1
|
Samajdar R, McCulloch E, Khemani V, Vasseur R, Gopalakrishnan S. Quantum Turnstiles for Robust Measurement of Full Counting Statistics. PHYSICAL REVIEW LETTERS 2024; 133:240403. [PMID: 39750339 DOI: 10.1103/physrevlett.133.240403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics. In addition, by mapping the FCS onto a single-body observable, it allows for stable numerical calculations of FCS using approximate tensor-network methods. We demonstrate the wide-ranging utility of this approach by computing the FCS of the transferred magnetization in a Floquet Heisenberg spin chain, as studied in a recent experiment with superconducting qubits, as well as the FCS of charge transfer in random circuits.
Collapse
|
2
|
Ouyang XY, Ye QJ, Li XZ. Complex phase diagram and supercritical matter. Phys Rev E 2024; 109:024118. [PMID: 38491632 DOI: 10.1103/physreve.109.024118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024]
Abstract
The supercritical region is often described as uniform with no definite transitions. The distinct behaviors of the matter therein, e.g., as liquidlike and gaslike, however, suggest "supercritical boundaries." Here we provide a mathematical description of these phenomena by revisiting the Yang-Lee theory and introducing a complex phase diagram, specifically a four-dimensional (4D) one with complex T and p. While the traditional 2D phase diagram with real temperature T and pressure p values (the physical plane) lacks Lee-Yang (LY) zeros beyond the critical point, preventing the occurrence of criticality, the off-plane zeros in this 4D scenario still induce critical anomalies in various physical properties. This relationship is evidenced by the correlation between the Widom line and LY edges in van der Waals, 2D Ising model, and water. The diverged supercritical boundaries manifest the high-dimensional feature of the phase diagram: e.g., when LY zeros of complex T or p are projected onto the physical plane, boundaries defined by isobaric heat capacity C_{p} or isothermal compression coefficient K_{T} emanates. These results demonstrate the incipient phase transition nature of the supercritical matter.
Collapse
Affiliation(s)
- Xiao-Yu Ouyang
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Qi-Jun Ye
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Xin-Zheng Li
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, and Collaborative Innovation Center of Quantum Matter, Peking University, Beijing 100871, People's Republic of China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, People's Republic of China
| |
Collapse
|
3
|
Suzuki S, Oshiyama H, Shibata N. Statistics of the number of defects after quantum annealing in a thermal environment. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20210411. [PMID: 36463929 DOI: 10.1098/rsta.2021.0411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
We study the statistics of the kink number generated by quantum annealing in a one-dimensional transverse Ising model coupled to a bosonic thermal bath. Using the freezing ansatz for quantum annealing in the thermal environment, we show the relation between the ratio of the second to the first cumulant of the kink number distribution and the average kink density. The theoretical result is confirmed thoroughly by numerical simulation using the non-Markovian infinite time-evolving block decimation which we proposed recently. The simulation using D-Wave's quantum annealer is also discussed. This article is part of the theme issue 'Quantum annealing and computation: challenges and perspectives'.
Collapse
Affiliation(s)
- Sei Suzuki
- Department of Liberal Arts, Saitama Medical University, Moroyama, Saitama, Japan
| | - Hiroki Oshiyama
- Department of Information Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
4
|
Cornelius J, Xu Z, Saxena A, Chenu A, Del Campo A. Spectral Filtering Induced by Non-Hermitian Evolution with Balanced Gain and Loss: Enhancing Quantum Chaos. PHYSICAL REVIEW LETTERS 2022; 128:190402. [PMID: 35622025 DOI: 10.1103/physrevlett.128.190402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
The dynamical signatures of quantum chaos in an isolated system are captured by the spectral form factor, which exhibits as a function of time a dip, a ramp, and a plateau, with the ramp being governed by the correlations in the level spacing distribution. While decoherence generally suppresses these dynamical signatures, the nonlinear non-Hermitian evolution with balanced gain and loss (BGL) in an energy-dephasing scenario can enhance manifestations of quantum chaos. In the Sachdev-Ye-Kitaev model and random matrix Hamiltonians, BGL increases the span of the ramp, lowering the dip as well as the value of the plateau, providing an experimentally realizable physical mechanism for spectral filtering. The chaos enhancement due to BGL is optimal over a family of filter functions that can be engineered with fluctuating Hamiltonians.
Collapse
Affiliation(s)
- Julien Cornelius
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Zhenyu Xu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Avadh Saxena
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Aurélia Chenu
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| | - Adolfo Del Campo
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
5
|
Francis A, Zhu D, Huerta Alderete C, Johri S, Xiao X, Freericks JK, Monroe C, Linke NM, Kemper AF. Many-body thermodynamics on quantum computers via partition function zeros. SCIENCE ADVANCES 2021; 7:7/34/eabf2447. [PMID: 34407938 PMCID: PMC8373169 DOI: 10.1126/sciadv.abf2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Partition functions are ubiquitous in physics: They are important in determining the thermodynamic properties of many-body systems and in understanding their phase transitions. As shown by Lee and Yang, analytically continuing the partition function to the complex plane allows us to obtain its zeros and thus the entire function. Moreover, the scaling and nature of these zeros can elucidate phase transitions. Here, we show how to find partition function zeros on noisy intermediate-scale trapped-ion quantum computers in a scalable manner, using the XXZ spin chain model as a prototype, and observe their transition from XY-like behavior to Ising-like behavior as a function of the anisotropy. While quantum computers cannot yet scale to the thermodynamic limit, our work provides a pathway to do so as hardware improves, allowing the future calculation of critical phenomena for systems beyond classical computing limits.
Collapse
Affiliation(s)
- Akhil Francis
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Daiwei Zhu
- Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD 20742, USA
- Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA
| | - Cinthia Huerta Alderete
- Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD 20742, USA
- Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
| | - Sonika Johri
- IonQ Inc., 4505 Campus Dr, College Park, MD 20740, USA
| | - Xiao Xiao
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - James K Freericks
- Department of Physics, Georgetown University, 37th and O Sts. NW, Washington, DC 20057, USA
| | - Christopher Monroe
- Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD 20742, USA
- Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA
- IonQ Inc., 4505 Campus Dr, College Park, MD 20740, USA
| | - Norbert M Linke
- Joint Quantum Institute and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Alexander F Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
6
|
Ma R, Hendel NL, Marshall WF, Qin H. Speed and Diffusion of Kinesin-2 Are Competing Limiting Factors in Flagellar Length-Control Model. Biophys J 2020; 118:2790-2800. [PMID: 32365327 DOI: 10.1016/j.bpj.2020.03.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 10/24/2022] Open
Abstract
Flagellar length control in Chlamydomonas is a tractable model system for studying the general question of organelle size regulation. We have previously proposed that the diffusive return of the kinesin motor that powers intraflagellar transport can play a key role in length regulation. Here, we explore how the motor speed and diffusion coefficient for the return of kinesin-2 affect flagellar growth kinetics. We find that the system can exist in two distinct regimes, one dominated by motor speed and one by diffusion coefficient. Depending on length, a flagellum can switch between these regimes. Our results indicate that mutations can affect the length in distinct ways. We discuss our theory's implication for flagellar growth influenced by beating and provide possible explanations for the experimental observation that a beating flagellum is usually longer than its immotile mutant. These results demonstrate how our simple model can suggest explanations for mutant phenotypes.
Collapse
Affiliation(s)
- Rui Ma
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Nathan L Hendel
- Department of Biochemistry and Biophysics, University of California, San Francisco, California; Bioinformatics Graduate Group, University of California, San Francisco, California
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, California
| | - Hongmin Qin
- Department of Biology, Texas A&M University, College Station, Texas.
| |
Collapse
|