1
|
Xie W, Li Z, Li M, Liu Y, Liu Y, Cao C, Guo K, Liu K, Zhou Y, Lu P. Observation of Attosecond Time Delays in Above-Threshold Ionization. PHYSICAL REVIEW LETTERS 2024; 133:183201. [PMID: 39547174 DOI: 10.1103/physrevlett.133.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/03/2024] [Accepted: 10/02/2024] [Indexed: 11/17/2024]
Abstract
Attosecond-scale temporal characterization of photoionization is essential in understanding how light and matter interact on the most fundamental level. However, characterizing the temporal property of strong-field above-threshold ionization has remained unreached. Here, we propose a novel photoelectron interferometric method to disentangle the contribution of Coulomb effect from an attoclock, allowing us to clock energy-resolved time delays of strong-field above-threshold ionization. We disentangle two types of Coulomb effects for the attoclock, i.e., one arising from the Coulomb disturbance of a single electron trajectory and the second effect arising from the photoelectron phase space distortion due to the Coulomb field. We find that the second Coulomb effect manifests itself as an energy-resolved attosecond time delay in the electron emission, which is relevant to the effect of nonadiabatic initial longitudinal momentum at the tunnel exit. Our study further indicates a sensitivity of the time delay to the temporal profile of the released electron wave packet within one half laser cycle. The temporal width of the released electron wave packet is found to increase with energy, which contradicts the common assumption in the adiabatic picture.
Collapse
|
2
|
Min Y, Xu X, Lv X, Zhang Y, Lu Y, Hao X, Tan J. Probing the electron motion in molecules using forward-scattering photoelectron holography. OPTICS EXPRESS 2024; 32:857-870. [PMID: 38175105 DOI: 10.1364/oe.513783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024]
Abstract
Charge migration initiated by the coherent superposition of several electronic states is a basic process in intense laser-matter interactions. Observing this process on its intrinsic timescale is one of the central goals of attosecond science. Here, using forward-scattering photoelectron holography we theoretically demonstrate a scheme to probe the charge migration in molecules. In our scheme, by solving the time-dependent Schrödinger equation, the photoelectron momentum distributions (PEMDs) for strong-field tunneling ionization of the molecule are obtained. For a superposition state, it is shown that an intriguing shift of the holographic interference appears in the PEMDs, when the molecule is aligned perpendicularly to the linearly polarized laser field. With the quantum-orbit analysis, we demonstrate that this shift of the interference fringes is caused by the time evolution of the non-stationary superposition state. By analyzing the dependence of the shift on the final parallel momentum of the electrons, the relative phase and the expansion coefficient ratio of the two electronic states involved in the superposition state are determined accurately. Our study provides an efficient method for probing the charge migration in molecules. It will facilitate the application of the forward-scattering photoelectron holography to survey the electronic dynamics in more complex molecules.
Collapse
|
3
|
Yao HB, Qu QW, Zhang ZH, Wang JW, Gao J, Hu CX, Li H, Wu J, He F. Multiphoton Ionization Reduction of Atoms in Two-Color Femtosecond Laser Fields. PHYSICAL REVIEW LETTERS 2023; 130:113201. [PMID: 37001077 DOI: 10.1103/physrevlett.130.113201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
We report the ionization reduction of atoms in two-color femtosecond laser fields in this joint theoretical-experimental study. For the multiphoton ionization of atoms using a 400 nm laser pulse, the ionization probability is reduced if another relatively weak 800 nm laser pulse is overlapped. Such ionization reduction consistently occurs regardless of the relative phase between the two pulses. The time-dependent Schrödinger equation simulation results indicate that with the assisted 800 nm photons the electron can be launched to Rydberg states with large angular quantum numbers, which stand off the nuclei and thus are hard to be freed in the multiphoton regime. This mechanism works for hydrogen, helium, and probably some other atoms if two-color laser fields are properly tuned.
Collapse
Affiliation(s)
- Hong-Bin Yao
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- Key Laboratory of New Energy and Materials Research of Xinjiang Education Department, Xinjiang Institute of Engineering, Urumqi 830091, China
| | - Qi-Wen Qu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zhao-Han Zhang
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Wei Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Gao
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
| | - Chen-Xi Hu
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| | - Feng He
- Key Laboratory for Laser Plasmas (Ministry of Education) and School of Physics and Astronomy, Collaborative innovation center for IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
4
|
Yu M, Liu K, Li M, Yan J, Cao C, Tan J, Liang J, Guo K, Cao W, Lan P, Zhang Q, Zhou Y, Lu P. Full experimental determination of tunneling time with attosecond-scale streaking method. LIGHT, SCIENCE & APPLICATIONS 2022; 11:215. [PMID: 35798716 PMCID: PMC9262890 DOI: 10.1038/s41377-022-00911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Tunneling is one of the most fundamental and ubiquitous processes in the quantum world. The question of how long a particle takes to tunnel through a potential barrier has sparked a long-standing debate since the early days of quantum mechanics. Here, we propose and demonstrate a novel scheme to accurately determine the tunneling time of an electron. In this scheme, a weak laser field is used to streak the tunneling current produced by a strong elliptically polarized laser field in an attoclock configuration, allowing us to retrieve the tunneling ionization time relative to the field maximum with a precision of a few attoseconds. This overcomes the difficulties in previous attoclock measurements wherein the Coulomb effect on the photoelectron momentum distribution has to be removed with theoretical models and it requires accurate information of the driving laser fields. We demonstrate that the tunneling time of an electron from an atom is close to zero within our experimental accuracy. Our study represents a straightforward approach toward attosecond time-resolved imaging of electron motion in atoms and molecules.
Collapse
Affiliation(s)
- Miao Yu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Kun Liu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Min Li
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Jiaqing Yan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Chuanpeng Cao
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Jia Tan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, 215009, Suzhou, China
| | - Jintai Liang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Keyu Guo
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Wei Cao
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Pengfei Lan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qingbin Zhang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yueming Zhou
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, 430074, Wuhan, China.
- Optics Valley Laboratory, 430074, Hubei, China.
| |
Collapse
|
5
|
Plunkett A, Alarcón MA, Wood JK, Greene CH, Sandhu A. Raman Interferometry between Autoionizing States to Probe Ultrafast Wave-Packet Dynamics with High Spectral Resolution. PHYSICAL REVIEW LETTERS 2022; 128:083001. [PMID: 35275674 DOI: 10.1103/physrevlett.128.083001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Photoelectron interferometry with femtosecond and attosecond light pulses is a powerful probe of the fast electron wave-packet dynamics, albeit it has practical limitations on the energy resolution. We show that one can simultaneously obtain both high temporal and spectral resolution by stimulating Raman interferences with one light pulse and monitoring the modification of the electron yield in a separate step. Applying this spectroscopic approach to the autoionizing states of argon, we experimentally resolved its electronic composition and time evolution in exquisite detail. Theoretical calculations show remarkable agreement with the observations and shed light on the light-matter interaction parameters. Using appropriate Raman probing and delayed detection steps, this technique enables highly sensitive probing and control of electron dynamics in complex systems.
Collapse
Affiliation(s)
- A Plunkett
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - M A Alarcón
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - J K Wood
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - C H Greene
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - A Sandhu
- Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
6
|
Xie W, Yan J, Li M, Cao C, Guo K, Zhou Y, Lu P. Picometer-Resolved Photoemission Position within the Molecule by Strong-Field Photoelectron Holography. PHYSICAL REVIEW LETTERS 2021; 127:263202. [PMID: 35029482 DOI: 10.1103/physrevlett.127.263202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Laser-induced tunneling ionization is one of the fundamental light-matter interaction processes. An accurate description of the tunnel-ionized electron wave packet is central to understanding and controlling subsequent electron dynamics. Because of the anisotropic molecular structure, tunneling ionization of molecules involves considerable challenges in accurately describing the tunneling electron wave packet. Up to now, some basic properties of the tunneling electron from molecules still remain unexplored. Here, we demonstrate that the tunneling electron from a molecule is not always emitted from the geometric center of the molecule along the tunnel direction. Rather, the photoemission position depends on the molecular orientation. Using a photoelectron holographic technique, we determine the photoemission position for a nitrogen molecule relative to the molecular geometric center to be 95±21 pm when the molecular axis is oriented along the tunnel direction. Our Letter poses, and answers experimentally, a fundamental question as to where the molecular photoionization actually begins, which has significant implications for time-resolved probing of valence electron dynamics in molecules.
Collapse
Affiliation(s)
- Wenhai Xie
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiaqing Yan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Li
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuanpeng Cao
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Keyu Guo
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peixiang Lu
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
7
|
Schirber M. How to Find the Electron Starting Block. PHYSICS 2021. [DOI: 10.1103/physics.14.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Liu K, Li M, Xie W, Guo K, Luo S, Yan J, Zhou Y, Lu P. Revealing the effect of atomic orbitals on the phase distribution of an ionizing electron wave packet with circularly polarized two-color laser fields. OPTICS EXPRESS 2020; 28:12439-12449. [PMID: 32403741 DOI: 10.1364/oe.386299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
We theoretically study the interference of photoelectrons released from atomic p± orbitals in co-rotating and counter-rotating circularly polarized two-color laser pulses consisting of a strong 400-nm field and a weak 800-nm field. We find that in co-rotating fields the interference fringes in the photoelectron momentum distributions are nearly the same for p± orbitals, while in counter-rotating fields the interference fringes for p+ and p- orbitals oscillate out of phase with respect to the electron emission angle. The simulations based on the strong-field approximation show a good agreement with the numerical solutions of the time-dependent Schrödinger equation. We find that different phase distributions of the electron wave packets emitted from p+ and p- orbitals can be easily revealed by the counter-rotating circularly polarized two-color laser fields. We further show that the photoelectron interference patterns in the circularly polarized two-color laser fields record the time differences of the electron wave packets released within an optical cycle.
Collapse
|
9
|
Liu X, Zhang G, Li J, Shi G, Zhou M, Huang B, Tang Y, Song X, Yang W. Deep Learning for Feynman's Path Integral in Strong-Field Time-Dependent Dynamics. PHYSICAL REVIEW LETTERS 2020; 124:113202. [PMID: 32242706 DOI: 10.1103/physrevlett.124.113202] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Feynman's path integral approach is to sum over all possible spatiotemporal paths to reproduce the quantum wave function and the corresponding time evolution, which has enormous potential to reveal quantum processes in the classical view. However, the complete characterization of the quantum wave function with infinite paths is a formidable challenge, which greatly limits the application potential, especially in the strong-field physics and attosecond science. Instead of brute-force tracking every path one by one, here we propose a deep-learning-performed strong-field Feynman's formulation with a preclassification scheme that can predict directly the final results only with data of initial conditions, so as to attack unsurmountable tasks by existing strong-field methods and explore new physics. Our results build a bridge between deep learning and strong-field physics through Feynman's path integral, which would boost applications of deep learning to study the ultrafast time-dependent dynamics in strong-field physics and attosecond science and shed new light on the quantum-classical correspondence.
Collapse
Affiliation(s)
- Xiwang Liu
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
- Department of Mathematics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Guojun Zhang
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jie Li
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Guangluo Shi
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Mingyang Zhou
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Boqiang Huang
- Mathematisches Institut, Universität zu Köln, 50931 Köln, Germany
| | - Yajuan Tang
- Department of Electronic and Information Engineering, College of Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Xiaohong Song
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
- Department of Mathematics, College of Science, Shantou University, Shantou, Guangdong 515063, China
- Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou, Guangdong 515063, China
| | - Weifeng Yang
- Research Center for Advanced Optics and Photoelectronics, Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
- Department of Mathematics, College of Science, Shantou University, Shantou, Guangdong 515063, China
- Key Laboratory of Intelligent Manufacturing Technology of MOE, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
10
|
Liang J, Zhou Y, Tan J, He M, Ke Q, Zhao Y, Li M, Jiang W, Lu P. Low-energy photoelectron interference structure in attosecond streaking. OPTICS EXPRESS 2019; 27:37736-37752. [PMID: 31878550 DOI: 10.1364/oe.27.037736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
By numerically solving the time-dependent Schrödinger equation, we theoretically investigate the dynamics of the low-energy photoelectrons ionized by a single attosecond pulse in the presence of an infrared laser field. The obtained photoelectron momentum distributions exhibit complicated interference structures. With the semiclassical model, the originations for the different types of the interference structures are unambiguously identified. Moreover, by changing the time delay between the attosecond pulse and the infrared laser field, these interferences could be selectively enhanced or suppressed. This enables us to extract information about the ionization dynamics encoded in the interference structures. As an example, we show that the phase of the electron wave-packets ionized by the linearly and circularly polarized attosecond pulses can be extracted from the interference structures of the direct and the near-forward rescattering electrons.
Collapse
|
11
|
Njoroge SM, Yuan H, Dickson K, Zhang Q, Lan P. Control of the polarization direction of isolated attosecond pulses using inhomogeneous two-color fields. Sci Rep 2019; 9:18582. [PMID: 31819091 PMCID: PMC6901543 DOI: 10.1038/s41598-019-54984-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/13/2019] [Indexed: 11/09/2022] Open
Abstract
We theoretically demonstrate the control of the polarization direction of isolated attosecond pulses (IAPs) with inhomogeneous two-color fields synthesized by an 800-nm fundamental pulse and a 2000-nm control pulse having crossed linear polarizations. The results show that by using the temporally and spatially shaped field, the high-order harmonic generation (HHG) process can be efficiently controlled. An ultra-broad supercontinuum ranging from 150th to 400th harmonics which covers the water window region is generated. Such a supercontinuum supports the generation of a 64-as linearly polarized IAP, whose polarization direction is at about 45° with respect to the x axis. Moreover, we analyze the influence of the inhomogeneity parameters and the relative angle of the fundamental and control pulses on the IAP generation. It is shown that the polarization direction of the IAP can rotate in a wide range approximately from 8° to 90° relative to the x axis when the inhomogeneity parameters and the relative angle vary.
Collapse
Affiliation(s)
- Stephen Maina Njoroge
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hua Yuan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Kinyua Dickson
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qingbin Zhang
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Pengfei Lan
- Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
12
|
Ke Q, Zhou Y, Tan J, He M, Liang J, Zhao Y, Li M, Lu P. Two-dimensional photoelectron holography in strong-field tunneling ionization by counter rotating two-color circularly polarized laser pulses. OPTICS EXPRESS 2019; 27:32193-32209. [PMID: 31684436 DOI: 10.1364/oe.27.032193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Strong-field photoelectron holography (SFPH), originating from the interference of the direct electron and the rescattering electron in tunneling ionization, is a significant tool for probing structure and electronic dynamics in molecules. We theoretically study SFPH by counter rotating two-color circularly (CRTC) polarized laser pulses. Different from the case of the linearly polarized laser field, where the holographic structure in the photoelectron momentum distribution (PEMD) is clustered around the laser polarization direction, in the CRTC laser fields, the tunneling ionized electrons could recollide with the parent ion from different angles and thus the photoelectron hologram appears in the whole plane of laser polarization. This property enables structural information delivered by the electrons scattering the molecule from different angles to be recorded in the two-dimensional photoelectron hologram. Moreover, the electrons tunneling at different laser cycles are streaked to different angles in the two-dimensional polarization plane. This property enables us to probe the sub-cycle electronic dynamics in molecules over a long time window with the multiple-cycle CRTC laser pulses.
Collapse
|
13
|
Abstract
We investigate the topological bound modes of surface plasmon polaritons (SPPs) in a graphene pair waveguide array. The arrays are with uniform inter-layer and intra-layer spacings but the chemical potential of two graphene in each pair are different. The topological bound modes emerge when two arrays with opposite sequences of chemical potential are interfaced, which are analogous to Jackiw-Rebbi modes with opposite mass. We show the topological bound modes can be dynamically controlled by tuning the chemical potential, and the propagation loss of topological bound modes can be remarkably reduced by decreasing the chemical potential. Thanks to the strong confinement of graphene SPPs, the modal wavelength of topological bound modes can be squeezed as small as 1/70 of incident wavelength. The study provides a promising approach to realizing robust light transport beyond diffraction limit.
Collapse
|
14
|
Zhao Y, Zhou Y, Liang J, Zeng Z, Ke Q, Liu Y, Li M, Lu P. Frustrated tunneling ionization in the elliptically polarized strong laser fields. OPTICS EXPRESS 2019; 27:21689-21700. [PMID: 31510241 DOI: 10.1364/oe.27.021689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
We theoretically investigated frustrated tunneling ionization (FTI) in the interaction of atoms with elliptically polarized laser pulses by a semiclassical ensemble model. Our results show that the yield of frustrated tunneling ionization events exhibits an anomalous behavior which maximizes at the nonzero ellipticity. By tracing back the initial tunneling coordinates, we show that this anomalous behavior is due to the fact that the initial transverse velocity at tunneling of the FTI events is nonzero in the linear laser pulses and it moves across zero as the ellipticity increases. The FTI yield maximizes at the ellipticity when the initial transverse momentum for being trapped is zero. Moreover, the angular momentum distribution of the FTI events and its ellipticity dependence are also explored. The anomalous behavior revealed in our work is very similar to the previously observed ellipticity dependence of the near- and below-threshold harmonics, and thus our work may uncover the mechanism of the below-threshold harmonics which is still a controversial issue.
Collapse
|
15
|
Reflection Enhancement and Giant Lateral Shift in Defective Photonic Crystals with Graphene. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9102141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigates the reflectance of the defective mode (DM) and the lateral shift of reflected beam in defective photonic crystals incorporated with single-layer graphene by the transfer matrix method (TMM). Graphene, treated as an equivalent dielectric with a thickness of 0.34 nm, was embedded in the center of a defect layer. The reflectance of the DM was greatly enhanced as the intraband transition of electrons was converted to an interband transition in graphene. The reflectance of the DM could be further enhanced by increasing the Bragg periodic number. Furthermore, a large lateral shift of the reflected beam could also be induced around the DM. This study may find great applications in highly sensitive sensors.
Collapse
|