1
|
Maksymov IS, Huy Nguyen BQ, Pototsky A, Suslov S. Acoustic, Phononic, Brillouin Light Scattering and Faraday Wave-Based Frequency Combs: Physical Foundations and Applications. SENSORS (BASEL, SWITZERLAND) 2022; 22:3921. [PMID: 35632330 PMCID: PMC9143010 DOI: 10.3390/s22103921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
Frequency combs (FCs)-spectra containing equidistant coherent peaks-have enabled researchers and engineers to measure the frequencies of complex signals with high precision, thereby revolutionising the areas of sensing, metrology and communications and also benefiting the fundamental science. Although mostly optical FCs have found widespread applications thus far, in general FCs can be generated using waves other than light. Here, we review and summarise recent achievements in the emergent field of acoustic frequency combs (AFCs), including phononic FCs and relevant acousto-optical, Brillouin light scattering and Faraday wave-based techniques that have enabled the development of phonon lasers, quantum computers and advanced vibration sensors. In particular, our discussion is centred around potential applications of AFCs in precision measurements in various physical, chemical and biological systems in conditions where using light, and hence optical FCs, faces technical and fundamental limitations, which is, for example, the case in underwater distance measurements and biomedical imaging applications. This review article will also be of interest to readers seeking a discussion of specific theoretical aspects of different classes of AFCs. To that end, we support the mainstream discussion by the results of our original analysis and numerical simulations that can be used to design the spectra of AFCs generated using oscillations of gas bubbles in liquids, vibrations of liquid drops and plasmonic enhancement of Brillouin light scattering in metal nanostructures. We also discuss the application of non-toxic room-temperature liquid-metal alloys in the field of AFC generation.
Collapse
Affiliation(s)
- Ivan S. Maksymov
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Bui Quoc Huy Nguyen
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, VIC 3122, Australia;
| | - Andrey Pototsky
- Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (A.P.); (S.S.)
| | - Sergey Suslov
- Department of Mathematics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; (A.P.); (S.S.)
| |
Collapse
|
2
|
Analysis of Birefringence and Dispersion Effects from Spacetime-Symmetry Breaking in Gravitational Waves. UNIVERSE 2021. [DOI: 10.3390/universe7100380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, we review the effective field theory framework to search for Lorentz and CPT symmetry breaking during the propagation of gravitational waves. The article is written so as to bridge the gap between the theory of spacetime-symmetry breaking and the analysis of gravitational-wave signals detected by ground-based interferometers. The primary physical effects beyond General Relativity that we explore here are dispersion and birefringence of gravitational waves. We discuss their implementation in the open-source LIGO-Virgo algorithm library suite, and we discuss the statistical method used to perform a Bayesian inference of the posterior probability of the coefficients for symmetry-breaking. We present preliminary results of this work in the form of simulations of modified gravitational waveforms, together with sensitivity studies of the measurements of the coefficients for Lorentz and CPT violation. The findings show the high potential of gravitational wave sources across the sky to sensitively probe for these signals of new physics.
Collapse
|
3
|
Ke J, Luo J, Shao CG, Tan YJ, Tan WH, Yang SQ. Combined Test of the Gravitational Inverse-Square Law at the Centimeter Range. PHYSICAL REVIEW LETTERS 2021; 126:211101. [PMID: 34114858 DOI: 10.1103/physrevlett.126.211101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Experiments measuring the Newtonian gravitational constant G can offer uniquely sensitive probes of the test of the gravitational inverse-square law. An analysis of the non-Newtonian effect in two independent experiments measuring G is presented, which permits a test of the 1/r^{2} law at the centimeter range. This work establishes the strongest bound on the magnitude α of Yukawa-type deviations from Newtonian gravity in the range of 5-500 mm and improves the previous bounds by up to a factor of 7 at the length range of 60-100 mm.
Collapse
Affiliation(s)
- Jun Ke
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Jie Luo
- School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, People's Republic of China
| | - Cheng-Gang Shao
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Yu-Jie Tan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wen-Hai Tan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Shan-Qing Yang
- TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| |
Collapse
|
4
|
Abstract
Modified theories of gravity that explicitly break diffeomorphism invariance have been used for over a decade to explore open issues related to quantum gravity, dark energy, and dark matter. At the same time, the Standard-Model Extension (SME) has been widely used as a phenomenological framework in investigations of spacetime symmetry breaking. Until recently, it was thought that the SME was suitable only for theories with spontaneous spacetime symmetry breaking due to consistency conditions stemming from the Bianchi identities. However, it has recently been shown that, particularly with matter couplings included, the consistency conditions can also be satisfied in theories with explicit breaking. An overview of how this is achieved is presented, and two examples are examined. The first is massive gravity, which includes a nondynamical background tensor. The second is a model based on a low-energy limit of Hořava gravity, where spacetime has a physically preferred foliation. In both cases, bounds on matter–gravity interactions that explicitly break diffeomorphisms are obtained using the SME.
Collapse
|
5
|
Tan WH, Du AB, Dong WC, Yang SQ, Shao CG, Guan SG, Wang QL, Zhan BF, Luo PS, Tu LC, Luo J. Improvement for Testing the Gravitational Inverse-Square Law at the Submillimeter Range. PHYSICAL REVIEW LETTERS 2020; 124:051301. [PMID: 32083933 DOI: 10.1103/physrevlett.124.051301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/05/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
We improve the test of the gravitational inverse-square law at the submillimeter range by suppressing the vibration of the electrostatic shielding membrane to reduce the disturbance coupled from the residual surface potential. The result shows that, at a 95% confidence level, the gravitational inverse-square law holds (|α|≤1) down to a length scale λ=48 μm. This work establishes the strongest bound on the magnitude α of the Yukawa violation in the range of 40-350 μm, and improves the previous bounds by up to a factor of 3 at the length scale λ≈70 μm. Furthermore, the constraints on the power-law potentials are improved by about a factor of 2 for k=4 and 5.
Collapse
Affiliation(s)
- Wen-Hai Tan
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - An-Bin Du
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Wen-Can Dong
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Shan-Qing Yang
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| | - Cheng-Gang Shao
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Sheng-Guo Guan
- College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Qing-Lan Wang
- School of Science, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Bi-Fu Zhan
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, People's Republic of China
| | - Peng-Shun Luo
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Liang-Cheng Tu
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| | - Jun Luo
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- TianQin Research Center for Gravitational Physics and School of Physics and Astronomy, Sun Yat-sen University (Zhuhai Campus), Zhuhai 519082, People's Republic of China
| |
Collapse
|
6
|
Moseley S, Scaramuzza N, Tasson JD, Trostel ML. Lorentz violation and Sagnac gyroscopes. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.100.064031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|