1
|
Jing Z, Li S, Ouyang S, Lu J, Wang Y, Huang L, Li L, Sang T. Observation of the Generalized Kerker Effect Mediated by Quasi-Bound States in the Continuum. NANO LETTERS 2025; 25:522-528. [PMID: 39698843 DOI: 10.1021/acs.nanolett.4c05421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The generalized Kerker effect (GKE) arising from the interference of high-order multipoles has attracted more interest due to its direct correlation with various functionalities in nanophotonics. The realization of the GKE at oblique incidence is highly desired yet remains underexplored. Herein, we report the experimental observation of the GKE by leveraging quasi-bound states in the continuum (QBICs) supported by a silicon metasurface. The low-Q leaky mode resonance interacts with one of the high-Q QBICs under oblique incidence, leading to the formation of a hybrid magnetic quadrupole (MQ)-magnetic dipole (MD) mode. The amplitude of the hybrid MQ-MD mode can be precisely controlled to achieve an out-of-phase condition by varying the incident angle, resulting in a GKE under the second Kerker condition. Our results reveal that the QBICs associated with rich multipole resonances can provide a new paradigm for tailoring the GKE, suggesting important implications for advanced metadevices.
Collapse
Affiliation(s)
- Ze Jing
- Department of Photoelectric Information Science and Engineering, School of Science, Jiangnan University, Wuxi 214122, China
| | - Shuangli Li
- School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Siyuan Ouyang
- Department of Photoelectric Information Science and Engineering, School of Science, Jiangnan University, Wuxi 214122, China
| | - Junjian Lu
- Department of Photoelectric Information Science and Engineering, School of Science, Jiangnan University, Wuxi 214122, China
| | - Yueke Wang
- Department of Photoelectric Information Science and Engineering, School of Science, Jiangnan University, Wuxi 214122, China
| | - Lujun Huang
- School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Lin Li
- School of Physics and Electronic Science, State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Tian Sang
- Department of Photoelectric Information Science and Engineering, School of Science, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Zhu Y, Li S, Zhang Y, Meng J, Tan X, Chen J, Panmai M, Xiang J. Dynamic control of the directional scattering of single Mie particle by laser induced metal insulator transitions. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3815-3823. [PMID: 39633729 PMCID: PMC11466016 DOI: 10.1515/nanoph-2024-0154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/18/2024] [Indexed: 12/07/2024]
Abstract
Interference between the electric and magnetic dipole-induced in Mie nanostructures has been widely demonstrated to tailor the scattering field, which was commonly used in optical nano-antennas, filters, and routers. The dynamic control of scattering fields based on dielectric nanostructures is interesting for fundamental research and important for practical applications. Here, it is shown theoretically that the amplitude of the electric and magnetic dipoles induced in a vanadium dioxide nanosphere can be manipulated by using laser-induced metal-insulator transitions, and it is experimentally demonstrated that the directional scattering can be controlled by simply varying the irradiances of the excitation laser. As a straightforward application, we demonstrate a high-performance optical modulator in the visible band with high modulation depth, fast modulation speed, and high reproducibility arising from a backscattering setup with the quasi-first Kerker condition. Our method indicates the potential applications in developing nanoscale optical antennas and optical modulation devices.
Collapse
Affiliation(s)
- Yanlin Zhu
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing400044, China
| | - Shulei Li
- School of Optoelectronic Engineering, Guangdong Polytechnic Normal University, Guangzhou510665, China
| | - Yang Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing400044, China
| | - Jinjing Meng
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing400044, China
| | - Xu Tan
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing400044, China
| | - Jingdong Chen
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou363000, China
| | - Mingcheng Panmai
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore639798, Singapore
| | - Jin Xiang
- Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, and College of Optoelectronic Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
3
|
Tripathi A, Ugwu CF, Asadchy VS, Faniayeu I, Kravchenko I, Fan S, Kivshar Y, Valentine J, Kruk SS. Nanoscale optical nonreciprocity with nonlinear metasurfaces. Nat Commun 2024; 15:5077. [PMID: 38871743 DOI: 10.1038/s41467-024-49436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Optical nonreciprocity is manifested as a difference in the transmission of light for the opposite directions of excitation. Nonreciprocal optics is traditionally realized with relatively bulky components such as optical isolators based on the Faraday rotation, hindering the miniaturization and integration of optical systems. Here we demonstrate free-space nonreciprocal transmission through a metasurface comprised of a two-dimensional array of nanoresonators made of silicon hybridized with vanadium dioxide (VO2). This effect arises from the magneto-electric coupling between Mie modes supported by the resonator. Nonreciprocal response of the nanoresonators occurs without the need for external bias; instead, reciprocity is broken by the incident light triggering the VO2 phase transition for only one direction of incidence. Nonreciprocal transmission is broadband covering over 100 nm in the telecommunication range in the vicinity of λ = 1.5 µm. Each nanoresonator unit cell occupies only ~0.1 λ3 in volume, with the metasurface thickness measuring about half-a-micron. Our self-biased nanoresonators exhibit nonreciprocity down to very low levels of intensity on the order of 150 W/cm2 or a µW per nanoresonator. We estimate picosecond-scale transmission fall times and sub-microsecond scale transmission rise. Our demonstration brings low-power, broadband and bias-free optical nonreciprocity to the nanoscale.
Collapse
Affiliation(s)
- Aditya Tripathi
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, Australia
| | | | - Viktar S Asadchy
- Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Ihar Faniayeu
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Ivan Kravchenko
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Shanhui Fan
- Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, Australia
| | - Jason Valentine
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Sergey S Kruk
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
4
|
Tserkezis C, Stamatopoulou PE, Wolff C, Mortensen NA. Self-hybridisation between interband transitions and Mie modes in dielectric nanoparticles. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2513-2522. [PMID: 39678669 PMCID: PMC11636336 DOI: 10.1515/nanoph-2023-0781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/07/2024] [Indexed: 12/17/2024]
Abstract
We discuss the possibility of self-hybridisation in high-index dielectric nanoparticles, where Mie modes of electric or magnetic type can couple to the interband transitions of the material, leading to spectral anticrossings. Starting with an idealised system described by moderately high constant permittivity with a narrow Lorentzian, in which self-hybridisation is visible for both plane-wave and electron-beam excitation, we embark on a quest for realistic systems where this effect should be visible. We explore a variety of spherical particles made of traditional semiconductors such as Si, GaAs, and GaP. With the effect hardly discernible, we identify two major causes hindering observation of self-hybridisation: the very broad spectral fingerprints of interband transitions in most candidate materials, and the significant overlap between electric and magnetic Mie modes in nanospheres. We thus depart from the spherical shape, and show that interband-Mie hybridisation is indeed feasible in the example of GaAs cylinders, even with a simple plane-wave source. This so-far unreported kind of polariton has to be considered when interpreting experimental spectra of Mie-resonant nanoparticles and assigning modal characters to specific features. On the other hand, it has the potential to be useful for the characterisation of the optical properties of dielectric materials, through control of the hybridisation strength via nanoparticle size and shape, and for applications that exploit Mie resonances in metamaterials, highly-directional antennas, or photovoltaics.
Collapse
Affiliation(s)
- Christos Tserkezis
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Odense M, Denmark
| | - P Elli Stamatopoulou
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Odense M, Denmark
| | - Christian Wolff
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Odense M, Denmark
| | - N Asger Mortensen
- POLIMA-Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Odense M, Denmark
- D-IAS-Danish Institute for Advanced Study, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
5
|
Zhang Z, Xu J, Liu K, Zhu Z. Magnetic transverse unidirectional scattering and longitudinal displacement sensing in silicon nanodimer. OPTICS EXPRESS 2024; 32:19279-19293. [PMID: 38859066 DOI: 10.1364/oe.521725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 06/12/2024]
Abstract
Unidirectional scattering, crucial for manipulating light at the nanoscale, has wide-ranging applications from optical manipulation to sensing. While traditionally achieved through interactions between electric multipoles or between electric and magnetic multipoles, reports on unidirectional scattering driven purely by magnetic multipoles are limited. In this study, we undertake a theoretical exploration of transverse unidirectional scattering induced by magnetic multipoles, employing tightly focused azimuthally polarized beams (APBs) in interaction with a silicon nanodimer comprising two non-concentric nanorings. Through numerical simulations and theoretical analysis, we validate the transverse unidirectional scattering, predominantly governed by magnetic dipolar and quadrupolar resonances. Moreover, the directionality of this unidirectional scattering shows a strong correlation with the longitudinal displacement of the nanodimer within a specific range, showcasing its potential for longitudinal displacement sensing. Our study advances optical scattering control in nanostructures and guides the design of on-chip longitudinal displacement sensors.
Collapse
|
6
|
Lin R, Valuckas V, Do TTH, Nemati A, Kuznetsov AI, Teng J, Ha ST. Schrödinger's Red Beyond 65,000 Pixel-Per-Inch by Multipolar Interaction in Freeform Meta-Atom through Efficient Neural Optimizer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303929. [PMID: 38093513 PMCID: PMC10987134 DOI: 10.1002/advs.202303929] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/16/2023] [Indexed: 04/04/2024]
Abstract
Freeform nanostructures have the potential to support complex resonances and their interactions, which are crucial for achieving desired spectral responses. However, the design optimization of such structures is nontrivial and computationally intensive. Furthermore, the current "black box" design approaches for freeform nanostructures often neglect the underlying physics. Here, a hybrid data-efficient neural optimizer for resonant nanostructures by combining a reinforcement learning algorithm and Powell's local optimization technique is presented. As a case study, silicon nanostructures with a highly-saturated red color are designed and experimentally demonstrated. Specifically, color coordinates of (0.677, 0.304) in the International Commission on Illumination (CIE) chromaticity diagram - close to the ideal Schrödinger's red, with polarization independence, high reflectance (>85%), and a large viewing angle (i.e., up to ± 25°) is achieved. The remarkable performance is attributed to underlying generalized multipolar interferences within each nanostructure rather than the collective array effects. Based on that, pixel size down to ≈400 nm, corresponding to a printing resolution of 65000 pixels per inch is demonstrated. Moreover, the proposed design model requires only ≈300 iterations to effectively search a thirteen-dimensional (13D) design space - an order of magnitude more efficient than the previously reported approaches. The work significantly extends the free-form optical design toolbox for high-performance flat-optical components and metadevices.
Collapse
Affiliation(s)
- Ronghui Lin
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Vytautas Valuckas
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Thi Thu Ha Do
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Arash Nemati
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Arseniy I. Kuznetsov
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Jinghua Teng
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| | - Son Tung Ha
- Agency for Science, Technology and Research (A*STAR)Institute of Materials Research and Engineering (IMRE)2 Fusionopolis Way, Innovis #08‐03Singapore138634Republic of Singapore
| |
Collapse
|
7
|
Islam MS, Babicheva VE. Lattice Mie resonances and emissivity enhancement in mid-infrared iron pyrite metasurfaces. OPTICS EXPRESS 2023; 31:40380-40392. [PMID: 38041341 DOI: 10.1364/oe.505207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023]
Abstract
High-refractive-index antennas with characteristic dimensions comparable to wavelength have a remarkable ability to support pronounces electric and magnetic dipole resonances. Furthermore, periodic arrangements of such resonant antennas result in narrow and strong lattice resonances facilitated by the lattice. We design iron pyrite antennas operating in the mid-infrared spectral range due to the material's low-energy bandgap and high refractive index. We utilize Kirchhoff's law, stating that emissivity and absorptance are equal to each other in equilibrium, and we apply it to improve the thermal properties of the iron pyrite metasurface. Through the excitation of collective resonances and manipulation of the antenna lattice's period, we demonstrate our capacity to control emissivity peaks. These peaks stem from the resonant excitation of electric and magnetic dipoles within proximity to the Rayleigh anomalies. In the lattice of truncated-cone antennas, we observe Rabi splitting of electric and magnetic dipole lattice resonances originating from the antennas' broken symmetry. We demonstrate that the truncated-cone antenna lattices support strong out-of-plane magnetic dipole lattice resonances at oblique incidence. We show that the truncated-cone antennas, as opposed to disks or cones, facilitate a particularly strong resonance and bound state in the continuum at the normal incidence. Our work demonstrates the effective manipulation of emissivity peaks in iron pyrite metasurfaces through controlled lattice resonances and antenna design, offering promising avenues for mid-infrared spectral engineering.
Collapse
|
8
|
Kotte TPS, Adam AJL, Zuidwijk T, Heerkens CTH, Xu M, Urbach HP. Broadband directional scattering through a phase difference acquired in composite nanoparticles. OPTICS EXPRESS 2023; 31:38815-38830. [PMID: 38017976 DOI: 10.1364/oe.498461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 11/30/2023]
Abstract
We study the broadband scattering of light by composite nanoparticles through the Born approximation, FEM simulations, and measurements. The particles consist of two materials and show broadband directional scattering. From the analytical approach and the subsequent FEM simulations, it was found that the directional scattering is due to the phase difference between the fields scattered by of each of the two materials of the nanoparticle. To confirm this experimentally, composite nanoparticles were produced using ion-beam etching. Measurements of SiO2 / Au composite nanoparticles confirmed the directional scattering which was predicted by theory and simulations.
Collapse
|
9
|
Lv J, Ren Y, Wang D, Xu X, Liu W, Wang J, Liu C, Chu PK. Multi-wavelength unidirectional forward scattering properties of the arrow-shaped gallium phosphide nanoantenna. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2023; 40:2034-2044. [PMID: 38038069 DOI: 10.1364/josaa.496501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/30/2023] [Indexed: 12/02/2023]
Abstract
An arrow-shaped gallium phosphide nanoantenna exhibits both near-field electric field enhancement and far-field unidirectional scattering, and the interference conditions involve electric and magnetic quadrupoles as well as toroidal dipoles. By using long-wavelength approximation and exact multipole decomposition, the interference conditions required for far-field unidirectional transverse light scattering and backward near-zero scattering at multiple wavelengths are determined. The near-field properties are excellent, as exemplified by large Purcell factors of 4.5×109 for electric dipole source excitation, 464.68 for magnetic dipole source excitation, and 700 V/m for the field enhancement factor. The degree of enhancement of unidirectional scattering is affected by structural parameters such as the angle and thickness of the nanoantenna. The arrow-shaped nanoantenna is an efficient platform to enhance the electric field and achieve high directionality of light scattering. Moreover, the nanostructure enables flexible manipulation of light waves and materials, giving rise to superior near-field and far-field performances, which are of great importance pertaining to the practicability and application potential of optical antennas in applications such as spectroscopy, sensing, displays, and optoelectronic devices.
Collapse
|
10
|
Bekirov AR, Luk'yanchuk BS, Elyas EI, Fedyanin AA. Half-space invisible states in dielectric particles. OPTICS EXPRESS 2023; 31:37074-37081. [PMID: 38017844 DOI: 10.1364/oe.501395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 11/30/2023]
Abstract
The concept of invisible optical states in dielectric particles is developed. Two cases for excitation of invisible states are discussed. The first one is the excitation in the microparticles with fixed shapes (e.g. spheres) by variation of the properties of incident radiation. The second one is the search for a complex shape of a particle in which invisible states are excited for fixed properties of the incident radiation (e.g. a plane wave). Based on the proposed numerical assessment of the invisibility of the scattered field, a method for finding invisible particles by varying its shape has been developed. A method for calculating the scattered field is generalized in the framework of the theory of surface perturbation for the case of an arbitrary initial shape of the particle.
Collapse
|
11
|
Roman AM, Cimpoeșu R, Pricop B, Lohan NM, Cazacu MM, Bujoreanu LG, Panaghie C, Zegan G, Cimpoeșu N, Murariu AM. Influence of Dynamic Strain Sweep on the Degradation Behavior of FeMnSi-Ag Shape Memory Alloys. J Funct Biomater 2023; 14:377. [PMID: 37504873 PMCID: PMC10381450 DOI: 10.3390/jfb14070377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Iron-based SMAs can be used in the medical field for both their shape memory effect (SME) and biodegradability after a specific period, solving complicated chirurgical problems that are partially now addressed with shape-memory polymers or biodegradable polymers. Iron-based materials with (28-32 wt %) Mn and (4-6 wt %) Si with the addition of 1 and 2 wt % Ag were obtained using levitation induction melting equipment. Addition of silver to the FeMnSi alloy was proposed in order to enhance its antiseptic property. Structural and chemical composition analyses of the newly obtained alloys were performed by X-ray diffraction (confirming the presence of ε phase), scanning electron microscopy (SEM) and energy-dispersive spectroscopy. The corrosion resistance was evaluated through immersion tests and electrolyte pH solution variation. Dynamic mechanical solicitations were performed with amplitude sweep performed on the FeMnSi-1Ag and FeMnSi-2Ag samples, including five deformation cycles at 40 °C, with a frequency of 1 Hz, 5 Hz and 20 Hz. These experiments were meant to simulate the usual behavior of some metallic implants subjected to repetitive mechanical loading. Atomic force microscopy was used to analyze the surface roughness before and after the dynamic mechanical analysis test followed by the characterization of the surface profile change by varying dynamic mechanical stress. Differential scanning calorimetry was performed in order to analyze the thermal behavior of the material in the range of -50-+200 °C. X-ray diffraction and Fourier transform infrared spectroscopy (FTIR) along with Neaspec nano-FTIR experiments were performed to identify and confirm the corrosion compounds (oxides, hydroxides or carbonates) formed on the surface.
Collapse
Affiliation(s)
- Ana-Maria Roman
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Ramona Cimpoeșu
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Bogdan Pricop
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Nicoleta-Monica Lohan
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Marius Mihai Cazacu
- Physics Department, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Leandru-Gheorghe Bujoreanu
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Cătălin Panaghie
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Georgeta Zegan
- Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy University, 16 University Street, 700115 Iasi, Romania
| | - Nicanor Cimpoeșu
- Faculty of Materials Science and Engineering, "Gheorghe Asachi" Technical University of Iași, Blvd. Dimitrie Mangeron 71A, 700050 Iași, Romania
| | - Alice Mirela Murariu
- Department of Surgicals, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
12
|
Song H, Hong B, Wang N, Ping Wang G. Kerker-type positional disorder immune metasurfaces. OPTICS EXPRESS 2023; 31:24243-24259. [PMID: 37475256 DOI: 10.1364/oe.492419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023]
Abstract
Metasurfaces that can operate without a strictly periodic arrangement of meta-atoms are highly desirable for practical optical micro-nano devices. In this paper, we propose two kinds of Kerker-type metasurfaces that exhibit immunity to positional disorder. These metasurfaces consist of two distinct core-shell cylinders that satisfy the first and second Kerker conditions, respectively. Despite significant positional disorder perturbations of the meta-atoms, the metasurfaces can maintain excellent performance comparable to periodic ones, including total transmission and magnetic mirror responses. This positional disorder immunity arises from the unidirectional forward or backward scattering of a single core-shell cylinder, which results in minimal lateral scattering coupling between neighboring cylinders, thereby having little impact on multiple scattering in either the forward or backward direction. In contrast, the response of positional disorder non-Kerker-type metasurfaces decreases significantly. Our findings present a new approach for designing robust metasurfaces and expanding the applications of metasurfaces in sensing and communications within complex practical scenarios.
Collapse
|
13
|
Li R, Li BQ. Progressive algorithm for the scattering of electromagnetic waves by a multilayered eccentric sphere. APPLIED OPTICS 2023; 62:5588-5597. [PMID: 37706878 DOI: 10.1364/ao.493117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/06/2023] [Indexed: 09/15/2023]
Abstract
This paper presents a general progressive algorithm for the computational study of electromagnetic wave scattering by a multilayered eccentric nanoparticle. The presented methodology is based on a combination of the vector addition theorem for spherical wave functions and an efficient progressive algorithm that matches the boundary conditions of every two adjacent shell layers from the outmost to the innermost layer. As a result, only a solution of small-sized matrices is required rather than solving a large set of system equations as reported in other works. With the developed approach, explicit expressions of the Mie scattering coefficients of the eccentric particle can be obtained. Moreover, the Mie coefficients of a specific inner layer could be calculated selectively, instead of having to compute those of all layers of the entire particle as required by other algorithms. The presented methodology can be used to study practically any type of spherical particle inclusions and the most widely studied cases such as scattering by solid particles, concentric particles, and inclusions with centers displaced along a straight line are just special cases of the algorithm presented. Computed results are also presented, illustrating that the eccentric structure allows extra freedom in the design of multilayered nanoparticles for optical applications.
Collapse
|
14
|
Barati Sedeh H, Litchinitser NM. Singular optics empowered by engineered optical materials. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2687-2716. [PMID: 39635480 PMCID: PMC11501551 DOI: 10.1515/nanoph-2023-0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/26/2023] [Indexed: 12/07/2024]
Abstract
The rapid development of optical technologies, such as optical manipulation, data processing, sensing, microscopy, and communications, necessitates new degrees of freedom to sculpt optical beams in space and time beyond conventionally used spatially homogenous amplitude, phase, and polarization. Structuring light in space and time has been indeed shown to open new opportunities for both applied and fundamental science of light. Rapid progress in nanophotonics has opened up new ways of "engineering" ultra-compact, versatile optical nanostructures, such as optical two-dimensional metasurfaces or three-dimensional metamaterials that facilitate new ways of optical beam shaping and manipulation. Here, we review recent progress in the field of structured light-matter interactions with a focus on all-dielectric nanostructures. First, we introduce the concept of singular optics and then discuss several other families of spatially and temporally structured light beams. Next, we summarize recent progress in the design and optimization of photonic platforms, and then we outline some new phenomena enabled by the synergy of structured light and structured materials. Finally, we outline promising directions for applications of structured light beams and their interactions with engineered nanostructures.
Collapse
Affiliation(s)
- Hooman Barati Sedeh
- Department of Electrical and Computer Engineering, Duke University, 27708Durham, NC, USA
| | | |
Collapse
|
15
|
Zhang Z, Xiang Y, Xu W, Guo C, Liu K, Zhu Z. Broadband transverse unidirectional scattering and large range nanoscale displacement measuring based on the interaction between a tightly focused azimuthally polarized beam and a silicon hollow nanostructure. OPTICS EXPRESS 2023; 31:15372-15383. [PMID: 37157640 DOI: 10.1364/oe.486386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We theoretically propose a broadband transverse unidirectional scattering scheme based on the interaction between a tightly focused azimuthally polarized beam (APB) and a silicon hollow nanostructure. When the nanostructure is located at a specific position in the focal plane of the APB, the transverse scattering fields can be decomposed into contributions from transverse components of the electric dipoles, longitudinal components of magnetic dipoles and magnetic quadrupole components. In order to satisfy the transverse Kerker conditions for these multipoles within a wide infrared spectrum, we design a novel nanostructure with hollow parallelepiped shape. Through numerical simulations and theoretical calculations, this scheme exhibits efficient transverse unidirectional scattering effects in the wavelength range of 1440 nm to 1820 nm (380 nm). In addition, by adjusting the position of the nanostructure on the x-axis, efficient nanoscale displacement sensing with large measuring ranges can be achieved. After analyses, the results prove that our research may have potential applications in the field of high-precision on-chip displacement sensors.
Collapse
|
16
|
Zheng K, Li W, Sun B, Wang Y, Guan C, Liu J, Shi J. Annular and unidirectional transverse scattering with high directivity based on magnetoelectric coupling. OPTICS EXPRESS 2023; 31:14037-14047. [PMID: 37157276 DOI: 10.1364/oe.485916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transverse scattering is a special directional scattering perpendicular to the propagation direction, which has attracted great interest due to its potential applications from directional antennas, optical metrology to optical sensing. Here we reveal annular transverse scattering and unidirectional transverse scattering by magnetoelectric coupling of Omega particle. The annular transverse scattering can be achieved by the longitudinal dipole mode of the Omega particle. Furthermore, we demonstrate the highly asymmetric unidirectional transverse scattering by adjusting the transverse electric dipole (ED) and longitudinal magnetic dipole (MD) modes. Meanwhile, the forward scattering and backward scattering are suppressed by the interference of transverse ED and longitudinal MD modes. In particular, the lateral force exerted on the particle is accompanied by the transverse scattering. Our results provide a useful toolset for manipulating light scattered by the particle and broaden the application range of the particle with magnetoelectric coupling.
Collapse
|
17
|
Kuznetsov AV, Canós Valero A, Shamkhi HK, Terekhov P, Ni X, Bobrovs V, Rybin MV, Shalin AS. Special scattering regimes for conical all-dielectric nanoparticles. Sci Rep 2022; 12:21904. [PMID: 36535983 PMCID: PMC9763421 DOI: 10.1038/s41598-022-25542-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
All-dielectric nanophotonics opens a venue for a variety of novel phenomena and scattering regimes driven by unique optical effects in semiconductor and dielectric nanoresonators. Their peculiar optical signatures enabled by simultaneous electric and magnetic responses in the visible range pave a way for a plenty of new applications in nano-optics, biology, sensing, etc. In this work, we investigate fabrication-friendly truncated cone resonators and achieve several important scattering regimes due to the inherent property of cones-broken symmetry along the main axis without involving complex geometries or structured beams. We show this symmetry breaking to deliver various kinds of Kerker effects (generalized and transverse Kerker effects), non-scattering hybrid anapole regime (simultaneous anapole conditions for all the multipoles in a particle leading to the nearly full scattering suppression) and, vice versa, superscattering regime. Being governed by the same straightforward geometrical paradigm, discussed effects could greatly simplify the manufacturing process of photonic devices with different functionalities. Moreover, the additional degrees of freedom driven by the conicity open new horizons to tailor light-matter interactions at the nanoscale.
Collapse
Affiliation(s)
- Alexey V Kuznetsov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 141700.
- Institute of Telecommunications, Riga Technical University, Riga, 1048, Latvia.
- Faculty of Physics, ITMO University, St. Petersburg, Russia, 197101.
| | - Adrià Canós Valero
- Faculty of Physics, ITMO University, St. Petersburg, Russia, 197101
- Institute of Physics, University of Graz, and NAWI Graz, 8010, Graz, Austria
| | - Hadi K Shamkhi
- Faculty of Physics, ITMO University, St. Petersburg, Russia, 197101
- A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Pavel Terekhov
- Department of Electrical Engineering, The Pennsylvania State University, State College, Pennsylvania, 16802, USA
| | - Xingjie Ni
- Department of Electrical Engineering, The Pennsylvania State University, State College, Pennsylvania, 16802, USA
| | - Vjaceslavs Bobrovs
- Institute of Telecommunications, Riga Technical University, Riga, 1048, Latvia
| | - Mikhail V Rybin
- Faculty of Physics, ITMO University, St. Petersburg, Russia, 197101
| | - Alexander S Shalin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 141700.
- Institute of Telecommunications, Riga Technical University, Riga, 1048, Latvia.
- Faculty of Physics, Moscow State University, Moscow, Russia, 119991.
- School of Optical and Electronic Information, Suzhou City University, Suzhou, 215104, China.
- Kotelnikov Institute of Radio Engineering and Electronics, 432000, Ulyanovsk, Russia.
| |
Collapse
|
18
|
Kim S, Lepeshov S, Krasnok A, Alù A. Beyond Bounds on Light Scattering with Complex Frequency Excitations. PHYSICAL REVIEW LETTERS 2022; 129:203601. [PMID: 36462013 DOI: 10.1103/physrevlett.129.203601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Light scattering is one of the most established wave phenomena in optics, lying at the heart of light-matter interactions and of crucial importance for nanophotonic applications. Passivity, causality, and energy conservation imply strict bounds on the degree of control over scattering from small particles, with implications on the performance of many optical devices. Here, we demonstrate that these bounds can be surpassed by considering excitations at complex frequencies, yielding extreme scattering responses as tailored nanoparticles reach a quasi-steady-state regime. These mechanisms can be used to engineer light scattering of nanostructures beyond conventional limits for noninvasive sensing, imaging, and nanoscale light manipulation.
Collapse
Affiliation(s)
- Seunghwi Kim
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
| | - Sergey Lepeshov
- DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, Kgs. Lyngby, DK-2800, Denmark
| | - Alex Krasnok
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, New York 10016, USA
| |
Collapse
|
19
|
Liu W, Wang X, Zeng M. A nested U-shaped network for accurately predicting directional scattering of all-dielectric nanostructures. OPTICS LETTERS 2022; 47:5112-5115. [PMID: 36181199 DOI: 10.1364/ol.472133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Forward prediction of directional scattering from all-dielectric nanostructures by a two-level nested U-shaped convolutional neural network (U2-Net) is investigated. Compared with the traditional U-Net method, the U2-Net model with lower model height outperforms for the case of a smaller image size. For the input image size of 40 × 40, the prediction performance of the U2-Net model with the height of three is enhanced by almost an order of magnitude, which can be attributed to the more excellent capacity in extracting richer multi-scale features. Since it is the common problem in nanophotonics that the model height is limited by the smaller image size, our findings can promote the nested U-shaped network as a powerful tool applied to various tasks concerning nanostructures.
Collapse
|
20
|
Tang P, Tao Q, Liu S, Xiang J, Zhong L, Qin Y. Reconfigurable Radiation Angle Continuous Deflection of All-Dielectric Phase-Change V-Shaped Antenna. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3305. [PMID: 36234432 PMCID: PMC9565491 DOI: 10.3390/nano12193305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
All-dielectric optical antenna with multiple Mie modes and lower inherent ohmic loss can achieve high efficiency of light manipulation. However, the silicon-based optical antenna is not reconfigurable for specific scenarios. The refractive index of optical phase-change materials can be reconfigured under stimulus, and this singular behavior makes it a good candidate for making reconfigurable passive optical devices. Here, the optical radiation characteristics of the V-shaped phase-change antenna are investigated theoretically. The results show that with increasing crystallinity, the maximum radiation direction of the V-shaped phase-change antenna can be continuously deflected by 90°. The exact multipole decomposition analysis reveals that the modulus and interference phase difference of the main multipole moments change with the crystallinity, resulting in a continuous deflection of the maximum radiation direction. Thus, the power ratio in the two vertical radiation directions can be monotonically reversed from -12 to 7 dB between 20% and 80% crystallinity. The V-shaped phase-change antenna exhibits the potential to act as the basic structural unit to construct a reconfigurable passive spatial angular power splitter or wavelength multiplexer. The mechanism analysis of radiation directivity involving the modulus and interference phase difference of the multipole moments will provide a reference for the design and optimization of the phase-change antenna.
Collapse
Affiliation(s)
- Ping Tang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Qiao Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Jin Xiang
- School of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuwen Qin
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Li H, Xu Y, Zhang X, Xiao X, Zhou F, Zhang Z. All-dielectric high saturation structural colors enhanced by multipolar modulated metasurfaces. OPTICS EXPRESS 2022; 30:28954-28965. [PMID: 36299081 DOI: 10.1364/oe.464782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/09/2022] [Indexed: 06/16/2023]
Abstract
A visible light depth modulation based on a metasurface consisting of TiO2 nanorings and SiO2 substrate is proposed to significantly enhance the saturation and structural colors' gamut. Compared with the nanostructure of the TiO2 nanodisks, the developed TiO2 nanorings can enhance monochromatic excitation by inhibiting the multipole mode, particularly electric quadrupole (EQ) mode at a shorter wavelength. Furthermore, when TiO2 nanorings are combined with a refractive index matching layer - water, reflection bandwidth, and background reflection are reduced, and the brightness and color purity are significantly enhanced. The novel and unique nanostructures developed can generate a significant gamut of 140% sRGB and 103% Adobe RGB. Additionally, the color structure based on the TiO2 nanoring metasurface is sensitive to the surrounding medium's refractive index and can be employed in sensor display and other fields, as well as to amplify color information in high resolution display and imaging applications.
Collapse
|
22
|
Bukharin MM, Pecherkin VY, Ospanova AK, Il'in VB, Vasilyak LM, Basharin AA, Luk'yanchuk B. Transverse Kerker effect in all-dielectric spheroidal particles. Sci Rep 2022; 12:7997. [PMID: 35568693 PMCID: PMC9107494 DOI: 10.1038/s41598-022-11733-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
Kerker effect is one of the unique phenomena in modern electrodynamics. Due to overlapping of electric and magnetic dipole moments, all-dielectric particles can be invisible in forward or backward directions. In our paper we propose new conditions between resonantly excited electric dipole and magnetic quadrupole in ceramic high index spheroidal particles for demonstrating transverse Kerker effect. Moreover, we perform proof-of-concept microwave experiment and demonstrate dumbbell radiation pattern with suppressed scattering in both forward and backward directions and enhanced scattering in lateral directions. Our concept is promising for future planar lasers, nonreflected metasurface and laterally excited waveguides and nanoantennas.
Collapse
Affiliation(s)
- Mikhail M Bukharin
- National University of Science and Technology "MISiS", Moscow, 119049, Russia
| | - Vladimir Ya Pecherkin
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| | - Anar K Ospanova
- National University of Science and Technology "MISiS", Moscow, 119049, Russia
- Department of Physics and Mathematics, Institute of Photonics, University of Eastern Finland, Joensuu, 80101, Finland
| | - Vladimir B Il'in
- Dept. Math. Mechan., St. Petersburg State University, St. Petersburg, 198504, Russia
- Petersburg University of Aerospace Instrumentation, St. Petersburg, 190000, Russia
- Main (Pulkovo) Astronomical Observatory of RAS, St. Petersburg, 196140, Russia
| | - Leonid M Vasilyak
- Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow, 125412, Russia
| | - Alexey A Basharin
- Department of Physics and Mathematics, Institute of Photonics, University of Eastern Finland, Joensuu, 80101, Finland.
- Institute for Theoretical and Applied Electromagnetics RAS, Moscow, 125412, Russia.
| | - Boris Luk'yanchuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Qin F, Zhang Z, Zheng K, Xu Y, Fu S, Wang Y, Qin Y. Transverse Kerker Effect for Dipole Sources. PHYSICAL REVIEW LETTERS 2022; 128:193901. [PMID: 35622034 DOI: 10.1103/physrevlett.128.193901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Transverse Kerker effect is known by the directional scattering of an electromagnetic plane wave perpendicular to the propagation direction with nearly suppression of both forward and backward scattering. Compared with plane waves, localized electromagnetic emitters are more general sources in modern nanophotonics. As a typical example, manipulating the emission direction of a quantum dot is of vital importance for the investigation of on-chip quantum optics and quantum information processing. Herein, we introduce the concept of transverse Kerker effect for dipole sources utilizing a subwavelength dielectric antenna, where the radiative power of magnetic, electric, and more general chiral dipole emitters can be dominantly redirected along their dipole moments with nearly suppression of radiation perpendicular to the dipole moments. This type of transverse Kerker effect is also associated with Purcell enhancement mediated by electromagnetic multipolar resonances induced in the dielectric antenna. Analytical conditions of transverse Kerker effect are derived for the magnetic, electric, and chiral dipole emitters. We further provide microwave experiment validation for the magnetic dipole emitter. Our results provide new physical mechanisms to manipulate the emission properties of localized electromagnetic source which might facilitate the on-chip quantum optics and beyond.
Collapse
Affiliation(s)
- Feifei Qin
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhanyuan Zhang
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kanpei Zheng
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yi Xu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
- Institute of Advanced Photonics Technology, School of Information Engineering, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 51006, China
| | - Songnian Fu
- Institute of Advanced Photonics Technology, School of Information Engineering, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 51006, China
| | - Yuncai Wang
- Institute of Advanced Photonics Technology, School of Information Engineering, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 51006, China
| | - Yuwen Qin
- Institute of Advanced Photonics Technology, School of Information Engineering, and Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 51006, China
| |
Collapse
|
24
|
Oguntoye IO, Simone BK, Padmanabha S, Hartfield GZ, Amrollahi P, Hu TY, Ollanik AJ, Escarra MD. Silicon Nanodisk Huygens Metasurfaces for Portable and Low-Cost Refractive Index and Biomarker Sensing. ACS APPLIED NANO MATERIALS 2022; 5:3983-3991. [PMID: 35372799 PMCID: PMC8961735 DOI: 10.1021/acsanm.1c04443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/07/2022] [Indexed: 05/10/2023]
Abstract
Biomarker detection and bulk refractive index sensing are important across multiple industries ranging from early medical diagnosis to chemical process quality control. The bulky size, high cost, and complex architecture of existing refractive index and biomarker sensing technologies limit their use to highly skilled environments like hospitals, large food processing plants, and research labs. Here, we demonstrate a compact and inexpensive refractive index sensor based on resonant dielectric photonic nanoantenna arrays or metasurfaces. These dielectric resonances support Mie dipole and asymmetric resonances that shift with changes in their external environment. A single-wavelength transmission measurement in a portable (<250 in.3), low-cost (<$4000) sensor shows sensitivity to 1.9 × 10-6 change in the fluid refractive index without the use of a spectrometer or other complex optics. Our sensor assembly allows for measurements using multiple metasurfaces with identical resonances or varying resonance types for enhanced diagnostics on the same chip. Furthermore, a 10 kDa culture filtrate peptide CFP-10, a marker for human tuberculosis, is detected with our sensor with 10 pM resolution. This system has the potential to enable facile, fast, and highly sensitive measurements with adequate limits of detection for personalized biomedical diagnoses.
Collapse
Affiliation(s)
- Isaac O. Oguntoye
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Brittany K. Simone
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Siddharth Padmanabha
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - George Z. Hartfield
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Pouya Amrollahi
- Center
of Cellular and Molecular Diagnostics, Tulane
University, New Orleans, Louisiana 70112, United States
| | - Tony Y. Hu
- Center
of Cellular and Molecular Diagnostics, Tulane
University, New Orleans, Louisiana 70112, United States
| | - Adam J. Ollanik
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
- Department
of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Matthew D. Escarra
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
25
|
Yu Y, Liu J, Yu Y, Qiao D, Li Y, Salas-Montiel R. Broadband unidirectional transverse light scattering in a V-shaped silicon nanoantenna. OPTICS EXPRESS 2022; 30:7918-7927. [PMID: 35299544 DOI: 10.1364/oe.450943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The efficient manipulation of light-matter interactions in subwavelength all-dielectric nanostructures offers a unique opportunity for the design of novel low-loss visible- and telecom-range nanoantennas for light routing applications. Several studies have achieved longitudinal and transverse light scattering with a proper amplitude and phase balance among the multipole moments excited in dielectric nanoantennas. However, they only involve the interaction between electric dipole, magnetic dipole, and up to the electric quadrupole. Here, we extend and demonstrate a unidirectional transverse light scattering in a V-shaped silicon nanoantenna that involves the balance up to the magnetic quadrupole moment. Based on the long-wavelength approximation and exact multipole decomposition analysis, we find the interference conditions needed for near-unity unidirectional transverse light scattering along with near-zero scattering in the opposite direction. These interference conditions involve relative amplitude and phases of the electromagnetic dipoles and quadrupoles supported by the silicon nanoantenna. The conditions can be applied for the development of either polarization- or wavelength- dependent light routing on a V-shaped silicon and plasmonic nanoantennas.
Collapse
|
26
|
Lyu H, Kong L, Wang S, Xu M. Robust and accurate measurement of optical freeform surfaces with wavefront deformation correction. OPTICS EXPRESS 2022; 30:7831-7844. [PMID: 35299537 DOI: 10.1364/oe.454169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
The non-null test to detect the modulated wavefront is a widely used method in optical freeform surface measurement. In this study, the wavefront deformation in the non-null test of an optical freeform surface measurement was corrected based on the wavefront propagation model to improve measurement accuracy. A freeform surface wavefront correction (FSWC) measurement system was established to validate the proposed method. Simulation and experimental studies indicated that the proposed method can reduce the influence of freeform surface wavefront deformation in space propagation. Moreover, the freeform surface form accuracy measured by FSWC can reach a root-mean-squared value of 10 nm.
Collapse
|
27
|
Arslan D, Rahimzadegan A, Fasold S, Falkner M, Zhou W, Kroychuk M, Rockstuhl C, Pertsch T, Staude I. Toward Perfect Optical Diffusers: Dielectric Huygens' Metasurfaces with Critical Positional Disorder. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105868. [PMID: 34652041 DOI: 10.1002/adma.202105868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Conventional optical diffusers, such as thick volume scatterers (Rayleigh scattering) or microstructured surface scatterers (geometric scattering), lack the potential for on-chip integration and are thus incompatible with next-generation photonic devices. Dielectric Huygens' metasurfaces, on the other hand, consist of 2D arrangements of resonant dielectric nanoparticles and therefore constitute a promising material platform for ultrathin and highly efficient photonic devices. When the nanoparticles are arranged in a random but statistically specific fashion, diffusers with exceptional properties are expected to come within reach. This work explores how dielectric Huygens' metasurfaces can implement wavelength-selective diffusers with negligible absorption losses and nearly Lambertian scattering profiles that are largely independent of the angle and polarization of incident waves. The combination of tailored positional disorder with a carefully balanced electric and magnetic response of the nanoparticles is shown to be an integral requirement for the operation as a diffuser. The proposed metasurfaces' directional scattering performance is characterized both experimentally and numerically, and their usability in wavefront-shaping applications is highlighted. Since the metasurfaces operate on the principles of Mie scattering and are embedded in a glassy environment, they may easily be incorporated in integrated photonic devices, fiber optics, or mechanically robust augmented reality displays.
Collapse
Affiliation(s)
- Dennis Arslan
- Institute of Solid State Physics, Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Aso Rahimzadegan
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Karlsruhe School of Optics and Photonics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Stefan Fasold
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Matthias Falkner
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Wenjia Zhou
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Maria Kroychuk
- Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Carsten Rockstuhl
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Karlsruhe School of Optics and Photonics, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021, Karlsruhe, Germany
- Max Planck School of Photonics, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - Thomas Pertsch
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745, Jena, Germany
- Max Planck School of Photonics, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - Isabelle Staude
- Institute of Solid State Physics, Friedrich Schiller University Jena, 07743, Jena, Germany
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07745, Jena, Germany
- Max Planck School of Photonics, Albert-Einstein-Str. 7, 07745, Jena, Germany
| |
Collapse
|
28
|
Zhou C, Pu T, Huang J, Fan M, Huang L. Manipulating Optical Scattering of Quasi-BIC in Dielectric Metasurface with Off-Center Hole. NANOMATERIALS 2021; 12:nano12010054. [PMID: 35010004 PMCID: PMC8746985 DOI: 10.3390/nano12010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/08/2023]
Abstract
Bound states in the continuum (BICs) correspond to a particular leaky mode with an infinitely large quality-factor (Q-factor) located within the continuum spectrum. To date, most of the research work reported focuses on the BIC-enhanced light matter interaction due to its extreme near-field confinement. Little attention has been paid to the scattering properties of the BIC mode. In this work, we numerically study the far-field radiation manipulation of BICs by exploring multipole interference. By simply breaking the symmetry of the silicon metasurface, an ideal BIC is converted to a quasi-BIC with a finite Q-factor, which is manifested by the Fano resonance in the transmission spectrum. We found that both the intensity and directionality of the far-field radiation pattern can not only be tuned by the asymmetric parameters but can also experience huge changes around the resonance. Even for the same structure, two quasi-BICs show a different radiation pattern evolution when the asymmetric structure parameter d increases. It can be found that far-field radiation from one BIC evolves from electric-quadrupole-dominant radiation to toroidal-dipole-dominant radiation, whereas the other one shows electric-dipole-like radiation due to the interference of the magnetic dipole and electric quadrupole with the increasing asymmetric parameters. The result may find applications in high-directionality nonlinear optical devices and semiconductor lasers by using a quasi-BIC-based metasurface.
Collapse
Affiliation(s)
- Chaobiao Zhou
- College of Mechanical and Electronic Engineering, Guizhou Minzu University, Guiyang 550025, China; (T.P.); (J.H.); (M.F.)
- Correspondence: (C.Z.); (L.H.)
| | - Tianyao Pu
- College of Mechanical and Electronic Engineering, Guizhou Minzu University, Guiyang 550025, China; (T.P.); (J.H.); (M.F.)
| | - Jing Huang
- College of Mechanical and Electronic Engineering, Guizhou Minzu University, Guiyang 550025, China; (T.P.); (J.H.); (M.F.)
| | - Menghui Fan
- College of Mechanical and Electronic Engineering, Guizhou Minzu University, Guiyang 550025, China; (T.P.); (J.H.); (M.F.)
| | - Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra 2602, Australia
- Correspondence: (C.Z.); (L.H.)
| |
Collapse
|
29
|
Li CH, Tang YL, Takahara J, Chu SW. Nonlinear heating and scattering in a single crystalline silicon nanostructure. J Chem Phys 2021; 155:204202. [PMID: 34852492 DOI: 10.1063/5.0067251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Silicon nanophotonics has attracted significant attention because of its unique optical properties such as efficient light confinement and low non-radiative loss. For practical applications such as all-optical switch, optical nonlinearity is a prerequisite, but the nonlinearity of silicon is intrinsically weak. Recently, we discovered a giant nonlinearity of scattering from a single silicon nanostructure by combining Mie resonance enhanced photo-thermal and thermo-optic effects. Since scattering and absorption are closely linked in Mie theory, we expect that absorption, as well as heating, of the silicon nanostructure shall exhibit similar nonlinear behaviors. In this work, we experimentally measure the temperature rise of a silicon nanoblock by in situ Raman spectroscopy, explicitly demonstrating the connection between nonlinear scattering and nonlinear heating. The results agree well with finite-element simulation based on the photo-thermo-optic effect, manifesting that the nonlinear effect is the coupled consequence of the red shift between scattering and absorption spectra. Our work not only unravels the nonlinear absorption in a silicon Mie-resonator but also offers a quantitative analytic model to better understand the complete photo-thermo-optic properties of silicon nanostructures, providing a new perspective toward practical silicon photonics applications.
Collapse
Affiliation(s)
- Chien-Hsuan Li
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yu-Lung Tang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Junichi Takahara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei 10617, Taiwan
| |
Collapse
|
30
|
Garcia J, Hrelescu C, Zhang X, Grosso D, Abbarchi M, Bradley AL. Quasi-Guided Modes in Titanium Dioxide Arrays Fabricated via Soft Nanoimprint Lithography. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47860-47870. [PMID: 34591453 PMCID: PMC8517955 DOI: 10.1021/acsami.1c11456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Reversible quasi-guided modes (QGMs) are observed in titanium dioxide (TiO2) metasurface arrays fabricated via soft nanoimprint lithography. A TiO2 layer between the nanopillar array and the substrate can facilitate the propagation of QGMs. This layer is porous, allowing for the tuning of the layer properties by incorporating another material. The presence of the QGMs is strongly dependent on the refractive index of the TiO2 layer. QGMs are not supported if the refractive index of the porous TiO2 is too low. It is demonstrated that after depositing R6G on the array QGMs can be observed as very strong and narrow reflectance peaks and transmittance dips. Furthermore, as the second material can penetrate through the pores into the layer it can experience the regions of high field enhancement associated with the QGMs. These results are of interest for a wide range of applications including but not limited to sensing, nonlinear optics, and emission control.
Collapse
Affiliation(s)
- Jorge
A. Garcia
- School
of Physics and CRANN, Trinity College Dublin, Dublin 2, Ireland
| | - Calin Hrelescu
- School
of Physics and CRANN, Trinity College Dublin, Dublin 2, Ireland
| | - Xia Zhang
- School
of Physics and CRANN, Trinity College Dublin, Dublin 2, Ireland
| | - David Grosso
- CNRS,
Aix-Marseille Université, Centrale Marseille, IM2NP, UMR 7334, Marseille 13013, France
| | - Marco Abbarchi
- CNRS,
Aix-Marseille Université, Centrale Marseille, IM2NP, UMR 7334, Marseille 13013, France
| | - A. Louise Bradley
- School
of Physics and CRANN, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Chen X, Zhou Y, Ma X, Fang W, Zhang W, Gao W. Polarization conversion in anisotropic dielectric metasurfaces originating from bound states in the continuum. OPTICS LETTERS 2021; 46:4120-4123. [PMID: 34469954 DOI: 10.1364/ol.431047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
We use the semianalytical Cartesian multipole method to investigate the light transmission and reflection spectra of anisotropic dielectric metasurfaces, and extend the multipole decompositions method to account for cross-polarization conversion effects. We observe sharp high-Q resonances arising from a distortion of symmetry-protected bound states in the continuum in asymmetric dielectric metasurfaces, i.e., quasibound states in the continuum. In addition, by further introducing in-plane symmetric breaking perturbation, the polarization conversions of linearly polarized light can be achieved through quasibound states in the continuum. With the aid of temporal coupled-mode theory, we can obtain the limit of cross-conversion under single high-Q resonance, i.e., 0.25. Our work will help to design dielectric metasurfaces to control the polarization states of light.
Collapse
|
32
|
Fan K, Shadrivov IV, Miroshnichenko AE, Padilla WJ. Infrared all-dielectric Kerker metasurfaces. OPTICS EXPRESS 2021; 29:10518-10526. [PMID: 33820185 DOI: 10.1364/oe.421187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The unidirectional scattering of electromagnetic waves in the backward and forward direction, termed Kerkers' first and second conditions, respectively, is a prominent feature of sub-wavelength particles, which also has been found recently in all-dielectric metasurfaces. Here we formulate the exact polarizability requirements necessary to achieve both Kerker conditions simultaneously with dipole terms only and demonstrate its equivalence to so-called "invisible metasurfaces". We further describe the perfect absorption mechanism in all-dielectric metasurfaces through development of an extended Kerker formalism. The phenomena of both invisibility and perfect absorption is shown in a 2D hexagonal array of cylindrical resonators, where only the resonator height is modified to switch between the two states. The developed framework provides critical insight into the range of scattering response possible with all-dielectric metasurfaces, providing a methodology for studying exotic electromagnetic phenomena.
Collapse
|
33
|
Sun S, Wang D, Feng Z, Tan W. Highly efficient unidirectional forward scattering induced by resonant interference in a metal-dielectric heterodimer. NANOSCALE 2020; 12:22289-22297. [PMID: 33146190 DOI: 10.1039/d0nr07010f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate that a metal-dielectric heterodimer structure can satisfy a nearly ideal first Kerker condition at a wavelength close to the resonance peak of the dimer, yielding efficient unidirectional forward scattering with a high forward-to-backward scattering ratio (≈48 dB) and remarkable enhancement of the forward scattering intensity (∼2.68 times compared to a single dielectric nanoparticle). Using a rigorous analytical dipole-dipole interaction model, the underlying mechanism is revealed, in which the originally weak electric dipole moment of the dimer is significantly enhanced owing to the strong resonant interference between the localized surface plasmon resonance of the metal and the Mie resonances of the dielectric material, which could up-match the magnetic dipole moment of the dimer at a wavelength close to the resonance peak, boosting the forward scattering efficiency. To achieve the optimal conditions, the sizes of the metal and dielectric constituents as well as the gap distance of the dimer have to be physically and delicately tuned to ensure a perfect match in both the amplitudes and phases of the electric and magnetic dipole moments of the dimer. On top of that, the loss of the heterodimer can be effectively suppressed to a level well below that of a pure metal nanoparticle, which further benefits the forward scattering efficiency. The flexibility in designing the dimer geometry and choosing metal-dielectric material combinations enables efficient unidirectional forward scattering in a broadband spectrum (UV to visible) with an intermediate gap distance (10-20 nm), greatly expanding the application scope. The proposed hybrid dimer could serve as a powerful and versatile building block in many emergent fields such as metasurfaces, nanoantennae, etc.
Collapse
Affiliation(s)
- Song Sun
- Microsystem & Terahertz Research Center, China Academy of Engineering Physics, No. 596, Yinhe Road, Shuangliu, Chengdu, China 610200.
| | | | | | | |
Collapse
|
34
|
Yan J, Zheng Z, Lou Z, Li J, Mao B, Li B. Enhancement of exciton emission in WS 2 based on the Kerker effect from the mode engineering of individual Si nanostripes. NANOSCALE HORIZONS 2020; 5:1368-1377. [PMID: 32608428 DOI: 10.1039/d0nh00189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coupling between nanostructures and excitons has attracted great attention for potential applications in quantum information technology. Compared with plasmonic platforms, all-dielectric nanostructures with Mie resonances are more practical because of low-loss, low-cost and CMOS compatibility. However, weak field enhancements in single element dielectric nanostructures hinder their applications in both strong and weak coupling regimes. The Kerker effect arising from the far-field electro-magnetic interactions in dielectric nanostructures brings a new mechanism to realize effective coupling with excitons. Until now, it still remains unsolved whether effective Mie-exciton coupling can be realized based on pure far-field Kerker effect. Therefore, we proposed a silicon-on-insulator (SOI) integrated Mie resonator with a 135 nm top oxide layer to exclude the near-field coupling between excitons and silicon (Si) nanostripes. Through tuning the widths of Si nanostripes to obtain highly directional photoluminescence (PL) emission under Kerker conditions, strong PL enhancements can be observed, whose enhancement factors are comparable to the reported best performances of single all-dielectric or even plasmonic nanostructures coupling with 2D excitons. Our findings bring new strategies for strong light-matter interactions with near-zero heating loss and make it possible to construct 2D materials-silicon hybrid integration for future nanophotonic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiahao Yan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Zhaoqiang Zheng
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zaizhu Lou
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Bijun Mao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
35
|
Amanaganti SR, Ravnik M, Dontabhaktuni J. Collective photonic response of high refractive index dielectric metasurfaces. Sci Rep 2020; 10:15599. [PMID: 32973257 PMCID: PMC7518431 DOI: 10.1038/s41598-020-72675-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/28/2020] [Indexed: 11/30/2022] Open
Abstract
Sub-wavelength periodic nanostructures give rise to interesting optical phenomena like effective refractive index, perfect absorption, cloaking, etc. However, such structures are usually metallic which results in high dissipative losses and limitations for use; therefore, dielectric nanostructures are increasingly considered as a strong alternative to plasmonic (metallic) materials. In this work, we show light-matter interaction in a high refractive index dielectric metasurface consisting of an array of cubic dielectric nano-structures made of very high refractive index material, Te in air, using computer modelling. We observe a distinct band-like structure in both transmission and reflection spectra resulting from the near-field coupling of the field modes from neighboring dielectric structures followed by a sharp peak in the transmission at higher frequencies. From the spatial distribution of the electric and magnetic fields and a detailed multipole analysis in both spherical harmonics and Cartesian components, the dominant resonant modes are identified to be electric and magnetic dipoles. Specifically at lower frequency (60 THz) a novel anapole-like state characterized by strong-suppression in reflection and absorption is observed, reported very recently as 'lattice-invisibility' state. Differently, at higher frequency (62 THz), strong absorption and near-zero far field scattering are observed, which combined with the field profiles and the multipole analysis of the near-fields indicate the excitation of an anapole. Notably the observed novel modes occur in the simple geometry of dielectric cubes and are a result of collective response of the metasurfaces. Periodicity of the cubic metasurface is shown as the significant material tuning parameter, allowing for the near-field and far-field coupling effects of anapole metasurface. More generally, our work is a contribution towards developing far-fetching applications based on metamaterials such as integrated devices and waveguides consisting of non-radiating modes.
Collapse
Affiliation(s)
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, 1000, Ljubljana, Slovenia
- J. Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | | |
Collapse
|
36
|
Kiselev A, Achouri K, Martin OJF. Multipole interplay controls optical forces and ultra-directional scattering. OPTICS EXPRESS 2020; 28:27547-27560. [PMID: 32988046 DOI: 10.1364/oe.400387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
We analyze the superposition of Cartesian multipoles to reveal the mechanisms underlying the origin of optical forces. We show that a multipolar decomposition approach significantly simplifies the analysis of this problem and leads to a very intuitive explanation of optical forces based on the interference between multipoles. We provide an in-depth analysis of the radiation coming from the object, starting from low-order multipole interactions up to quadrupolar terms. Interestingly, by varying the phase difference between multipoles, the optical force as well as the total radiation directivity can be well controlled. The theory developed in this paper may also serve as a reference for ultra-directional light steering applications.
Collapse
|
37
|
Trubin A, Kupriianov AS, Fesenko VI, Tuz VR. Coupling coefficients for dielectric cuboids located in free space. APPLIED OPTICS 2020; 59:6918-6924. [PMID: 32788781 DOI: 10.1364/ao.399930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Practical formulas are derived for calculating the far-field radiation pattern and coupling coefficient of a rectangular dielectric resonator (cuboid) with free space as well as mutual coupling coefficients between two cuboids for their different orientations relative to each other. An approach is developed using the coupled mode theory and the perturbation theory for the Maxwell equations. The correctness of obtained formulas is checked against the full-wave numerical simulations performed by the COMSOL Multiphysics electromagnetic solver. In particular, the obtained formulas can be used for revealing optical features of realistic (i.e., consisting of a finite number of resonators) all-dielectric metasurfaces with arbitrary curved shapes.
Collapse
|
38
|
Canós Valero A, Kislov D, Gurvitz EA, Shamkhi HK, Pavlov AA, Redka D, Yankin S, Zemánek P, Shalin AS. Nanovortex-Driven All-Dielectric Optical Diffusion Boosting and Sorting Concept for Lab-on-a-Chip Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903049. [PMID: 32537397 PMCID: PMC7284221 DOI: 10.1002/advs.201903049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/24/2020] [Indexed: 05/29/2023]
Abstract
The ever-growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand-new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light-matter interactions. A concept is proposed, featuring dual on-chip functionality: boosted optically driven diffusion and nanoparticle sorting. High-index dielectric nanoantennae is specially designed to ensure strongly enhanced spin-orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl-spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam-based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving-part-free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on-chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving-part-free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light-controlled navigation of nanoparticles, viruses or biomolecules.
Collapse
Affiliation(s)
| | - Denis Kislov
- ITMO UniversityKronverksky prospect 49St. Petersburg197101Russia
| | - Egor A. Gurvitz
- ITMO UniversityKronverksky prospect 49St. Petersburg197101Russia
| | - Hadi K. Shamkhi
- ITMO UniversityKronverksky prospect 49St. Petersburg197101Russia
| | - Alexander A. Pavlov
- Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences (INME RAS)Nagatinskaya Street, House 16A, Building 11Moscow119991Russia
| | - Dmitrii Redka
- Electrotechnical University “LETI” (ETU)5 Prof. Popova StreetSaint Petersburg197376Russia
| | - Sergey Yankin
- LLC COMSOLBolshaya Sadovaya St. 10Moscow123001Russia
| | - Pavel Zemánek
- Czech Academy of SciencesInstitute of Scientific InstrumentsKrálovopolská 147Brno612 64Czech Republic
| | | |
Collapse
|
39
|
Rahimzadegan A, Alaee R, Rockstuhl C, Boyd RW. Minimalist Mie coefficient model. OPTICS EXPRESS 2020; 28:16511-16525. [PMID: 32549472 DOI: 10.1364/oe.390331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
When considering light scattering from a sphere, the ratios between the expansion coefficients of the scattered and the incident field in a spherical basis are known as the Mie coefficients. Generally, Mie coefficients depend on many degrees of freedom, including the dimensions and electromagnetic properties of the spherical object. However, for fundamental research, it is important to have easy expressions for all possible values of Mie coefficients within the existing physical constraints and which depend on the least number of degrees of freedom. While such expressions are known for spheres made from non-absorbing materials, we present here, for the first time to our knowledge, corresponding expressions for spheres made from absorbing materials. To illustrate the usefulness of these expressions, we investigate the upper bound for the absorption cross section of a trimer made from electric dipolar spheres. Given the results, we have designed a dipolar ITO trimer that offers a maximal absorption cross section. Our approach is not limited to dipolar terms, but indeed, as demonstrated in the manuscript, can be applied to higher order terms as well. Using our model, one can scan the entire accessible parameter space of spheres for specific functionalities in systems made from spherical scatterers.
Collapse
|
40
|
Katiyi A, Zorea J, Halstuch A, Elkabets M, Karabchevsky A. Surface roughness-induced absorption acts as an ovarian cancer cells growth sensor-monitor. Biosens Bioelectron 2020; 161:112240. [PMID: 32365013 DOI: 10.1016/j.bios.2020.112240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Abstract
Uncontrolled growth of ovarian cancer cells is the fifth leading cause of female cancer deaths since most ovarian cancer patients are diagnosed at an advanced stage of metastatic disease. Here, we report on the sensor for monitoring the cancer treatment efficiency in real-time. We measure the optical interaction between the evanescent fields of microfiber and ovarian cancer inter-cellular medium at different treatment stages. Spectral absorption signatures are correlated with optical micrographs and western blot tests. We found that the treatment of tumor cells with induces both cells growth arrest and alter the spectral lines in a dose-dependent manner. These observations are mediated by surface roughness out of silica glass material, form an essential step toward the development of early detection of response to cancer therapy.
Collapse
Affiliation(s)
- Aviad Katiyi
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Aviran Halstuch
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Alina Karabchevsky
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel; Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
41
|
Yang W, Xiao S, Song Q, Liu Y, Wu Y, Wang S, Yu J, Han J, Tsai DP. All-dielectric metasurface for high-performance structural color. Nat Commun 2020; 11:1864. [PMID: 32313078 PMCID: PMC7171068 DOI: 10.1038/s41467-020-15773-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
The achievement of structural color has shown advantages in large-gamut, high-saturation, high-brightness, and high-resolution. While a large number of plasmonic/dielectric nanostructures have been developed for structural color, the previous approaches fail to match all the above criterion simultaneously. Herein we utilize the Si metasurface to demonstrate an all-in-one solution for structural color. Due to the intrinsic material loss, the conventional Si metasurfaces only have a broadband reflection and a small gamut of 78% of sRGB. Once they are combined with a refractive index matching layer, the reflection bandwidth and the background reflection are both reduced, improving the brightness and the color purity significantly. Consequently, the experimentally demonstrated gamut has been increased to around 181.8% of sRGB, 135.6% of Adobe RGB, and 97.2% of Rec.2020. Meanwhile, high refractive index of silicon preserves the distinct color in a pixel with 2 × 2 array of nanodisks, giving a diffraction-limit resolution.
Collapse
Affiliation(s)
- Wenhong Yang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Shumin Xiao
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China.
| | - Qinghai Song
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
| | - Yilin Liu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Yunkai Wu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Shuai Wang
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jie Yu
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Jiecai Han
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, China
| | - Din-Ping Tsai
- Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
42
|
Collective Lattice Resonances in All-Dielectric Nanostructures under Oblique Incidence. PHOTONICS 2020. [DOI: 10.3390/photonics7020024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Collective lattice resonances (CLRs) emerging under oblique incidence in 2D finite-size arrays of Si nanospheres have been studied with the coupled dipole model. We show that hybridization between the Mie resonances localized on a single nanoparticle and angle-dependent grating Wood–Rayleigh anomalies allows for the efficient tuning of CLRs across the visible spectrum. Complex nature of CLRs in arrays of dielectric particles with both electric dipole (ED) and magnetic dipole (MD) resonances paves a way for a selective and flexible tuning of either ED or MD CLR by an appropriate variation of the angle of incidence. The importance of the finite-size effects, which are especially pronounced for CLRs emerging for high diffraction orders under an oblique incidence has been also discussed.
Collapse
|
43
|
Yin W, Liang X, Chen A, Zhang Z, Shi L, Guan F, Liu X, Zi J. Cross-polarization suppression for patch array antennas via generalized Kerker effects. OPTICS EXPRESS 2020; 28:40-47. [PMID: 32118939 DOI: 10.1364/oe.28.000040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
The generalized Kerker effect has recently gained an explosive progress in metamaterials, from the scattering management of particle clusters to the reflection and transmission manipulation of metalattices and metasurfaces. Various optical phenomena observed can be explained by the generalized Kerker effect. Due to the same nature of electromagnetic waves, we believe that the generalized Kerker effect can also be used in the microwave field. Inspired by this, in this letter we design a kind of patch array antenna to suppress the cross-polarization by interferences of multipoles. Using different far-field radiation phase symmetries of electromagnetic multipoles for the patch, the cross-polarization can be almost cancelled while the co-polarization be kept. A pair of 8×8 U-slot patch array antennas, working in a wide band (8.8 GHz-10.4 GHz), have been designed, fabricated and measured to verify our proposal. Simulated and measured results both agree well with the theory, showing more than 20 dB gain suppression of the cross-polarization, which indicates the universality of the generalized Kerker effect in electromagnetic waves.
Collapse
|
44
|
Zakomirnyi VI, Ershov AE, Gerasimov VS, Karpov SV, Ågren H, Rasskazov IL. Collective lattice resonances in arrays of dielectric nanoparticles: a matter of size. OPTICS LETTERS 2019; 44:5743-5746. [PMID: 31774768 DOI: 10.1364/ol.44.005743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Collective lattice resonances (CLRs) in finite-sized $ 2D $2D arrays of dielectric nanospheres have been studied via the coupled dipole approximation. We show that even for sufficiently large arrays, up to $ 100 \times 100 $100×100 nanoparticles (NPs), electric or magnetic dipole CLRs may differ significantly from the ones calculated for infinite arrays with the same NP sizes and interparticle distances. The discrepancy is explained by the existence of a sufficiently strong cross-interaction between electric and magnetic dipoles induced at NPs in finite-sized lattices, which is ignored for infinite arrays. We support this claim numerically and propose an analytic model to estimate a spectral width of CLRs for finite-sized arrays. Given that most of the current theoretical and numerical researches on collective effects in arrays of dielectric NPs rely on modeling infinite structures, the reported findings may contribute to thoughtful and optimal design of inherently finite-sized photonic devices.
Collapse
|