1
|
Oyama N, Kawasaki T, Kim K, Mizuno H. Scale Separation of Shear-Induced Criticality in Glasses. PHYSICAL REVIEW LETTERS 2024; 132:148201. [PMID: 38640386 DOI: 10.1103/physrevlett.132.148201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 02/21/2024] [Indexed: 04/21/2024]
Abstract
In a sheared steady state, glasses reach a nonequilibrium criticality called yielding criticality. We report that the qualitative nature of this nonequilibrium critical phenomenon depends on the details of the system and that responses and fluctuations are governed by different critical correlation lengths in specific situations. This scale separation of critical lengths arises when the screening of elastic propagation of mechanical signals is not negligible. We also discuss the determinant of the impact of screening effects from the viewpoint of the microscopic dissipation mechanism.
Collapse
Affiliation(s)
- Norihiro Oyama
- Toyota Central R&D Labs., Inc., Nagakute 480-1192, Japan
| | - Takeshi Kawasaki
- Department of Physics, Nagoya University, Nagoya 464-8602, Japan
| | - Kang Kim
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Singh A, Saitoh K. Scaling relationships between viscosity and diffusivity in shear-thickening suspensions. SOFT MATTER 2023; 19:6631-6640. [PMID: 37599580 DOI: 10.1039/d3sm00510k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Dense suspensions often exhibit a dramatic response to large external deformation. The recent body of work has related this behavior to transition from an unconstrained lubricated state to a constrained frictional state. Here, we use numerical simulations to study the flow behavior and shear-induced diffusion of frictional non-Brownian spheres in two dimensions under simple shear flow. We first show that both viscosity η and diffusivity D/ of the particles increase under characteristic shear stress, which is associated with lubrication to frictional transition. Subsequently, we propose a one-to-one relationship between viscosity and diffusivity using the length scale ξ associated with the size of collective motions (rigid clusters) of the particles. We demonstrate that η and D/ are controlled by ξ in two distinct flow regimes, i.e. in the frictionless and frictional states, where the one-to-one relationship is described as a crossover from D/ ∼ η (frictionless) to η1/3 (frictional). We also confirm that the proposed power laws are insensitive to the interparticle friction and system size.
Collapse
Affiliation(s)
- Abhinendra Singh
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| | - Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| |
Collapse
|
3
|
Wu ZW, Chen Y, Wang WH, Kob W, Xu L. Topology of vibrational modes predicts plastic events in glasses. Nat Commun 2023; 14:2955. [PMID: 37225717 DOI: 10.1038/s41467-023-38547-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/02/2023] [Indexed: 05/26/2023] Open
Abstract
The plastic deformation of crystalline materials can be understood by considering their structural defects such as disclinations and dislocations. Although also glasses are solids, their structure resembles closely the one of a liquid and hence the concept of structural defects becomes ill-defined. As a consequence it is very challenging to rationalize on a microscopic level the mechanical properties of glasses close to the yielding point and to relate plastic events to structural properties. Here we investigate the topological characteristics of the eigenvector field of the vibrational excitations of a two-dimensional glass model, notably the geometric arrangement of the topological defects as a function of vibrational frequency. We find that if the system is subjected to a quasistatic shear, the location of the resulting plastic events correlate strongly with the topological defects that have a negative charge. Our results provide thus a direct link between the structure of glasses prior their deformation and the plastic events during deformation.
Collapse
Affiliation(s)
- Zhen Wei Wu
- Institute of Nonequilibrium Systems, School of Systems Science, Beijing Normal University, 100875, Beijing, China.
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
| | - Yixiao Chen
- Yuanpei College, Peking University, 100871, Beijing, China
| | - Wei-Hua Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Walter Kob
- Department of Physics, University of Montpellier and CNRS, 34095, Montpellier, France.
| | - Limei Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Baggio R, Salman OU, Truskinovsky L. Inelastic rotations and pseudoturbulent plastic avalanches in crystals. Phys Rev E 2023; 107:025004. [PMID: 36932476 DOI: 10.1103/physreve.107.025004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Plastic deformations in crystals produce microstructures with randomly oriented patches of unstressed lattice forming complex textures. We use a mesoscopic Landau-type tensorial model of crystal plasticity to show that in such textures rotations can originate from crystallographically exact microslips which self organize in the form of laminates of a pseudotwin type. The formation of such laminates can be viewed as an effective internal "wrinkling" of the crystal lattice. While such "wrinkling" disguises itself as an elastically neutral rotation, behind it is inherently dissipative, dislocation-mediated process. Our numerical experiments reveal pseudoturbulent effective rotations with power-law distributed spatial correlations which suggests that the process of dislocational self-organization is inherently unstable and points toward the necessity of a probabilistic description of crystal plasticity.
Collapse
Affiliation(s)
- R Baggio
- LSPM, CNRS UPR3407, Paris Nord Sorbonne Université, 93400 Villateneuse, France
- PMMH, CNRS UMR 7636 ESPCI ParisTech, 10 Rue Vauquelin,75005 Paris, France
- UMR SPE 6134, Université de Corse, CNRS, Campus Grimaldi, 20250 Corte, France
| | - O U Salman
- LSPM, CNRS UPR3407, Paris Nord Sorbonne Université, 93400 Villateneuse, France
| | - L Truskinovsky
- PMMH, CNRS UMR 7636 ESPCI ParisTech, 10 Rue Vauquelin,75005 Paris, France
| |
Collapse
|
5
|
Sun A, Wang Y, Chen Y, Shang J, Zheng J, Yu S, Su S, Sun X, Zhang J. Turbulent-like velocity fluctuations in two-dimensional granular materials subject to cyclic shear. SOFT MATTER 2022; 18:983-989. [PMID: 35014635 DOI: 10.1039/d1sm01516h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We perform a systematic experimental study to investigate the velocity fluctuations in the two-dimensional granular matter of low and high friction coefficients subjected to cyclic shear of a range of shear amplitudes, whose velocity fields are strikingly turbulent-like with vortices of different scales. The scaling behaviors of both the transverse velocity power spectra ET(k) ∝ k-αT and, more severely, the longitudinal velocity power spectra EL(k) ∝ k-αL are affected by the prominent peak centered around k ≈ 2π of the inter-particle distance due to the static structure factor of the hard-particle nature in contrast to the real turbulence. To reduce the strong peak effect to the actual values of αν (the subscript 'ν' refers to either T or L), we subsequently analyze the second-order velocity structure functions of S(2)ν(r) in real space, which show the power-law scalings of S(2)ν(r) ∝ rβν for both modes. From the values of βν, we deduce the corresponding αν from the scaling relations of αν = βν + 2. The deduced values of αν increase continuously with the shear amplitude γm, showing no signature of yielding transition, and are slightly larger than αν = 2.0 at the limit of γm → 0, which corresponds to the elastic limit of the system, for all γm. The inter-particle friction coefficients show no significant effect on the turbulent-like velocity fluctuations. Our findings suggest that the turbulent-like collective particle motions are governed by both the elasticity and plasticity in cyclically sheared granular materials.
Collapse
Affiliation(s)
- Aile Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yinqiao Wang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yangrui Chen
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jin Shang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Zheng
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shuchang Yu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Siyuan Su
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xulai Sun
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jie Zhang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Wang X, Zhang H, Douglas JF. The initiation of shear band formation in deformed metallic glasses from soft localized domains. J Chem Phys 2021; 155:204504. [PMID: 34852471 DOI: 10.1063/5.0069729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has long been thought that shear band (SB) formation in amorphous solids initiates from relatively "soft" regions in the material in which large-scale non-affine deformations become localized. The test of this hypothesis requires an effective means of identifying "soft" regions and their evolution as the material is deformed to varying degrees, where the metric of "softness" must also account for the effect of temperature on local material stiffness. We show that the mean square atomic displacement on a caging timescale ⟨u2⟩, the "Debye-Waller factor," provides a useful method for estimating the shear modulus of the entire material and, by extension, the material stiffness at an atomic scale. Based on this "softness" metrology, we observe that SB formation indeed occurs through the strain-induced formation of localized soft regions in our deformed metallic glass free-standing films. Unexpectedly, the critical strain condition for SB formation occurs when the softness (⟨u2⟩) distribution within the emerging soft regions approaches that of the interfacial region in its undeformed state, initiating an instability with similarities to the transition to turbulence. Correspondingly, no SBs arise when the material is so thin that the entire material can be approximately described as being "interfacial" in nature. We also quantify relaxation in the glass and the nature and origin of highly non-Gaussian particle displacements in the dynamically heterogeneous SB regions at times longer than the caging time.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jack F Douglas
- Material Measurement Laboratory, Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
7
|
Oyama N, Mizuno H, Ikeda A. Instantaneous Normal Modes Reveal Structural Signatures for the Herschel-Bulkley Rheology in Sheared Glasses. PHYSICAL REVIEW LETTERS 2021; 127:108003. [PMID: 34533339 DOI: 10.1103/physrevlett.127.108003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The Herschel-Bulkley law, a universal constitutive relation, has been empirically known to be applicable to a vast range of soft materials, including sheared glasses. Although the Herschel-Bulkley law has attracted public attention, its structural origin has remained an open question. In this Letter, by means of atomistic simulation of binary Lennard-Jones glasses, we report that the instantaneous normal modes with negative eigenvalues, or so-called imaginary modes, serve as the structural signatures for the Herschel-Bulkley rheology in sheared glasses.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, Universal Biology Institute, University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
8
|
Oyama N, Mizuno H, Ikeda A. Unified view of avalanche criticality in sheared glasses. Phys Rev E 2021; 104:015002. [PMID: 34412287 DOI: 10.1103/physreve.104.015002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 06/14/2021] [Indexed: 11/07/2022]
Abstract
Plastic events in sheared glasses are considered an example of so-called avalanches, whose sizes obey a power-law probability distribution with the avalanche critical exponent τ. Although the so-called mean-field depinning (MFD) theory predicts a universal value of this exponent, τ_{MFD}=1.5, such a simplification is now known to connote qualitative disagreement with realistic systems. Numerically and experimentally, different values of τ have been reported depending on the literature. Moreover, in the elastic regime, it has been noted that the critical exponent can be different from that in the steady state, and even criticality itself is a matter of debate. Because these confusingly varying results have been reported under different setups, our knowledge of avalanche criticality in sheared glasses is greatly limited. To gain a unified understanding, in this work, we conduct a comprehensive numerical investigation of avalanches in Lennard-Jones glasses under athermal quasistatic shear. In particular, by excluding the ambiguity and arbitrariness that has crept into the conventional measurement schemes, we achieve high-precision measurement and demonstrate that the exponent τ in the steady state follows the prediction of MFD theory, τ_{MFD}=1.5. Our results also suggest that there are two qualitatively different avalanche events. This binariness leads to the nonuniversal behavior of the avalanche size distribution and is likely to be the cause of the varying values of τ reported thus far. To investigate the dependence of criticality and universality on applied shear, we further study the statistics of avalanches in the elastic regime and the ensemble of the first avalanche event in different samples, which provide information about the unperturbed system. We show that while the unperturbed system is indeed off-critical, criticality gradually develops as shear is applied. The degree of criticality is encoded in the fractal dimension of the avalanches, which starts from zero in the off-critical unperturbed state and saturates in the steady state. Moreover, the critical exponent τ is consistent with the prediction of the MFD τ_{MFD} universally, regardless of the amount of applied shear, once the system becomes critical.
Collapse
Affiliation(s)
- Norihiro Oyama
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
| | - Hideyuki Mizuno
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| | - Atsushi Ikeda
- Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 153-8902, Japan.,Research Center for Complex Systems Biology, Universal Biology Institute, The University of Tokyo, Komaba, Tokyo 153-8902, Japan
| |
Collapse
|
9
|
Saitoh K. The role of friction in statistics and scaling laws of avalanches. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:85. [PMID: 34165652 DOI: 10.1140/epje/s10189-021-00089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
We investigate statistics and scaling laws of avalanches in two-dimensional frictional particles by numerical simulations. We find that the critical exponent for avalanche size distributions is governed by microscopic friction between the particles in contact, where the exponent is larger and closer to mean-field predictions if the friction coefficient is finite. We reveal that microscopic "slips" between frictional particles induce numerous small avalanches which increase the slope, as well as the power-law exponent, of avalanche size distributions. We also analyze statistics and scaling laws of the avalanche duration and maximum stress drop rates, and examine power spectra of stress drop rates. Our numerical results suggest that the microscopic friction is a key ingredient of mean-field descriptions and plays a crucial role in avalanches observed in real materials.
Collapse
Affiliation(s)
- Kuniyasu Saitoh
- Department of Physics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
10
|
Artoni R, Larcher M, Jenkins JT, Richard P. Self-diffusion scalings in dense granular flows. SOFT MATTER 2021; 17:2596-2602. [PMID: 33523071 DOI: 10.1039/d0sm01846e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We report on measurements of self-diffusion coefficients in discrete numerical simulations of steady, homogeneous, collisional shearing flows of nearly identical, frictional, inelastic spheres. We focus on a range of relatively high solid volume fractions that are important in those terrestrial gravitational shearing flows that are dominated by collisional interactions. Diffusion over this range of solid fraction has not been well characterized in previous studies. We first compare the measured values with an empirical scaling based on shear rate previously proposed in the literature, and highlight the presence of anisotropy and the solid fraction dependence. We then compare the numerical measurements with those predicted by the kinetic theory for shearing flows of inelastic spheres and offer an explanation for why the measured and predicted values differ.
Collapse
Affiliation(s)
- Riccardo Artoni
- MAST-GPEM, Univ Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France.
| | - Michele Larcher
- Free University of Bozen-Bolzano, I-39100 Bozen-Bolzano, Italy
| | | | - Patrick Richard
- MAST-GPEM, Univ Gustave Eiffel, IFSTTAR, F-44344 Bouguenais, France.
| |
Collapse
|
11
|
Coquand O, Sperl M, Kranz WT. Integration through transients approach to the μ(I) rheology. Phys Rev E 2020; 102:032602. [PMID: 33075983 DOI: 10.1103/physreve.102.032602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
This work generalizes the granular integration through transients formalism introduced by Kranz et al. [Phys. Rev. Lett. 121, 148002 (2018)10.1103/PhysRevLett.121.148002] to the determination of the pressure. We focus on the Bagnold regime and provide theoretical support to the empirical μ(I) rheology laws that have been successfully applied in many granular flow problems. In particular, we confirm that the interparticle friction is irrelevant in the regime where the μ(I) laws apply.
Collapse
Affiliation(s)
- O Coquand
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
| | - M Sperl
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| | - W T Kranz
- Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR), 51170 Köln, Germany
- Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany
| |
Collapse
|
12
|
Qiu H, Zhou Z, Peng X, Zhang X, Zhu Y, Gao Y, Xiao D, Bao H, Xu T, Zhang J, Huang T, Zhou J, Ming Z, Xiang P, Yang H, Wang X, Wu D, Ncst Team. Initial measurement of electron nonextensive parameter with electric probe. Phys Rev E 2020; 101:043206. [PMID: 32422841 DOI: 10.1103/physreve.101.043206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 11/07/2022]
Abstract
Theoretical analysis and a large number of experiments have proved that plasma components do not satisfy Boltzmann-Gibbs statistics and can be well described by nonextensive statistical mechanics, while new plasma parameters, electron nonextensive parameters, which are introduced to describe the nonextensive properties of plasma, cannot be diagnosed yet. Here we show measurement of electron nonextensive parameters of plasma with a nonextensive single electric probe. Our results show that nonextensive electric probe may play a role in plasma diagnosis, measuring nonextensivity of plasma and improving diagnostic accuracy of other plasma parameters. We expect the proposed nonextensive single electric probe can be starting point of more complex nonextensive electric probe. In addition, nonextensive electric probe is an important means to study various plasma waves and instability, turbulence, and anomalous transport, and a definite and quantitative test of the theory of nonextensive geodetic acoustic models will be relevant to such development.
Collapse
Affiliation(s)
- Huibin Qiu
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Zhenyu Zhou
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Xingkun Peng
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Xianyang Zhang
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Yuqing Zhu
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Yue Gao
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Donghua Xiao
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Haifeng Bao
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Tianling Xu
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Jia Zhang
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Tianhui Huang
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Jinmao Zhou
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Zhiyi Ming
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Pengfei Xiang
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Hai Yang
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Xiaofeng Wang
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Dongyang Wu
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| | - Ncst Team
- Department of Physics, Nanchang University, JiangXi, Nanchang 330031, China and Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Jiangxi, Nanchang 330031, China
| |
Collapse
|