distribution is hyperuniform if it has local density fluctuations that vanish in the limit of long length scales. Hyperuniformity is a well known property of both crystals and quasicrystals. Of recent interest, however, is disordered hyperuniformity: the presence of hyperuniform scaling without long-range configurational order. Jammed granular packings have been proposed as an example of disordered hyperuniformity, but recent numerical investigation has revealed that many jammed systems instead exhibit a complex set of distinct behaviors at long, emergent length scales. We use the Voronoi tessellation as a tool to define a set of rescaling transformations that can impose hyperuniformity on an arbitrary weighted point process, and show that these transformations can be used in simulations to iteratively generate hyperuniform, mechanically stable packings of athermal soft spheres. These hyperuniform jammed packings display atypical mechanical properties, particularly in the low-frequency phononic excitations, which exhibit an isolated band of highly collective modes and a band gap around zero frequency.
Collapse
Affiliation(s)
- Jack R Dale
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - James D Sartor
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - R Cameron Dennis
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| | - Eric I Corwin
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
13
|
Zhang B, Snezhko A. Hyperuniform Active Chiral Fluids with Tunable Internal Structure. PHYSICAL REVIEW LETTERS 2022; 128:218002. [PMID: 35687470 DOI: 10.1103/physrevlett.128.218002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Large density fluctuations observed in active systems and hyperuniformity are two seemingly incompatible phenomena. However, the formation of hyperuniform states has been recently predicted in nonequilibrium fluids formed by chiral particles performing circular motion with the same handedness. Here we report evidence of hyperuniformity realized in a chiral active fluid comprised of pear-shaped Quincke rollers of arbitrary handedness. We show that hyperuniformity and large density fluctuations, triggered by dynamic clustering, coexist in this system at different length scales. The system loses its hyperuniformity as the curvature of particles' motion increases, transforming them into localized spinners. Our results experimentally demonstrate a novel hyperuniform active fluid and provide new insights into an interplay between chirality, activity, and hyperuniformity.
Collapse
Affiliation(s)
- Bo Zhang
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA
| | - Alexey Snezhko
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, USA
| |
Collapse
|
14
|
Xu X, Xu WS. Melt Properties and String Model Description of Glass Formation in Graft Polymers of Different Side-Chain Lengths. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaolei Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
15
|
Gao Y, Jiao Y, Liu Y. Ultraefficient reconstruction of effectively hyperuniform disordered biphase materials via non-Gaussian random fields. Phys Rev E 2022; 105:045305. [PMID: 35590629 DOI: 10.1103/physreve.105.045305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Disordered hyperuniform systems are statistically isotropic and possess no Bragg peaks like liquids and glasses, yet they suppress large-scale density fluctuations in a similar manner as in perfect crystals. The unique hyperuniform long-range order in these systems endow them with nearly optimal transport, electronic, and mechanical properties. The concept of hyperuniformity was originally introduced for many-particle systems and has subsequently been generalized to biphase heterogeneous materials such as porous media, composites, polymers, and biological tissues for unconventional property discovery. Existing methods for rendering realizations of disordered hyperuniform biphase materials reconstruction typically employ stochastic optimization such as the simulated annealing approach, which requires many iterations. Here, we propose an explicit ultraefficient method for reconstructing effectively hyperuniform biphase materials, based on the second-order non-Gaussian random fields where no additional tuning step or iteration is needed. Both the effectively hyperuniform microstructure and the latent material property field can be simultaneously generated in a single reconstruction. Moreover, our method can also incorporate hierarchical uncertainties in the heterogeneous materials, including both uncertainties in the disordered material microstructure and material property variation within each phase. The efficiency and feasibility of the proposed reconstruction method are demonstrated via a wide spectrum of examples spanning from isotropic to anisotropic, effectively hyperuniform to nonhyperuniform, and antihyperuniform systems. Our ultraefficient reconstruction method can be readily incorporated into material design, probabilistic analysis, optimization, and discovery of novel disordered hyperuniform heterogeneous materials.
Collapse
Affiliation(s)
- Yi Gao
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Yang Jiao
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| | - Yongming Liu
- School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85281, USA
| |
Collapse
|
16
|
Mei B, Zhou Y, Schweizer KS. Long Wavelength Thermal Density Fluctuations in Molecular and Polymer Glass-Forming Liquids: Experimental and Theoretical Analysis under Isobaric Conditions. J Phys Chem B 2021; 125:12353-12364. [PMID: 34723527 DOI: 10.1021/acs.jpcb.1c06840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We establish via an in-depth analysis of experimental data that the dimensionless compressibility (proportional to the dimensionless amplitude of long wavelength thermal density fluctuations) of one-component normal and supercooled liquids of chemically complex nonpolar and weakly polar molecules and polymers follows extremely well a surprisingly simple and general temperature dependence over an exceptionally wide range of pressures and temperatures. A theoretical basis for this behavior is shown to exist in the venerable van der Waals model and its more modern interpretations. Although associated hydrogen-bonding (and to a lesser degree strongly polar) liquids display modestly more complex behavior, rather simple temperature and pressure dependences are also discovered. A new approach to collapse the temperature- and pressure-dependent dimensionless compressibility data onto a master curve is formulated that differs from the empirical thermodynamic scaling approach. As a practical matter, we also find that the dimensionless compressibility scales well as an inverse power law with temperature with an exponent that is system dependent and decreases with pressure. At very high pressures and low temperatures, the thermal liquid behavior appears to approach (but not reach) a repulsion-dominated random close packing limit. All these findings are relevant to our recent theoretical work on the problem of activated relaxation and vitrification of supercooled molecular and polymeric liquids.
Collapse
Affiliation(s)
- Baicheng Mei
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Yuxing Zhou
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | - Kenneth S Schweizer
- Department of Materials Science, University of Illinois, Urbana, Illinois 61801, United States.,Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States.,Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Wu W, Singh M, Masud A, Wang X, Nallapaneni A, Xiao Z, Zhai Y, Wang Z, Terlier T, Bleuel M, Yuan G, Satija SK, Douglas JF, Matyjaszewski K, Bockstaller MR, Karim A. Control of Phase Morphology of Binary Polymer Grafted Nanoparticle Blend Films via Direct Immersion Annealing. ACS NANO 2021; 15:12042-12056. [PMID: 34255492 DOI: 10.1021/acsnano.1c03357] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While the phase separation of binary mixtures of chemically different polymer-grafted nanoparticles (PGNPs) is observed to superficially resemble conventional polymer blends, the presence of a "soft" polymer-grafted layer on the inorganic core of these nanoparticles qualitatively alters the phase separation kinetics of these "nanoblends" from the typical pattern of behavior seen in polymer blends and other simple fluids. We investigate this system using a direct immersion annealing method (DIA) that allows for a facile tuning of the PGNPs phase boundary, phase separation kinetics, and the ultimate scale of phase separation after a sufficient "aging" time. In particular, by switching the DIA solvent composition from a selective one (which increases the interaction parameter according to Timmerman's rule) to an overall good solvent for both PGNP components, we can achieve rapid switchability between phase-separated and homogeneous states. Despite a relatively low and non-classical power-law coarsening exponent, the overall phase separation process is completed on a time scale on the order of a few minutes. Moreover, the roughness of the PGNP blend film saturates at a scale that is proportional to the in-plane phase separation pattern scale, as observed in previous blend and block copolymer film studies. The relatively low magnitude of the coarsening exponent n is attributed to a suppression of hydrodynamic interactions between the PGNPs. The DIA method provides a significant opportunity to control the phase separation morphology of PGNP blends by solution processing, and this method is expected to be quite useful in creating advanced materials.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xiaoteng Wang
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Asritha Nallapaneni
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Zihan Xiao
- Department of Materials Science and Engineering, University of Houston, Houston, Texas 77204, United States
| | - Yue Zhai
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, Houston, Texas 77005, United States
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Guangcui Yuan
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Sushil K Satija
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
18
|
Zhang W, Douglas JF, Chremos A, Starr FW. Structure and Dynamics of Star Polymer Films from Coarse-Grained Molecular Simulations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wengang Zhang
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Francis W. Starr
- Department of Physics, Wesleyan University, Middletown, Connecticut 06459, United States
| |
Collapse
|
19
|
Torquato S. Structural characterization of many-particle systems on approach to hyperuniform states. Phys Rev E 2021; 103:052126. [PMID: 34134204 DOI: 10.1103/physreve.103.052126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/04/2021] [Indexed: 11/07/2022]
Abstract
The study of hyperuniform states of matter is an emerging multidisciplinary field, impinging on topics in the physical sciences, mathematics, and biology. The focus of this work is the exploration of quantitative descriptors that herald when a many-particle system in d-dimensional Euclidean space R^{d} approaches a hyperuniform state as a function of the relevant control parameter. We establish quantitative criteria to ascertain the extent of hyperuniform and nonhyperuniform distance-scaling regimes as well as the crossover point between them in terms of the "volume" coefficient A and "surface-area" coefficient B associated with the local number variance σ^{2}(R) for a spherical window of radius R. The larger the ratio B/A, the larger the hyperuniform scaling regime, which becomes of infinite extent in the limit B/A→∞. To complement the known direct-space representation of the coefficient B in terms of the total correlation function h(r), we derive its corresponding Fourier representation in terms of the structure factor S(k), which is especially useful when scattering information is available experimentally or theoretically. We also demonstrate that the free-volume theory of the pressure of equilibrium packings of identical hard spheres that approach a strictly jammed state either along the stable crystal or metastable disordered branch dictates that such end states be exactly hyperuniform. Using the ratio B/A, as well as other diagnostic measures of hyperuniformity, including the hyperuniformity index H and the direct-correlation function length scale ξ_{c}, we study three different exactly solvable models as a function of the relevant control parameter, either density or temperature, with end states that are perfectly hyperuniform. Specifically, we analyze equilibrium systems of hard rods and "sticky" hard-sphere systems in arbitrary space dimension d as a function of density. We also examine low-temperature excited states of many-particle systems interacting with "stealthy" long-ranged pair interactions as the temperature tends to zero, where the ground states are disordered, hyperuniform, and infinitely degenerate. We demonstrate that our various diagnostic hyperuniformity measures are positively correlated with one another. The same diagnostic measures can be used to detect the degree to which imperfections in nearly hyperuniform systems cause deviations from perfect hyperuniformity. Moreover, the capacity to identify hyperuniform scaling regimes should be particularly useful in analyzing experimentally or computationally generated samples that are necessarily of finite size.
Collapse
Affiliation(s)
- Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
20
|
Circular swimming motility and disordered hyperuniform state in an algae system. Proc Natl Acad Sci U S A 2021; 118:2100493118. [PMID: 33931505 DOI: 10.1073/pnas.2100493118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Active matter comprises individually driven units that convert locally stored energy into mechanical motion. Interactions between driven units lead to a variety of nonequilibrium collective phenomena in active matter. One of such phenomena is anomalously large density fluctuations, which have been observed in both experiments and theories. Here we show that, on the contrary, density fluctuations in active matter can also be greatly suppressed. Our experiments are carried out with marine algae ([Formula: see text]), which swim in circles at the air-liquid interfaces with two different eukaryotic flagella. Cell swimming generates fluid flow that leads to effective repulsions between cells in the far field. The long-range nature of such repulsive interactions suppresses density fluctuations and generates disordered hyperuniform states under a wide range of density conditions. Emergence of hyperuniformity and associated scaling exponent are quantitatively reproduced in a numerical model whose main ingredients are effective hydrodynamic interactions and uncorrelated random cell motion. Our results demonstrate the existence of disordered hyperuniform states in active matter and suggest the possibility of using hydrodynamic flow for self-assembly in active matter.
Collapse
|
21
|
Zheng Y, Parmar ADS, Pica Ciamarra M. Hidden Order Beyond Hyperuniformity in Critical Absorbing States. PHYSICAL REVIEW LETTERS 2021; 126:118003. [PMID: 33798360 DOI: 10.1103/physrevlett.126.118003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Disordered hyperuniformity is a description of hidden correlations in point distributions revealed by an anomalous suppression in fluctuations of local density at various coarse-graining length scales. In the absorbing phase of models exhibiting an active-absorbing state transition, this suppression extends up to a hyperuniform length scale that diverges at the critical point. Here, we demonstrate the existence of additional many-body correlations beyond hyperuniformity. These correlations are hidden in the higher moments of the probability distribution of the local density and extend up to a longer length scale with a faster divergence than the hyperuniform length on approaching the critical point. Our results suggest that a hidden order beyond hyperuniformity may generically be present in complex disordered systems.
Collapse
Affiliation(s)
- Yuanjian Zheng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Anshul D S Parmar
- Laboratoire Charles Coulomb (L2C), Universit de Montpellier, CNRS, 34095 Montpellier, France
| | - Massimo Pica Ciamarra
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
- MajuLab, CNRS-UCA-SU-NUS-NTU International Joint Research Unit, Singapore
- CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
| |
Collapse
|
22
|
Douglas JF, Xu WS. Equation of State and Entropy Theory Approach to Thermodynamic Scaling in Polymeric Glass-Forming Liquids. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
23
|
Chen D, Zheng Y, Liu L, Zhang G, Chen M, Jiao Y, Zhuang H. Stone-Wales defects preserve hyperuniformity in amorphous two-dimensional networks. Proc Natl Acad Sci U S A 2021; 118:e2016862118. [PMID: 33431681 PMCID: PMC7826391 DOI: 10.1073/pnas.2016862118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Disordered hyperuniformity (DHU) is a recently discovered novel state of many-body systems that possesses vanishing normalized infinite-wavelength density fluctuations similar to a perfect crystal and an amorphous structure like a liquid or glass. Here, we discover a hyperuniformity-preserving topological transformation in two-dimensional (2D) network structures that involves continuous introduction of Stone-Wales (SW) defects. Specifically, the static structure factor [Formula: see text] of the resulting defected networks possesses the scaling [Formula: see text] for small wave number k, where [Formula: see text] monotonically decreases as the SW defect concentration p increases, reaches [Formula: see text] at [Formula: see text], and remains almost flat beyond this p. Our findings have important implications for amorphous 2D materials since the SW defects are well known to capture the salient feature of disorder in these materials. Verified by recently synthesized single-layer amorphous graphene, our network models reveal unique electronic transport mechanisms and mechanical behaviors associated with distinct classes of disorder in 2D materials.
Collapse
Affiliation(s)
- Duyu Chen
- Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213;
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Lei Liu
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287
| | - Ge Zhang
- Department of Physics, University of Pennsylvania, Philadelphia, PA 19104
| | - Mohan Chen
- Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871, People's Republic of China;
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287;
- Department of Physics, Arizona State University, Tempe, AZ 85287
| | - Houlong Zhuang
- Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287
| |
Collapse
|
24
|
Chremos A. Design of nearly perfect hyperuniform polymeric materials. J Chem Phys 2020; 153:054902. [PMID: 32770903 PMCID: PMC7530914 DOI: 10.1063/5.0017861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023] Open
Abstract
Disordered hyperuniform materials are exotic amorphous systems that simultaneously exhibit anomalous suppression of long-range density fluctuations, comparable in amplitude to that of crystals and quasi-crystalline materials, while lacking the translational order characteristic of simple liquids. We establish a framework to quantitatively predict the emergence of hyperuniformity in polymeric materials by considering the distribution of localized polymer subregions, instead of considering the whole material. We demonstrate that this highly tunable approach results in arbitrarily small long-range density fluctuations in the liquid state. Our simulations also indicate that long-ranged density fluctuation of the whole polymeric material is remarkably insensitive to molecular topology (linear chain, unknotted ring, star, and bottlebrush) and depends on temperature in an apparently near universal fashion. Our findings open the way for the creation of nearly perfect hyperuniform polymeric materials.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Ma Z, Lomba E, Torquato S. Optimized Large Hyperuniform Binary Colloidal Suspensions in Two Dimensions. PHYSICAL REVIEW LETTERS 2020; 125:068002. [PMID: 32845658 DOI: 10.1103/physrevlett.125.068002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The creation of disordered hyperuniform materials with extraordinary optical properties (e.g., large complete photonic band gaps) requires a capacity to synthesize large samples that are effectively hyperuniform down to the nanoscale. Motivated by this challenge, we propose a feasible equilibrium fabrication protocol using binary paramagnetic colloidal particles confined in a 2D plane. The strong and long-ranged dipolar interaction induced by a tunable magnetic field is free from screening effects that attenuate long-ranged electrostatic interactions in charged colloidal systems. Specifically, we numerically find a family of optimal size ratios that makes the two-phase system effectively hyperuniform. We show that hyperuniformity is a general consequence of low isothermal compressibilities, which makes our protocol suitable to treat more general systems with other long-ranged interactions, dimensionalities, and/or polydispersity. Our methodology paves the way to synthesize large photonic hyperuniform materials that function in the visible to infrared range and hence may accelerate the discovery of novel photonic materials.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Enrique Lomba
- Instituto de Química Física Rocasolano, CSIC, Calle Serrano 119, E-28006 Madrid, Spain
| | - Salvatore Torquato
- Department of Chemistry, Department of Physics, Princeton Institute for the Science and Technology of Materials, and Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
Chremos A, Douglas JF. Influence of Branching on the Configurational and Dynamical Properties of Entangled Polymer Melts. Polymers (Basel) 2019; 11:E1045. [PMID: 31207890 PMCID: PMC6631115 DOI: 10.3390/polym11061045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022] Open
Abstract
We probe the influence of branching on the configurational, packing, and density correlation function properties of polymer melts of linear and star polymers, with emphasis on molecular masses larger than the entanglement molecular mass of linear chains. In particular, we calculate the conformational properties of these polymers, such as the hydrodynamic radius R h , packing length p, pair correlation function g ( r ) , and polymer center of mass self-diffusion coefficient, D, with the use of coarse-grained molecular dynamics simulations. Our simulation results reproduce the phenomenology of simulated linear and branched polymers, and we attempt to understand our observations based on a combination of hydrodynamic and thermodynamic modeling. We introduce a model of "entanglement" phenomenon in high molecular mass polymers that assumes polymers can viewed in a coarse-grained sense as "soft" particles and, correspondingly, we model the emergence of heterogeneous dynamics in polymeric glass-forming liquids to occur in a fashion similar to glass-forming liquids in which the molecules have soft repulsive interactions. Based on this novel perspective of polymer melt dynamics, we propose a functional form for D that can describe our simulation results for both star and linear polymers, covering both the unentangled to entangled polymer melt regimes.
Collapse
Affiliation(s)
- Alexandros Chremos
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Jack F Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
27
|
Kim J, Torquato S. Methodology to construct large realizations of perfectly hyperuniform disordered packings. Phys Rev E 2019; 99:052141. [PMID: 31212467 DOI: 10.1103/physreve.99.052141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Indexed: 01/26/2023]
Abstract
Disordered hyperuniform packings (or dispersions) are unusual amorphous two-phase materials that are endowed with exotic physical properties. Such hyperuniform systems are characterized by an anomalous suppression of volume-fraction fluctuations at infinitely long-wavelengths, compared to ordinary disordered materials. While there has been growing interest in such singular states of amorphous matter, a major obstacle has been an inability to produce large samples that are perfectly hyperuniform due to practical limitations of conventional numerical and experimental methods. To overcome these limitations, we introduce a general theoretical methodology to construct perfectly hyperuniform packings in d-dimensional Euclidean space R^{d}. Specifically, beginning with an initial general tessellation of space by disjoint cells that meets a "bounded-cell" condition, hard particles of general shape are placed inside each cell such that the local-cell particle packing fractions are identical to the global packing fraction. We prove that the constructed packings with a polydispersity in size are perfectly hyperuniform in the infinite-sample-size limit, regardless of particle shapes, positions, and numbers per cell. We use this theoretical formulation to devise an efficient and tunable algorithm to generate extremely large realizations of such packings. We employ two distinct initial tessellations: Voronoi as well as sphere tessellations. Beginning with Voronoi tessellations, we show that our algorithm can remarkably convert extremely large nonhyperuniform packings into hyperuniform ones in R^{2} and R^{3}. Implementing our theoretical methodology on sphere tessellations, we establish the hyperuniformity of the classical Hashin-Shtrikman multiscale coated-spheres structures, which are known to be two-phase media microstructures that possess optimal effective transport and elastic properties. A consequence of our work is a rigorous demonstration that packings that have identical tessellations can either be nonhyperuniform or hyperuniform by simply tuning local characteristics. It is noteworthy that our computationally designed hyperuniform two-phase systems can easily be fabricated via state-of-the-art methods, such as 2D photolithographic and 3D printing technologies. In addition, the tunability of our methodology offers a route for the discovery of novel disordered hyperuniform two-phase materials.
Collapse
Affiliation(s)
- Jaeuk Kim
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Salvatore Torquato
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.,Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, USA.,Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|